1
|
Valdez VA, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. Nat Commun 2024; 15:9689. [PMID: 39516491 PMCID: PMC11549357 DOI: 10.1038/s41467-024-53630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
In vertebrate spindles, most microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation through enhanced localization to TPX2 condensates, which form the core of the branch site on microtubules. Lastly, we provide a high-resolution cryo-EM structure of HURP on the microtubule, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Zhou F, Deng Z, Shen D, Lu M, Li M, Yu J, Xiao Y, Wang G, Qian K, Ju L, Wang X. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 2024; 43:594-607. [PMID: 38182895 DOI: 10.1038/s41388-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengxin Lu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Valdez V, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571906. [PMID: 38187686 PMCID: PMC10769297 DOI: 10.1101/2023.12.18.571906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In large vertebrate spindles, the majority of microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation in the presence of TPX2, another branching-promoting factor, as HURP's localization to microtubules is enhanced by TPX2 condensation. Lastly, we provide a structure of HURP on the microtubule lattice, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
- Venecia Valdez
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
- Present address: Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (Wuhan, Hubei, China)
| | - Bernardo Gouveia
- Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
| | - Sabine Petry
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| |
Collapse
|
4
|
Manciulli T, Marangoni D, Salas-Coronas J, Bocanegra C, Richter J, Gobbi F, Motta L, Minervini A, Bartoloni A, Zammarchi L. Diagnosis and management of complicated urogenital schistosomiasis: a systematic review of the literature. Infection 2023; 51:1185-1221. [PMID: 37466786 PMCID: PMC10545601 DOI: 10.1007/s15010-023-02060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Currently, there are no standardized guidelines for the diagnosis or management of the complications of urogenital schistosomiasis (UGS). This systematic review of the literature aims to investigate the state of the art in reference to diagnostic approaches and the clinical management of this condition. METHODS A systematic review of literature published between January 1990 and January 2021 was conducted in the MEDLINE database, scoping for articles regarding diagnostic means or therapeutic options for the complications of UGS, namely obstructive uropathy, bladder cancer, abortion, ectopic pregnancy, infertility, kidney failure, urolithiasis and the need for invasive procedures. Relevant data were then extracted from the articles deemed eligible according to the inclusion criteria. MAIN RESULTS In total, 3052 articles were identified by the research query, of which 167 articles fulfilling inclusion criteria after title/abstract screening and full-text evaluation were included, 35% on both diagnostic and therapeutic aspects, and 51% on diagnosis and 14% on therapy. Ultrasound was the most frequently tool employed for the diagnosis of UGS complications showing a good performance. Concerning the management of hydronephrosis, the majority of available evidences came from community-based studies where universal treatment with praziquantel was used leading to decrease of prevalence of obstructive uropathy. Concerning studies on surgical procedures, laser endoureterotomy followed by stenting was mostly employed in adult patients leading to a crude cure rate of 60% (43 of 71 patients). In the case of severe hydronephrosis, surgery consisting of ureteral re-implantation showed excellent results with a crude cure rate of 98% (157 cured patients of 160 treated). Concerning bladder cancer, data on 93 patients with a clear diagnosis of UGS-related bladder were available reporting a variable and sometime combined approach based on disease stage. Available data on diagnosis and management of abortion, ectopic pregnancy, infertility, kidney failure, urolithiasis and the need for invasive procedures due to UGS are also presented. CONCLUSIONS The review produced a complete picture of the diagnostic and therapeutic options currently available for complicated UGS. These results can be useful both for guiding clinicians towards correct management and for tracing the direction of future research.
Collapse
Affiliation(s)
- Tommaso Manciulli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Marangoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Cristina Bocanegra
- Tropical Medicine and International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Joachim Richter
- Institute of Tropical Medicine and International Health, Charité Universitätsmedizin, Corporate Member of Free University and Humboldt University Berlin and Berlin Health Institute, Berlin, Germany
| | - Federico Gobbi
- Infectious-Tropical Diseases and Microbiology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Verona, Italy
| | - Leonardo Motta
- Infectious-Tropical Diseases and Microbiology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Verona, Italy
| | - Andrea Minervini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Unit of Oncologic Minimally-Invasive Urology and Andrology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, Largo Giovanni Alessandro Brambilla, 3, 50134, Florence, Italy
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, Largo Giovanni Alessandro Brambilla, 3, 50134, Florence, Italy.
