1
|
Zhao J, Zhang Q, Chen Y, Zhao X. Computed Tomography-Based Radiomics to Predict FOXM1 Expression and Overall Survival in Patients with Clear Cell Renal Cell Carcinoma. Acad Radiol 2024; 31:3635-3646. [PMID: 38480074 DOI: 10.1016/j.acra.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE AND OBJECTIVES To establish a computed tomography (CT)-based radiomics model to predict Fork head box M1(FOXM1) expression levels and develop a combined model for prognostic prediction in patients with clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS A total of 529 patients were utilized to assess the prognostic significance of FOXM1 expression and were subsequently categorized into low and high FOXM1 expression groups. 184 patients with CT images were randomly divided into training and validation cohorts. Radiomics signature (Rad-score) for predicting FOXM1 expression level was developed in the training cohort. The predictive performance was evaluated using receiver operating characteristic (ROC) curves. A clinical model based on clinical factors and a combined model incorporating clinical factors and Rad-score were developed to predict ccRCC prognosis using Cox regression analyses. The concordance index(C-index) was employed to assess and compare the predictive capabilities of the Rad-score, TNM stage, clinical model, and combined model. The likelihood ratio test was used to compare the models' performance. RESULTS The Rad-score demonstrated high predictive accuracy for high FOXM1 expression with areas under the ROC curves of 0.713 and 0.711 in the training and validation cohorts. In the training cohort, the C-indexes for the Rad-score, TNM Stage, clinical model, and combined model were 0.657, 0.711, 0.737, and 0.741, respectively. Correspondingly, in the validation cohort, the C-indexes were 0.670, 0.712, 0.736, and 0.745. The combined model had the highest C-index, significantly outperforming the other models. CONCLUSION The Rad-score accurately predicts FOXM1 expression levels and is an independent prognostic factor for ccRCC.
Collapse
Affiliation(s)
- Jingwei Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Shan Y, Zheng L, Zhang S, Qian B. Abnormal expression of FOXM1 in carcinogenesis of renal cell carcinoma: From experimental findings to clinical applications. Biochem Biophys Res Commun 2024; 692:149251. [PMID: 38056162 DOI: 10.1016/j.bbrc.2023.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy within the genitourinary system. At present, patients with high-grade or advanced RCC continue to have a bleak prognosis. Mounting research have emphasized the significant involvement of Forkhead box M1 (FOXM1) in RCC development and progression. Therefore, it is imperative to consolidate the existing evidence regarding the contributions of FOXM1 to RCC tumorigenesis through a comprehensive review. This study elucidated the essential functions of FOXM1 in promoting RCC growth, invasion, and metastasis by regulating cell cycle progression, DNA repair, angiogenesis, and epithelial-mesenchymal transition (EMT). Also, FOXM1 might serve as a novel diagnostic and prognostic biomarker as well as a therapeutic target for RCC. Clinical findings demonstrated that the expression of FOXM1 was markedly upregulated in RCC samples, while a high level of FOXM1 was found to be associated with a poor overall survival rate of RCC. Furthermore, it is worth noting that FOXM1 may have a significant impact on the resistance of renal cell carcinoma (RCC) to radiotherapy. This observation suggests that inhibiting FOXM1 could be a promising strategy to impede the progression of RCC and enhance its sensitivity to radiotherapy. The present review highlighted the pivotal role of FOXM1 in RCC development. FOXM1 has the capacity to emerge as not only a valuable diagnostic and prognostic tool but also a viable therapeutic option for unresectable RCC.
Collapse
Affiliation(s)
- Yanmei Shan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
3
|
Aimaier R, Chung MH, Gu Y, Yu Q, Wei C, Li H, Guo Z, Long M, Li Y, Wang W, Li Q, Wang Z. FOXM1 promotes neurofibromatosis type 1-associated malignant peripheral nerve sheath tumor progression in a NUF2-dependent manner. Cancer Gene Ther 2023; 30:1390-1402. [PMID: 37488294 DOI: 10.1038/s41417-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas characterized by poor prognosis and low drug response rates. Traditional chemo/radiotherapies show only mild benefits for patients with MPNSTs, and no targeted therapy is available in the clinic. A better understanding of the molecular background of MPNSTs is critical for the development of effective targeted therapies. Forkhead box M1 (FOXM1) has been implicated in the progression of many human malignancies, though its role in MPNSTs is unclear. In this study, using four Gene Expression Omnibus (GEO) datasets and a tissue microarray, we demonstrated that FOXM1 upregulation was associated with poor prognosis in patients with MPNSTs. FOXM1 overexpression and knockdown regulated the proliferation and colony formation of MPNST cells. Using bioinformatics analysis and luciferase reporter assays, we identified NUF2 as a direct downstream target of FOXM1. Both in vitro and in vivo experiments demonstrated that the induction of MPNST cell proliferation by FOXM1 was dependent on elevated NUF2 expression, as NUF2 knockdown abolished the FOXM1-induced proliferation of MPNST cells. Our study showed that the FOXM1-NUF2 axis mediates human MPNST progression and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiong Yu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li X, Liu W, Tao W. LINC00174 promotes cell proliferation and metastasis in renal clear cell carcinoma by regulating miR-612/FOXM1 axis. Immunopharmacol Immunotoxicol 2022; 44:746-756. [PMID: 35616230 DOI: 10.1080/08923973.2022.2082303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is the most common pathological subtype of kidney tumor. Reportedly, LINC00174 is a key regulator in cancer progression. This study aims to clarify the role and molecular mechanism of LINC00174 in the progression of KIRC. METHODS LINC00174 expression in KIRC and its prognostic value were analyzed by bioinformatics. LINC00174, miR-612 and FOXM1 mRNA expression levels in KIRC clinical samples and cell lines were detected by qRT-PCR. After LINC00174 was overexpressed or knocked down, CCK-8, BrdU and Transwell assays were adopted to evaluate the proliferation and metastatic potential of KIRC cells. Bioinformatics and dual luciferase reporter assays were employed to validate the targeting relationship between miR-612 and LINC00174 or FOXM1 mRNA, respectively. Western blot assay was performed to detect FOXM1 protein expression in KIRC cells. RESULTS LINC00174 expression and FOXM1 expression were up-regulated in 42 cases of KIRC tissues (P < 0.001), while miR-612 expression was down-regulated (P < 0.001). LINC00174 overexpression or miR-612 inhibitor promoted the viability and proliferation of KIRC cells (P < 0.01). Migration and invasion of KIRC cells were promoted when the cells were transfected with LINC00174 overexpression or miR-612 inhibitor (P < 0.05). LINC00174 can competitively bind with miR-612 to repress the expression of miR-612, in turn up-regulate the expression of FOXM1 mRNA. CONCLUSION LINC00174 facilitates the proliferation and metastatic potential of KIRC cells via regulating the miR-612/FOXM1 axis.
Collapse
Affiliation(s)
- Xiaoshan Li
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| | - Wei Liu
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| | - Weixiong Tao
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| |
Collapse
|
5
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
6
|
Jiang Y, Li W, Yan Y, Yao X, Gu W, Zhang H. LINC01094 triggers radio-resistance in clear cell renal cell carcinoma via miR-577/CHEK2/FOXM1 axis. Cancer Cell Int 2020; 20:274. [PMID: 32595418 PMCID: PMC7315499 DOI: 10.1186/s12935-020-01306-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Radioresistance is an obstacle to limit efficacy of radiotherapy. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to affect radioresistance. Here, we aimed to investigate lncRNAs involving radioresistance development of clear cell renal cell carcinoma (ccRCC), the most frequent type of renal cell carcinoma (RCC). Methods The mRNA and protein expressions of genes were measured via qRT-PCR and western blot. The relationships among genes were verified by RIP and luciferase reporter assay. The radioresistance of ccRCC cells was evaluated through clonogenic survival assay, MTT assay and TUNEL assay. Results LINC01094 was over-expressed in ccRCC cell lines. LINC01094 expression was increased along with the radiation exposure time and the final stable level was 8 times of the initial level. Knockdown of LINC01094 resulted in enhanced radiosensitivity of ccRCC cells. Mechanically, LINC01094 was a ceRNA of CHEK2 by sponging miR-577. Also, the enhancement of LINC01094 on ccRCC radioresistance was mediated by CHEK2-stabilized FOXM1 protein. Conclusion LINC01094 facilitates ccRCC radioresistance by targeting miR-577/CHEK2/FOXM1 axis, blazing a new trail for overcoming radioresistance in ccRCC.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Urology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.66 Xiangyang Road, Chongming District, Shanghai, 202157 China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| |
Collapse
|
7
|
Jiang Y, Zhang H, Li W, Yan Y, Yao X, Gu W. LINC01426 contributes to clear cell renal cell carcinoma progression by modulating CTBP1/miR-423-5p/FOXM1 axis via interacting with IGF2BP1. J Cell Physiol 2020; 236:427-439. [PMID: 32583425 DOI: 10.1002/jcp.29871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that long noncoding RNAs (lncRNAs) are pivotal regulators in oncogenesis. However, the role of numerous lncRNAs has never been unmasked in clear cell renal cell carcinoma (ccRCC). Presently, we investigated the function of long intergenic nonprotein coding RNA 1426 (LINC01426) in ccRCC, as The Cancer Genome Atlas data indicated that LINC01426 was highly expressed in ccRCC tissues and its overexpression was correlated with disappointing prognosis. First, we verified that LINC01426 was indeed upregulated in ccRCC cell lines and its depletion restrained ccRCC cell proliferation and migration. Besides, we proved that LINC01426 facilitated ccRCC tumorigenesis via forkhead box M1 (FOXM1). Moreover, it was revealed that miR-423-5p was downregulated and directly targeted FOXM1 in ccRCC, and that LINC01426 positively regulated FOXM1 via its inhibition on miR-423-5p. Notably, we also uncovered that miR-423-5p was transcriptionally silenced by CTBP1 and HDAC2. Of importance, LINC01426 was certified to distribute both in the cytoplasm and the nucleus of ccRCC cells, and it increased CTBP1 expression through recruiting insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) in cytoplasm whereas interacted with CTBP1 protein to improve the transcriptional repression on miR-423-5p in nucleus. Jointly, our observations unveiled that LINC01426 aggravates ccRCC progression via IGF2BP1/CTBP1/HDAC2/miR-423-5p/FOXM1 axis, highlighting LINC01426 as a novel promising target for ccRCC treatment.
Collapse
Affiliation(s)
- YuFeng Jiang
- Department of Urology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - HaiMin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - XuDong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - WenYu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang Y, Zhou Q, Tang R, Huang Y, He T. FoxM1 inhibition ameliorates renal interstitial fibrosis by decreasing extracellular matrix and epithelial-mesenchymal transition. J Pharmacol Sci 2020; 143:281-289. [PMID: 32513569 DOI: 10.1016/j.jphs.2020.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
FoxM1 is a transcriptional regulator involved in tumor development, pulmonary fibrosis, and cardiac fibrosis. However, its role in renal interstitial fibrosis (RIF) has yet to be elucidated. We established a TGF-β1-stimulated human proximal tubular epithelial cell (HK-2) model in vitro and a unilateral ureteral obstruction (UUO)-induced rat RIF model in vivo. FoxM1 inhibition was achieved by siRNA interference in vitro and by injecting thiostrepton into UUO-induced RIF rats in vivo. The degree of renal damage and fibrosis were determined by histological assessment via hematoxylin and eosin (H&E) staining. Immunohistochemistry, western blots, and qPCR were used to determine the expression levels of FoxM1, Collagen I, E-cadherin, α-SMA, and Snail1. Our results showed that FoxM1 inhibition could ameliorate RIF and reduce the deposition of Collagen I. H&E staining revealed that renal structural damage, inflammatory cell infiltration, and ECM deposition were significantly attenuated by thiostrepton treatment in the UUO rats. Furthermore, FoxM1 downregulation significantly suppressed epithelial-to-mesenchymal transition, as evidenced by decreased protein and mRNA expression levels of α-SMA and Snail1 and a significant increase in protein and mRNA expression levels of E-cadherin. Collectively, these results suggested that FoxM1 inhibition could be a novel therapeutic strategy for the treatment of RIF.