| |
Collapse
|
5
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Didaskalou S, Efstathiou C, Galtsidis S, Kesisova I, Halavatyi A, Elmali T, Tsolou A, Girod A, Koffa M. HURP localization in metaphase is the result of a multi-step process requiring its phosphorylation at Ser627 residue. Front Cell Dev Biol 2023; 11:981425. [PMID: 37484914 PMCID: PMC10361663 DOI: 10.3389/fcell.2023.981425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Faithful chromosome segregation during cell division requires accurate mitotic spindle formation. As mitosis occurs rapidly within the cell cycle, the proteins involved in mitotic spindle assembly undergo rapid changes, including their interactions with other proteins. The proper localization of the HURP protein on the kinetochore fibers, in close proximity to chromosomes, is crucial for ensuring accurate congression and segregation of chromosomes. In this study, we employ photoactivation and FRAP experiments to investigate the impact of alterations in microtubule flux and phosphorylation of HURP at the Ser627 residue on its dynamics. Furthermore, through immunoprecipitations assays, we demonstrate the interactions of HURP with various proteins, such as TPX2, Aurora A, Eg5, Dynein, Kif5B, and Importin β, in mammalian cells during mitosis. We also find that phosphorylation of HURP at Ser627 regulates its interaction with these partners during mitosis. Our findings suggest that HURP participates in at least two distinct complexes during metaphase to ensure its proper localization in close proximity to chromosomes, thereby promoting the bundling and stabilization of kinetochore fibers.
Collapse
Affiliation(s)
- Stylianos Didaskalou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sotirios Galtsidis
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ilοna Kesisova
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tountzai Elmali
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Avgi Tsolou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas Girod
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Chen R, Liu J, Hu J, Li C, Liu Y, Pan W. DLGAP5 knockdown inactivates the Wnt/β-catenin signal to repress endometrial cancer cell malignant activities. ENVIRONMENTAL TOXICOLOGY 2023; 38:685-693. [PMID: 36454672 DOI: 10.1002/tox.23720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Human discs large-associated protein 5 (DLGAP5), a microtubule-associated protein, has been reported to be upregulated in several tumors. However, the role of DLGAP5 in endometrial cancer (EC) progression and the related underlying mechanism were still unknown. A bioinformatics analysis was performed to analyze the expression and prognostic significance of DLGAP5 in EC tissues using TCGA, CPTAC, Human Protein Atlas, and GSE63678 databases, UALCAN web tool, and the Kaplan-Meier plotter. Effects of DLGAP on EC cell malignant properties were evaluated by CCK-8, flow cytometry analysis, TUNEL assay, caspase-3 activity assay, and Transwell invasion assay. The expression of DLGAP5, Wnt3, c-Myc, Ki67, and cleaved caspase-3 was detected by western blot analysis. DLGAP5 was highly expressed and correlated with poor prognosis in EC patients. DLGAP5 knockdown inhibited proliferation and invasion, triggered apoptosis, and increased caspase-3 activity in EC cells. Additionally, DLGAP5 knockdown inactivated the Wnt/β-catenin signaling pathway in EC cells. Moreover, β-catenin overexpression abolished the effects of DLGAP5 knockdown on the malignant phenotypes of EC cells. DLGAP5 silencing suppressed the malignant properties in EC cells by inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Jing Liu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Jun Hu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Chunxia Li
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Yanhua Liu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Weiwei Pan
- Department of Intensive Care Unit, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
8
|
Papavasiliou E, Sills VA, Calanzani N, Harrison H, Snudden C, di Martino E, Cowan A, Behiyat D, Boscott R, Tan S, Bovaird J, Stewart GD, Walter FM, Zhou Y. Diagnostic Performance of Biomarkers for Bladder Cancer Detection Suitable for Community and Primary Care Settings: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:709. [PMID: 36765672 PMCID: PMC9913596 DOI: 10.3390/cancers15030709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Evidence on the use of biomarkers to detect bladder cancer in the general population is scarce. This study aimed to systematically review evidence on the diagnostic performance of biomarkers which might be suitable for use in community and primary care settings [PROSPERO Registration: CRD42021258754]. Database searches on MEDLINE and EMBASE from January 2000 to May 2022 resulted in 4914 unique citations, 44 of which met inclusion criteria. Included studies reported on 112 biomarkers and combinations. Heterogeneity of designs, populations and outcomes allowed for the meta-analysis of three biomarkers identified in at least five studies (NMP-22, UroVysion, uCyt+). These three biomarkers showed similar discriminative ability (adjusted AUC estimates ranging from 0.650 to 0.707), although for NMP-22 and UroVysion there was significant unexplained heterogeneity between included studies. Narrative synthesis revealed the potential of these biomarkers for use in the general population based on their reported clinical utility, including effects on clinicians, patients, and the healthcare system. Finally, we identified some promising novel biomarkers and biomarker combinations (N < 3 studies for each biomarker/combination) with negative predictive values of ≥90%. These biomarkers have potential for use as a triage tool in community and primary care settings for reducing unnecessary specialist referrals. Despite promising emerging evidence, further validation studies in the general population are required at different stages within the diagnostic pathway.
Collapse
Affiliation(s)
- Evie Papavasiliou
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Valerie A. Sills
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Natalia Calanzani
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Hannah Harrison
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
| | - Claudia Snudden
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Erica di Martino
- Division of Primary Care, Public Health & Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds LS2 3AA, UK
| | - Andy Cowan
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Dawnya Behiyat
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Rachel Boscott
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Sapphire Tan
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer Bovaird
- Patient & Public Representative c/o The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona M. Walter
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry Queen Mary University of London, London EC1M 6BQ, UK
| | - Yin Zhou
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| |
Collapse
|
9
|
High Expression of DLGAP5 Indicates Poor Prognosis and Immunotherapy in Lung Adenocarcinoma and Promotes Proliferation through Regulation of the Cell Cycle. DISEASE MARKERS 2023; 2023:9292536. [PMID: 36712920 PMCID: PMC9879687 DOI: 10.1155/2023/9292536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common types of cancer in the respiratory system, with a high mortality and recurrence rate. The role of disc large-associated protein 5 (DLGAP5) in LUAD progression and tumor microenvironment (TME) remains unclear. This study is aimed at revealing the functional role of DLGAP5 in LUAD based on bioinformatics analysis and experimental validation. Methods Differential expression analysis, protein-protein interaction (PPI) network, and Cox regression analysis were applied to screen potential prognostic biomarkers. The mRNA and protein levels of DLGAP5 were analyzed using The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) databases. The CCK-8 and colony formation assays were performed to assess the effect of DLGAP5 on cell proliferation. RNA sequencing (RNA-seq) and enrichment analyses were utilized to explore the biological functions of DLGAP5. Furthermore, flow cytometry was used to explore the role of DLGAP5 on the cell cycle. The ssGSEA algorithm in the R package "GSVA" was applied to quantify immune infiltrating cells, and the tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict the efficacy of immunotherapy. Moreover, analyses using the cBioPortal and MethSurv databases were performed to evaluate the mutation and methylation of DLGAP5, respectively. Finally, the prognostic value of DLGAP5 was estimated using the TCGA and the Gene Expression Omnibus (GEO) databases. The nomogram model was constructed using the TCGA-LUAD cohort and evaluated by adopting calibration curves, time-dependent receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). Results DLGAP5 mRNA and protein abundance were significantly elevated in LUAD, and knockdown of DLGAP5 remarkably suppressed lung cancer cell proliferation through induction of cell cycle G1 arrest. In addition, DLGAP5 expression was positively correlated with Th2 cells and negatively correlated with B cells, T follicular helper cells, and mast cells. LUAD patients with high DLGAP5 expression may be resistant to immunotherapy. Hypermethylation levels of the cg23678254 site of DLGAP5 or its enhanced expression were unfavorable for the survival of LUAD patients. Meanwhile, DLGAP5 expression was associated with TNM stages, tumor status, and therapy outcome. Notably, the prognostic model constructed based on DLGAP5 expression exhibited great predictive capability, which was promising for clinical applications. Conclusion DLGAP5 promotes lung cancer cell proliferation through regulation of the cell cycle and is associated with multiple immune infiltrating cells. Furthermore, DLGAP5 predicts poor prognosis and response to immunotherapy in lung adenocarcinoma.
Collapse
|
10
|
Rao X, Cao H, Yu Q, Ou X, Deng R, Huang J. NEAT1/MALAT1/XIST/PKD--Hsa-Mir-101-3p--DLGAP5 Axis as a Novel Diagnostic and Prognostic Biomarker Associated With Immune Cell Infiltration in Bladder Cancer. Front Genet 2022; 13:892535. [PMID: 35873473 PMCID: PMC9305813 DOI: 10.3389/fgene.2022.892535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The clinical value of the biomarkers of bladder cancer (BC) is limited due to their low sensitivity or specificity. As a biomarker, DLG associated protein 5 (DLGAP5) is a potential cell cycle regulator in cancer cell carcinogenesis. However, its functional part in BC remains unclear. Therefore, this study aims to identify DLGAP5 expression in BC and its potential diagnostic and prognostic values. Eventually, it predicts the possible RNA regulatory pathways of BC.Methods: Data on DLGAP5 expression levels in BC and normal bladder tissues were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The receiver operating characteristic (ROC), Kaplan–Meier survival curves, and the univariate and multivariate Cox regression analysis determined the diagnostic and prognostic values of DLGAP5 in BC patients. Finally, the StarBase predicted the target RNAs and constructed networks using Cytoscape.Results: DLGAP5 expression was significantly upregulated in BC tissue, verified by the TCGA (p < 0.001), GSE3167, GSE7476, and GSE65635 datasets (p < 0.01). BC patients with increased DLGAP5 had poor overall survival (OS) (p = 0.01), disease specific survival (DSS) (p = 0.006) and progress free interval (DFI) (p = 0.007). The area under the ROC curve (AUC) was 0.913. The multivariate Cox analysis identified that lymphovascular invasion (p = 0.007) and DLGAP5 (p = 0.002) were independent prognostic factors.Conclusion: Increased DLGAP5 expression was closely associated with a poor prognosis in BC patients. In this case, DLGAP5 might be a diagnostic and prognostic biomarker for BC. DLGAP5 expression might be regulated by NEAT1/MALAT1/XIST/PKD--Hsa-mir-101-3p pathways.