Collapse
Affiliation(s)
- Yanhui Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuyu Huang
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ting He
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
9
|
Zhou K, Mai H, Zheng S, Cai W, Yang X, Chen Z, Zhan B. OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in renal cell carcinoma. Cell Biosci 2020; 10:50. [PMID: 32257108 PMCID: PMC7106863 DOI: 10.1186/s13578-020-00408-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background OTUB1 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding proteins)-mediated deubiquitination of FOXM1 (Forkhead box M1) participates in carcinogenesis of various tumors. We aim to investigate the effect and mechanism of OTUB1/FOXM1 on RCC (renal cell carcinoma) progression. Expression levels of OTUB1 in RCC tissues and cell lines were examined by qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. Cell proliferation was measured with CCK8 (Cell Counting Kit-8) and colony formation assays. Wound healing and transwell assays were used to determine cell migration and invasion, respectively. The effect of OTUB1 on FOXM1 ubiquitination was examined by Immunoprecipitation. Western blot was used to uncover the underlying mechanism. In vivo subcutaneous xenotransplanted tumor model combined with immunohistochemistry and western blot were used to examine the tumorigenic function of OTUB1. Results OTUB1 was up-regulated in RCC tissues and cell lines, and was associated with poor prognosis of RCC patients. Knockdown of OTUB1 inhibited cell viability and proliferation, as well as migration and invasion of RCC cells. Mechanistically, knockdown of OTUB1 down-regulated FOXM1 expression by promoting its ubiquitination. Down-regulation of FOXM1 inhibited ECT2 (epithelial cell transforming 2)-mediated Rho signaling. Moreover, the inhibition of RCC progression caused by OTUB1 knockdown was reversed by FOXM1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that knockdown of OTUB1 could suppress in vivo RCC growth via down-regulation of FOXM1-mediated ECT2 expression. Conclusions OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in RCC, providing a new potential therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Kai Zhou
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Haixing Mai
- 2Department of Urology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Song Zheng
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Weizhong Cai
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Xu Yang
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Zhenlin Chen
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Bin Zhan
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| |
Collapse
|
10
|
Siebenthall KT, Miller CP, Vierstra JD, Mathieu J, Tretiakova M, Reynolds A, Sandstrom R, Rynes E, Haugen E, Johnson A, Nelson J, Bates D, Diegel M, Dunn D, Frerker M, Buckley M, Kaul R, Zheng Y, Himmelfarb J, Ruohola-Baker H, Akilesh S. Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine 2019; 41:427-442. [PMID: 30827930 PMCID: PMC6441874 DOI: 10.1016/j.ebiom.2019.01.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.
Collapse
Affiliation(s)
- Kyle T Siebenthall
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Chris P Miller
- Department of Pathology, University of Washington, Seattle, WA 98195, United States
| | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, United States; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Maria Tretiakova
- Department of Pathology, University of Washington, Seattle, WA 98195, United States
| | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Richard Sandstrom
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Audra Johnson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Mark Frerker
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, United States
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States.
| |
Collapse
|
11
|
Kim MY, Jung AR, Kim GE, Yang J, Ha US, Hong SH, Choi YJ, Moon MH, Kim SW, Lee JY, Park YH. High FOXM1 expression is a prognostic marker for poor clinical outcomes in prostate cancer. J Cancer 2019; 10:749-756. [PMID: 30719174 PMCID: PMC6360432 DOI: 10.7150/jca.28099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose: We aimed to investigate the expression of FOXM1 and to determine the relationships between FOXM1 expression and clinicopathologic characteristics in patients with PCa. Furthermore, we reconfirmed the prognostic impact of FOXM1 in different cohorts using already published data. Patients and Methods: Formalin-fixed, paraffin-embedded tissues were collected from patients with low- (n=17), intermediate- (n=36), and high-risk (n=29) disease, from patients with CRPC (n=2) and from patients with BPH (n=28). To analyze FOXM1 expression, we performed IHC analyses. Also, we analyzed gene expression data from cBioPortal to evaluate the associations between FOXM1 alteration and prognosis of PCa. Results: FOXM1 expression measured using Allred score differed between patients with BPH, and low-, intermediate-, and high-risk PCa (0.3, 1.5, 4.8, and 6.2, respectively; p<0.001). Patients with high FOXM1 expression had higher preoperative PSA levels (p=0.023), more advanced tumor stages (p=0.047), and higher pathologic Gleason score (p<0.001) than those with low FOXM1 expression. ROC curve analysis indicated that FOXM1 expression was a useful marker for discriminating PCa from BPH (AUC 0.851, 95% CI 0.783-0.920) and for discriminating high-risk PCa from low- and intermediate-risk PCa (AUC 0.807, 95% CI 0.719-0.894). In multivariate analyses, high FOXM1 expression was an independent predictor of BCR. Finally, in the TCGA dataset, FOXM1 alteration was associated with poor overall (p=4.521e-4) and disease-free survival (p=0.0108). Conclusions: In patients with PCa, high FOXM1 expression was associated with advanced tumor stages, high Gleason score, and poor prognosis. These data suggest a role of FOXM1 in biologically and clinically aggressive PCa.