Collapse
Affiliation(s)
- Xiaosheng Rao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyan Cao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingfeng Yu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Ou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiqi Deng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinkun Huang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jinkun Huang,
| |
Collapse
|
11
|
Feng Y, Li F, Yan J, Guo X, Wang F, Shi H, Du J, Zhang H, Gao Y, Li D, Yao Y, Hu W, Han J, Zhang M, Ding R, Wang X, Huang C, Zhang J. Pan-cancer analysis and experiments with cell lines reveal that the slightly elevated expression of DLGAP5 is involved in clear cell renal cell carcinoma progression. Life Sci 2021; 287:120056. [PMID: 34687756 DOI: 10.1016/j.lfs.2021.120056] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
AIMS Discs large-associated protein 5 (DLGAP5), a kinetochore fibers-binding protein, functions as a oncoprotein in many cancers. However, its expression patterns in pan-cancer including clear cell renal cell carcinoma (ccRCC) are not analyzed. Herein, we aimed to evaluate its expression in more common cancers, especially in ccRCC. MAIN METHODS Data from Genotype-Tissue Expression, The Cancer Genome Atlas, and Tumor Immune Estimation Resource were used to analyze the DLGAP5 expression in normal tissues, cancer cell lines, and cancer tissues, as well as the immune infiltration levels. The analysis results were verified with ccRCC cell lines via RNAi, western blotting, and the cytological analysis. KEY FINDINGS Low DLGAP5 expression in 31 types of normal tissues, the upregulation in 21 cancer cell lines, and the significant elevated expression in 26 types of cancers, were found, Surprisingly, kidney cancer including ccRCC, DLGAP5 exhibited a slightly elevated but statistically significant expression among 26 types of cancers. In addition, elevated DLGAP5 expression was significantly positive correlated with immune infiltration level in ccRCC. The survival probability of some cancers including kidney cancer, clinical TNM stage of ccRCC patients were significantly related to upregulated DLGAP5 expression. The experiments results showed DLGAP5 upregulation in ccRCC tissues and the cell lines, its knockdown inhibited the cells viability and proliferation, and compromised the cells migration and invasion. SIGNIFICANCE Elevated DLGAP5 expression occurred in common cancers. However, its slightly upregulated expression is related with ccRCC progression, it is therefore a prognostic risk factor for ccRCC, but not an independent factor.
Collapse
Affiliation(s)
- Yun Feng
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jing Yan
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Xianli Guo
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Fenghui Wang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Haiyan Shi
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Juan Du
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Huahua Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Dan Li
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Yan Yao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Weihong Hu
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Jiaqi Han
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Mengjie Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Ruxin Ding
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an 716000, Shaanxi Province, China.
| |
Collapse
|
12
|
Chhatriya B, Mukherjee M, Ray S, Saha B, Lahiri S, Halder S, Ghosh I, Khamrui S, Das K, Bhattacharjee S, Mohapatra SK, Goswami S. Transcriptome analysis identifies putative multi-gene signature distinguishing benign and malignant pancreatic head mass. J Transl Med 2020; 18:420. [PMID: 33160365 PMCID: PMC7648960 DOI: 10.1186/s12967-020-02597-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Most often, the patients with pancreatic diseases are presented with a mass in pancreatic head region and existing methods of diagnosis fail to confirm whether the head mass is malignant or benign. As subsequent management of the disease hugely depends on the correct diagnosis, we wanted to explore possible biomarkers which could distinguish benign and malignant pancreatic head masses. Methods In order to address that gap, we performed a case–control study to identify genome-wide differentially expressed coding and noncoding genes between pancreatic tissues collected from benign and malignant head masses. These genes were next shortlisted using stringent criteria followed by selection of top malignancy specific genes. They subsequently got validated by quantitative RT-PCR and also in other patient cohorts. Survival analysis and ROC analysis were also performed. Results We identified 55 coding and 13 noncoding genes specific for malignant pancreatic head masses. Further shortlisting and validation, however, resulted in 5 coding genes as part of malignancy specific multi-gene signature, which was validated in three independent patient cohorts of 145 normal and 153 PDAC patients. We also found that overexpression of these genes resulted in survival disadvantage in the patients and ROC analysis identified that combination of 5 coding genes had the AUROC of 0.94, making them potential biomarker. Conclusions Our study identified a multi-gene signature comprising of 5 coding genes (CDCA7, DLGAP5, FOXM1, TPX2 and OSBPL3) to distinguish malignant head masses from benign ones.