Collapse
Affiliation(s)
- Mee Young Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Ae Ryang Jung
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Ga Eun Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Jonghyup Yang
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - U-Syn Ha
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Yeong Jin Choi
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea
| |
Collapse
|
12
|
Wang Y, Wu M, Lei Z, Huang M, Li Z, Wang L, Cao Q, Han D, Chang Y, Chen Y, Liu X, Xue L, Mao X, Geng J, Chen Y, Dai T, Ren L, Wang Q, Yu H, Chen C, Chu X. Dysregulation of miR-6868-5p/FOXM1 circuit contributes to colorectal cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:292. [PMID: 30486864 PMCID: PMC6264626 DOI: 10.1186/s13046-018-0970-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022]
Abstract
Background Transcription factor forkhead box M1 (FOXM1) is a crucial regulator in colorectal cancer (CRC) progression. However, the regulatory mechanisms causing dysregulation of FOXM1 in CRC remain unclear. Methods Dual-luciferase reporter assay was conducted to determine FOXM1 as miR-6868-5p target. The function of miR-6868-5p and FOXM1 in CRC angiogenesis was verified in vitro. Intratumoral injection model was constructed to explore the effect of miR-6868-5p on angiogenesis in vivo. Chromatin immunoprecipitation assays were used to assess direct binding of H3K27me3 to the miR-6868 promoter. Results Through integrated analysis, we identified miR-6868-5p as the potent regulator of FOXM1. Overexpression of miR-6868-5p in CRC cells inhibited the angiogenic properties of co-cultured endothelial cells, whereas silencing of miR-6868-5p had opposite effects. In vivo delivery of miR-6868-5p blocked tumor angiogenesis in nude mice, resulting in tumor growth inhibition. Rescue of FOXM1 reversed the effect of miR-6868-5p on tumor angiogenesis. Further mechanistic study revealed that FOXM1 promoted the production of IL-8, which was responsible for the miR-6868-5p/FOXM1 axis-regulated angiogenesis. Reciprocally, FOXM1 inhibited miR-6868-5p expression through EZH2-mediated H3K27me3 on miR-6868-5p promoter, thus forming a feedback circuit. Clinically, the level of miR-6868-5p was downregulated in CRC tissues and inversely correlated with microvessel density as well as levels of FOXM1 and IL-8 in tumor specimens. Conclusions Together, these data identify miR-6868-5p as a novel determinant of FOXM1 expression and establish a miR-6868-5p/FOXM1 regulatory circuit for CRC angiogenesis, providing potential target for CRC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0970-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhiping Li
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Liya Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qijun Cao
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Dong Han
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lili Ren
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongju Yu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Cheng Chen
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Chen L, Luo Y, Wang G, Qian K, Qian G, Wu CL, Dan HC, Wang X, Xiao Y. Prognostic value of a gene signature in clear cell renal cell carcinoma. J Cell Physiol 2018; 234:10324-10335. [PMID: 30417359 DOI: 10.1002/jcp.27700] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
Renal cancer is a common urogenital system malignance. Novel biomarkers could provide more and more critical information on tumor features and patients' prognosis. Here, we performed an integrated analysis on the discovery set and established a three-gene signature to predict the prognosis for clear cell renal cell carcinoma (ccRCC). By constructing a LASSO Cox regression model, a 3-messenger RNA (3-mRNA) signature was identified. Based on the 3-mRNA signature, we divided patients into high- and low-risk groups, and validated this by using three other data sets. In the discovery set, this signature could successfully distinguish between the high- and low-risk patients (hazard ratio (HR), 2.152; 95% confidence interval (CI),1.509-3.069; p < 0.0001). Analysis of internal and two external validation sets yielded consistent results (internal: HR, 2.824; 95% CI, 1.601-4.98; p < 0.001; GSE29609: HR, 3.002; 95% CI, 1.113-8.094; p = 0.031; E-MTAB-3267: HR, 2.357; 95% CI, 1.243-4.468; p = 0.006). Time-dependent receiver operating characteristic (ROC) analysis indicated that the area under the ROC curve at 5 years was 0.66 both in the discovery and internal validation set, while the two external validation sets also suggested good performance of the 3-mRNA signature. Besides that, a nomogram was built and the calibration plots and decision curve analysis indicated the good performance and clinical utility of the nomogram. In conclusion, this 3-mRNA classifier proved to be a useful tool for prognostic evaluation and could facilitate personalized management of ccRCC patients.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Perron G, Jandaghi P, Solanki S, Safisamghabadi M, Storoz C, Karimzadeh M, Papadakis AI, Arseneault M, Scelo G, Banks RE, Tost J, Lathrop M, Tanguay S, Brazma A, Huang S, Brimo F, Najafabadi HS, Riazalhosseini Y. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes. Cell Rep 2018; 23:1639-1650. [PMID: 29742422 DOI: 10.1016/j.celrep.2018.04.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/03/2018] [Accepted: 04/06/2018] [Indexed: 01/13/2023] Open
Abstract
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC.
Collapse
Affiliation(s)
- Gabrielle Perron
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Pouria Jandaghi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Shraddha Solanki
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maryam Safisamghabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Cristina Storoz
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mehran Karimzadeh
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Madeleine Arseneault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, Lyon 69008, France
| | - Rosamonde E Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Simon Tanguay
- Department of Urology, McGill University, Montreal, QC H3G 1A4, Canada
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada.
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
15
|
Li L, Wu D, Yu Q, Li L, Wu P. Prognostic value of FOXM1 in solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:32298-32308. [PMID: 28427178 PMCID: PMC5458285 DOI: 10.18632/oncotarget.15764] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulated studies have provided controversial evidences of the association between Forkhead Box M1 (FOXM1) expression and survival of human solid tumors. To address this inconsistency, we performed a meta-analysis with 23 studies identified from PubMed and Medline. We found elevated FOXM1-protein expression was significantly associated with worse 3-year overall survival (OS) (OR = 3.30, 95% CI = 2.56 to 4.25, P < 0.00001) 5-year OS (OR =3.35, 95% CI = 2.64 to 4.26, P < 0.00001) and 10-year OS (OR = 5.24, 95% CI = 2.61 to 10.52, P < 0.00001) of human solid tumors. Similar results were observed when disease free survival (DFS) were analyzed. Subgroup analysis showed that FOXM1 overexpression was associated with poor prognosis of colorectal cancer, gastric cancer, hepatic cancer, lung cancer and ovarian cancer. High expression level of FOXM1 was also associated with advanced tumor stage. In conclusion, elevated FOXM1 expression is associated with poor survival in most solid tumors. FOXM1 is a potential biomarker for prognosis prediction and a promising therapeutic target in human solid tumors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Surgery, Hangzhou Xixi Hospital, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Yu
- Fourth Ward of Neurosurgery, Division of Nursing, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingdi Li
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao Y, Gu L, Xie Y, Duan J, Zhang X. FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer 2018; 142:2543-2557. [PMID: 29368368 DOI: 10.1002/ijc.31278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/18/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
Forkhead box K2 (FOXK2) belongs to the forkhead box transcription factor family. Recent studies have revealed that FOXK2 plays essential roles in cancer cell proliferation and survival. However, the biological function of FOXK2 in renal cell carcinoma remains unexplored. In our study, we demonstrated that FOXK2 mRNA and protein levels were decreased in clear-cell renal cell carcinoma (ccRCC) tissues compared to those in corresponding non-tumor renal tissues, and decreased FOXK2 levels were associated with poor prognosis in ccRCC patients after nephrectomy. FOXK2 suppressed proliferation, migration and invasion capabilities of ccRCC cells and induced cellular apoptosis in vitro. Moreover, we found that FOXK2 overexpression inhibited xenograft tumor growth and promoted apoptosis in vivo. Genome-wide transcriptome profiling using FOXK2 overexpressed 769-P cells revealed that the epidermal growth factor receptor (EGFR) was a potential downstream gene of FOXK2. Overexpression of EGFR is able to rescue the inhibited proliferation capacity and the enhanced apoptosis capacity due to the overexpression of FOXK2 in 769-P cells. Collectively, our results indicate that FOXK2 inhibits the malignant phenotype of ccRCC and acts as a tumor suppressor possibly through the inhibition of EGFR.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xintao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Luyao Chen
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yu Gao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liangyou Gu
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yongpeng Xie
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China.,Medical School, Nankai University, Tianjin, People's Republic of China
| | - Junyao Duan
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China.,Medical School, Nankai University, Tianjin, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
17
|
Fei BY, He X, Ma J, Zhang M, Chai R. FoxM1 is associated with metastasis in colorectal cancer through induction of the epithelial-mesenchymal transition. Oncol Lett 2017; 14:6553-6561. [PMID: 29163688 PMCID: PMC5686434 DOI: 10.3892/ol.2017.7022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/03/2017] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the role of forkhead box M1 (FoxM1) in epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer (CRC). Immunohistochemical assays were performed to detect FoxM1 and epithelial (E-) cadherin protein expression in 92 CRC, 61 colonic adenoma and 32 wild-type colonic tissue samples. Quantitative polymerase chain reaction (qPCR) assays were performed to determine the expression levels of FoxM1 and E-cadherin mRNAs in 30 CRC and adjacent normal mucosal tissues. RNA interference was used to knock down endogenous FoxM1 expression in CRC cell lines, and the migratory and invasive capacity of the CRC cells was analyzed. The expression of FoxM1, E-cadherin and neuronal (N-) cadherin in the CRC cell lines was evaluated using qPCR and Western blot analysis. The relative expression levels of FoxM1 mRNA and protein were significantly increased in the CRC tissues compared with those in the colonic adenoma and wild-type mucosal tissue samples (P<0.01). In contrast, the relative expression levels of E-cadherin mRNA and protein were significantly decreased in the CRC tissues compared with in the colonic adenoma and normal mucosal tissues (P<0.01). FoxM1 overexpression and decreased E-cadherin expression were significantly associated with poor colonic tissue differentiation, lymph node metastasis and an advanced tumor-node-metastasis stage. Additionally, the increased expression of FoxM1 was associated with a decrease in E-cadherin expression (P<0.01). Furthermore, RNA interference-mediated FoxM1 knockdown significantly inhibited the proliferation, migration and invasion of CRC cells. Downregulation of FoxM1 expression significantly increased E-cadherin expression and decreased N-cadherin expression. The results of the present study suggest that FoxM1 overexpression in tumor tissues is significantly associated with metastasis in CRC through the induction of EMT.
Collapse
Affiliation(s)
- Bao-Ying Fei
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Ma
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Mei Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Anorectal Surgery, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
18
|
Okato A, Arai T, Yamada Y, Sugawara S, Koshizuka K, Fujimura L, Kurozumi A, Kato M, Kojima S, Naya Y, Ichikawa T, Seki N. Dual Strands of Pre-miR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18091969. [PMID: 28902136 PMCID: PMC5618618 DOI: 10.3390/ijms18091969] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
Our recent studies revealed that dual strands of certain pre-microRNAs, e.g., pre-miR-144, pre-miR-145, and pre-miR-150, act as antitumor microRNAs (miRNAs) in several cancers. The involvement of passenger strands of miRNAs in cancer pathogenesis is a novel concept in miRNA research. The analysis of a miRNA expression signature in clear cell renal cell carcinoma (ccRCC) has revealed that the guide strand of pre-miR-149 is significantly downregulated in cancer tissues. The aims of this study were to investigate the functional significance of miR-149’s guide strand (miR-149-5p) and passenger strand (miR-149-3p), and to identify the oncogenic genes regulated by these miRNAs in ccRCC cells. The ectopic expression of these miRNAs significantly inhibited cancer cell migration and invasion in ccRCC cells. Forkhead box protein M1 (FOXM1) was directly regulated by miR-149-5p and miR-149-3p in ccRCC cells. Knockdown studies using si-FOXM1 showed that the expression of FOXM1 enhanced RCC cell aggressiveness. Interestingly, the analysis of a large number of patients in the The Cancer Genome Atlas (TCGA) database (n = 260) demonstrated that patients with high FOXM1 expression had significantly shorter survival than did those with low FOXM1 expression (p = 1.5 × 10−6). Taken together, dual strands of pre-miR-149 (miR-149-5p and miR-149-3p) acted as antitumor miRNAs through the targeting of FOXM1 in ccRCC cells.
Collapse
Affiliation(s)
- Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Lisa Fujimura
- Department of Biomedical Science, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, 2990111 Ichihara, Japan.
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, 2990111 Ichihara, Japan.
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| |
Collapse
|
19
|
Chen Y, Liu Y, Ni H, Ding C, Zhang X, Zhang Z. FoxM1 overexpression promotes cell proliferation and migration and inhibits apoptosis in hypopharyngeal squamous cell carcinoma resulting in poor clinical prognosis. Int J Oncol 2017; 51:1045-1054. [PMID: 28848994 PMCID: PMC5592873 DOI: 10.3892/ijo.2017.4094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Forkhead box M1 (FoxM1), a member of the Fox family of transcriptional factors, is involved in the development of various human malignancies. However, the expression level of FoxM1 and its functional role in hypopharyngeal squamous cell carcinoma (HSCC) remained unclear to date. The aim of the present study was to investigate the FoxM1 expression in 63 HSCC and 20 adjacent normal tissues, as well as to evaluate its association with the clinicopathological parameters and its diagnostic value in HSCC. To further explore the biological function of FoxM1 in vitro, siRNAs were used to knockdown the expression of FoxM1 in the HSCC cell line Fadu. The results revealed that FoxM1 protein was highly expressed in HSCC tissues and that its high expression was closely associated with HSCC tumor differentiation (P=0.004), tumor size (P=0.002), clinical stage (P=0.001), lymph node metastasis (P=0.002), treatment (P=0.045) and expression of the proliferation marker Ki-67 (P<0.001). Additionally, the elevated expression of FoxM1 in HSCC patients consistently predicted a poor survival time. Knockdown of FoxM1 expression blocked Fadu cell proliferation and promoted apoptosis, and also led to the down-regulation of cyclin A1 expression. Furthermore, decreased expression of FoxM1 markedly impeded cell migration and reversed the epithelial-mesenchymal transition phenotype, as indicated by decreased expression of vimentin and increased expression of E-cadherin in Fadu cells. These results indicate that FoxM1 may act as an oncogene and serve as a therapeutic target against malignant progression in HSCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haosheng Ni
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanjin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaobo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
20
|
Thomsen KG, Terp MG, Lund RR, Søkilde R, Elias D, Bak M, Litman T, Beck HC, Lyng MB, Ditzel HJ. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations. Oncotarget 2016; 6:29224-39. [PMID: 26317550 PMCID: PMC4745722 DOI: 10.18632/oncotarget.4942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/29/2015] [Indexed: 01/07/2023] Open
Abstract
To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered expression between isogenic metastasizing and non-metastasizing cancer cells, with miR-155 being the most differentially expressed. Highly metastatic mesenchymal-like CL16 cancer cells showed very low miR-155 expression, and miR-155 overexpression in these cells lead to significantly decreased tumor burden in lungs when injected intravenously in immunodeficient mice. Our experiments addressing the underlying mechanism of the altered tumor burden revealed that miR-155-overexpressing CL16 cells were less invasive than CL16 control cells in vitro, while miR-155 overexpression had no effect on cancer cell proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis-associated proteins ALDH1A1, PIR and PDCD4 in miR-155-overexpressing tumors was validated by immunohistochemistry. Our results demonstrate that miR-155 inhibits the ability of cancer cells to extravasate and/or colonize at distant organs and brings additional insight into the complexity of miR-155 regulation in metastatic seeding.
Collapse
Affiliation(s)
- Karina G Thomsen
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Rikke R Lund
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Rolf Søkilde
- Department of Biomarker Discovery, Exiqon A/S, Vedbaek, Denmark
| | - Daniel Elias
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Litman
- Department of Biomarker Discovery, Exiqon A/S, Vedbaek, Denmark
| | - Hans C Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria B Lyng
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
21
|
Aguilera Ó, González-Sancho JM, Zazo S, Rincón R, Fernández AF, Tapia O, Canals F, Morte B, Calvanese V, Orgaz JL, Niell N, Aguilar S, Freije JM, Graña O, Pisano DG, Borrero A, Martínez-Useros J, Jiménez B, Fraga MF, García-Foncillas J, López-Otín C, Lafarga M, Rojo F, Muñoz A. Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget 2016; 6:5903-17. [PMID: 25788273 PMCID: PMC4467410 DOI: 10.18632/oncotarget.3464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 12/25/2022] Open
Abstract
Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/β-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/β-catenin signaling that also has undefined β-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Óscar Aguilera
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Zazo
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Raúl Rincón
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IFIMAV, Santander, Spain.,Present address: The Scripps Research Institute, La Jolla, CA, USA
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatriz Morte
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincenzo Calvanese
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain.,Present address: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, CA, USA
| | - José L Orgaz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Núria Niell
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Aguilar
- Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Freije
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Osvaldo Graña
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurea Borrero
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IFIMAV, Santander, Spain
| | - Federico Rojo
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Kong FF, Zhu YL, Yuan HH, Wang JY, Zhao M, Gong XD, Liu F, Zhang WY, Wang CR, Jiang B. FOXM1 regulated by ERK pathway mediates TGF-β1-induced EMT in NSCLC. Oncol Res 2015; 22:29-37. [PMID: 25700356 PMCID: PMC7592790 DOI: 10.3727/096504014x14078436004987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
FOXM1, a member of the Forkhead transcriptional family, plays an important role in the EMT process, and transforming growth factor-β1 (TGF-β1) has been identified as the most potent factor that can independently induce EMT in various types of cancer cells. Here we examine the important role of FOXM1 in TGF-β1-induced EMT and investigate the mechanism underlying the relationship between TGF-β1 and FOXM1. Lentivirus-mediated transfection was used to stably upregulate the expression of FOXM1, and a small interfering RNA (siRNA) was introduced to silence the expression of FOXM1. Transwell and wound-healing assays were then performed to assess the invasion and motility potential of non-small cell lung cancer (NSCLC) cells. The NSCLC cell lines exhibited EMT characteristics, including an elongated fibroblastoid shape, induced expression of EMT marker proteins, and increased migratory and invasive potential after induction with TGF-β1. The overexpression of FOXM1 enhanced TGF-β1-induced EMT in NSCLC cells. Knockdown of FOXM1 reversed TGF-β1-induced EMT in NSCLC cell lines but had no effect on the phosphorylation level of ERK. Additionally, U0126, an ERK signaling inhibitor, exerted a reversible effect on TGF-β1-induced EMT and inhibited FOXM1 expression. FOXM1 regulated by the ERK pathway can mediate TGF-β1-induced EMT in NSCLC and is a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Fei-Fei Kong
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - You-Long Zhu
- Department of General Surgery, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hai-Hua Yuan
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Jiong-Yi Wang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Mei Zhao
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiao-Di Gong
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Feng Liu
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wen-Ying Zhang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Cong-Rong Wang
- Metabolic Disease Bio-Bank, Shanghai Jiao Tong University Affiliated Sixth Peoples Hospital, Shanghai Diabetes Institute,Shanghai Key Laboratory of Diabetes MellitusShanghaiChina
| | - Bin Jiang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
23
|
Prognostic Value of FOXM1 in Patients with Malignant Solid Tumor: A Meta-Analysis and System Review. DISEASE MARKERS 2015; 2015:352478. [PMID: 26451068 PMCID: PMC4584221 DOI: 10.1155/2015/352478] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023]
Abstract
Forkhead box M1 (FOXM1), a member of the Fox transcription factors family, was closely related with cell cycle. FOXM1 played an important role in MST and prompted a poor prognosis for MST patients. However, there were also some studies revealing no significant association between the FOXM1 expression and prognosis of patients. Therefore, we conducted meta-analysis to investigate whether the expression of FOXM1 was associated with MST prognosis. We collected 36 relevant studies through PubMed database and obtained research data of 4946 patients. Stata 12.0 was used to express the results as hazard ratio (HR) for time-to-event outcomes with 95% confidence intervals (95% CI). It was shown that overexpression of FOXM1 was relevant to worse survival of MST patients (HR = 1.99, 95% CI = 1.79–2.21, P < 0.001; I2 = 26.4%, Ph = 0.076). Subgroup analysis suggested that overexpression of FOXM1 in breast cancer (BC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDA), and non-small-cell lung cancer (NSCLC) all predicted a worse survival (P < 0.05), in addition to ovarian cancer (OC) (P = 0.084). In conclusion, our research indicated that overexpression of FOXM1 was to the disadvantage of the prognosis for majority of MST and therefore can be used as an evaluation index of prognosis.
Collapse
|
24
|
Ahn H, Sim J, Abdul R, Chung MS, Paik SS, Oh YH, Park CK, Jang K. Increased expression of forkhead box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor-positive breast cancer. J Korean Med Sci 2015; 30:390-7. [PMID: 25829806 PMCID: PMC4366959 DOI: 10.3346/jkms.2015.30.4.390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022] Open
Abstract
Fox transcription factors play a critical role in the regulation of a variety of biological processes. While FoxM1 behaves like the oncogenic transcription factor, FoxO3a is known as a tumor suppressor by inhibiting FoxM1. This study aimed to investigate the clinicopathological significance of FoxM1 and FoxO3a expression in breast cancer. Expression of FoxM1 and FoxO3a were analyzed by immunohistochemical staining on tissue microarray sections from 236 breast cancer patients, and correlated with various clinicopathological characteristics. Overexpression of FoxM1 correlated with adverse clinicopathological features, such as larger tumor size, lymph node metastasis, advanced tumor stage, and lymphovascular invasion. The Kaplan-Meier survival curves revealed no prognostic significance of FoxM1 expression. However, in subgroup analyses with patients of estrogen receptor (ER) positive breast cancers, FoxM1 overexpression associated with poor disease free and overall survival. No association was found between FoxO3a and FoxM1 expression. Regarding clinicopathological variables, the only association between histologic grade and FoxO3a was observed. In conclusion, FoxM1 overexpression was significantly associated with aggressive phenotypes and poor prognosis of ER-positive breast cancer. These findings suggest the possible role of FoxM1 as a prognostic biomarker and putative target of anti-cancer therapy.
Collapse
Affiliation(s)
- Hyein Ahn
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Rehman Abdul
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Min Sung Chung
- Department of Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Young-Ha Oh
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Chan Kum Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
25
|
Xu XS, Miao RC, Wan Y, Zhang LQ, Qu K, Liu C. FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy. Asian Pac J Cancer Prev 2015; 16:23-9. [DOI: 10.7314/apjcp.2015.16.1.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Qi C, Ma H, Zhang HT, Gao JD, Xu Y. Nucleobindin 2 expression is an independent prognostic factor for clear cell renal cell carcinoma. Histopathology 2014; 66:650-7. [PMID: 25322808 DOI: 10.1111/his.12587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/12/2014] [Indexed: 02/02/2023]
Abstract
AIMS Nucleobindin 2 (NUCB2) has been reported to play an important role in both tumorigenesis and cancer progression. This study aimed to examine the clinical significance of NUCB2 expression in clear cell renal cell carcinoma (ccRCC). METHODS AND RESULTS The expression level of NUCB2 and its correlation with clinicopathological parameters was analysed in 188 ccRCC tissues and adjacent non-cancerous tissues by immunohistochemistry. Samples from eight ccRCC patients were examined by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier analysis and Cox proportional hazards regression models were used to investigate the correlation between NUCB2 expression and the prognosis of ccRCC patients. The expression level of NUCB2 was found to be significantly higher in ccRCC tumours compared to adjacent non-cancerous tissues using immunohistochemistry, Western blotting and qRT-PCR. Moreover, high NUCB2 tumour expression was associated with high T stage and metastasis and shorter overall survival. Univariate and multivariate analysis confirmed that NUCB2 was an independent prognostic factor for overall survival. CONCLUSIONS Our results show that NUCB2 plays an important role in tumorigenesis and progression and is a potential molecular biomarker for the diagnosis and targeted therapy of ccRCC.
Collapse
Affiliation(s)
- Can Qi
- Department of Urology, the Second Hospital of Tianjin Medical University, National Key Clinical Specialty of Urology, Tianjin Key Institute of Urology, Tianjin, China
| | | | | | | | | |
Collapse
|
27
|
Czarnecka AM, Kukwa W, Kornakiewicz A, Lian F, Szczylik C. Clinical and molecular prognostic and predictive biomarkers in clear cell renal cell cancer. Future Oncol 2014; 10:2493-508. [DOI: 10.2217/fon.14.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT The natural history of clear cell renal cell cancer is highly unpredictable with various progressors and with populations where small renal masses may be accompanied by metastatic disease. Currently, there is a critical need to determine patient risk and optimize treatment regimes. For these patients, molecular markers may offer significant information in terms of prognostic and predictive values, as well as determination of valid therapeutic targets. Until now, only a few of the many identified clear cell renal cell cancer biomarkers have been clinically validated in large cohorts. And only several biomarkers are integrated in predictive or prognostic models. Therefore, a large cohesive effort is required to advance the field of clear cell renal cell cancer prognostic biomarkers through systematic discovery, verification, validation and clinical implementation.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Czerniakowski Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Department of Urology, Emory School of Medicine, Atlanta, GA, USA
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
28
|
Wang CM, Liu R, Wang L, Nascimento L, Brennan VC, Yang WH. SUMOylation of FOXM1B alters its transcriptional activity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells. Int J Mol Sci 2014; 15:10233-51. [PMID: 24918286 PMCID: PMC4100150 DOI: 10.3390/ijms150610233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/04/2023] Open
Abstract
Transcription factor Forkhead Box Protein M1 (FOXM1) is a well-known master regulator in controlling cell-cycle pathways essential for DNA replication and mitosis, as well as cell proliferation. Among the three major isoforms of FOXM1, FOXM1B is highly associated with tumor growth and metastasis. The activities of FOXM1B are modulated by post-translational modifications (PTMs), such as phosphorylation, but whether it is modified by small ubiquitin-related modifier (SUMO) remains unknown. The aim of the current study was to determine whether FOXM1B is post-translationally modified by SUMO proteins and also to identify SUMOylation of FOXM1B on its target gene transcription activity. Here we report that FOXM1B is clearly defined as a SUMO target protein at the cellular levels. Moreover, a SUMOylation protease, SENP2, significantly decreased SUMOylation of FOXM1B. Notably, FOXM1B is selectively SUMOylated at lysine residue 463. While SUMOylation of FOXM1B is required for full repression of its target genes MiR-200b/c and p21, SUMOylation of FOXM1B is essential for full activation of JNK1 gene. Overall, we provide evidence that FOXM1B is post-translationally modified by SUMO and SUMOylation of FOXM1B plays a functional role in regulation of its target gene activities.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Leticia Nascimento
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Victoria C Brennan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
29
|
Kong FF, Qu ZQ, Yuan HH, Wang JY, Zhao M, Guo YH, Shi J, Gong XD, Zhu YL, Liu F, Zhang WY, Jiang B. Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer. Oncol Rep 2014; 31:2660-8. [PMID: 24715097 DOI: 10.3892/or.2014.3129] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 01/06/2023] Open
Abstract
Forkhead box M1 (FOXM1), a member of the Fox family of transcriptional factors, is considered to be an independent predictor of poor survival in many solid cancers. However, the underlying mechanism is not yet clear. The aim of the present study was to investigate the clinical significance of the correlation between FOXM1 and epithelial-mesenchymal transition (EMT) in non-small cell lung carcinoma and the possible mechanism responsible for FOXM1-induced EMT and metastasis. In the present study, expression levels of FOXM1 and EMT indicator proteins were determined by tissue microarray (TMA) and immunohistochemical staining, western blotting and reverse transcription-PCR (RT-PCR). Other cellular and molecular approaches including gene transfection, small interfering RNA (siRNA), and migration and invasion assays were utilized. Our results demonstrated that FOXM1 overexpression was statistically significantly associated with a higher TNM stage (p=0.036), lymph node metastasis (p=0.009) and a positive smoking history of the patients (p=0.044). Additionally, high expression of FOXM1 correlated with loss of E-cadherin expression (p<0.001) and anomalous immunopositivity of Vimentin (p=0.002). Moreover, patient survival analysis demonstrated that high expression of FOXM1 (p=0.043) and the presence of lymph node metastasis (p=0.042) were independent prognostic factors for non-small cell lung cancer (NSCLC). Furthermore, various in vitro experiments indicated that overexpression or knockdown of FOXM1 expression altered EMT through activation or inhibition of the AKT/p70S6K signaling pathway. Collectively, the results suggest that FOXM1 may be used as a prognostic indicator for patients with NSCLC and promotes metastasis by inducing EMT of lung cancer cells through activation of the AKT/p70S6K pathway. Therefore, we suggest that FOXM1 may be a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Fei-Fei Kong
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Zeng-Qiang Qu
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Hai-Hua Yuan
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Jiong-Yi Wang
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Mei Zhao
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Yue-Hui Guo
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Jing Shi
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Xiao-Di Gong
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - You-Long Zhu
- Department of General Surgery, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Feng Liu
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Wen-Ying Zhang
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| | - Bin Jiang
- Department of Oncology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 201900, P.R. China
| |
Collapse
|
30
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|