Collapse
Affiliation(s)
- Bishnupriya Chhatriya
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Moumita Mukherjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Sukanta Ray
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Barsha Saha
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Somdatta Lahiri
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Sandip Halder
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sujan Khamrui
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kshaunish Das
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Saroj Kant Mohapatra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
13
|
Xu T, Dong M, Li H, Zhang R, Li X. Elevated mRNA expression levels of DLGAP5 are associated with poor prognosis in breast cancer. Oncol Lett 2020; 19:4053-4065. [PMID: 32391106 PMCID: PMC7204629 DOI: 10.3892/ol.2020.11533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly diagnosed type of cancer and one of the leading causes of cancer-associated mortality in women. In addition, the underlying molecular mechanisms of the occurrence and development of breast cancer requires further investigation. In the present study, bioinformatics analysis was performed to identify differentially expressed genes (DEGs) between breast cancer and normal breast tissues to investigate the underlying molecular mechanisms. In addition, reverse transcription-quantitative PCR and immunohistochemistry (IHC) were performed to investigate the protein and mRNA expression levels of a specific DEG, discs large-associated protein 5 (DLGAP5). A Cell Counting Kit-8 assay and flow cytometry analysis were used to assess the effects of DLGAP5 on cell proliferation. In total, 85 DEGs were identified in the three Gene Expression Omnibus datasets, including 40 upregulated and 45 downregulated genes. In addition, 30 hub genes were identified following the construction of a protein-protein interaction network, and 28 of the 30 hub genes were established to be indicators of breast cancer prognosis. DLGAP5 was highly expressed in breast cancer specimens, and its expression levels were correlated with clinical stage and lymph node status. In addition, downregulation of DLGAP5 repressed the proliferation of breast cancer MDA-MB-231 cells and induced cell cycle arrest. Additionally, DLGAP5 was identified to be localized in the mitochondria, and the presence of a conserved microtubule-associated proteins 1A/1B light chain 3B-interacting region motif suggested that DLGAP5 may serve a role in mitophagy. The present results demonstrated an association between DLGAP5 expression levels and the clinicopathological characteristics of patients with breast cancer using IHC. In conclusion, DLGAP5 may be a promising target in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
14
|
Xiang Q, Tang J, Luo Q, Xue J, Tao Y, Jiang H, Tian J, Fan C. In vitro study of anti-ER positive breast cancer effect and mechanism of 1,2,3,4-6-pentyl-O-galloyl-beta-d-glucose (PGG). Biomed Pharmacother 2019; 111:813-820. [DOI: 10.1016/j.biopha.2018.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 01/16/2023] Open
|
15
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
16
|
Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, deWinter P, Feber A, Kelly JD. Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat Rev 2018; 69:39-52. [PMID: 29902678 DOI: 10.1016/j.ctrv.2018.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Urinary biomarkers for the diagnosis of bladder cancer represents an area of considerable research which has been tested in both patients presenting with haematuria and non-muscle invasive bladder cancer patients requiring surveillance cystoscopy. In this systematic review, we identify and appraise the diagnostic sensitive and specificity of reported novel biomarkers of different 'omic' class and highlight promising biomarkers investigated to date. METHODS A MEDLINE/Pubmed systematic search was performed between January 2013 and July 2017 using the following keywords: (bladder cancer OR transitional cell carcinoma OR urothelial cell carcinoma) AND (detection OR diagnosis) AND urine AND (biomarker OR assay). All studies had a minimum of 20 patients in both bladder cancer and control arms and reported sensitivity and/or specificity and/or receiver operating characteristics (ROC) curve. QUADAS-2 tool was used to assess risk of bias and applicability of studies. The search protocol was registered in the PROSPERO database (CRD42016049918). RESULTS Systematic search yielded 115 reports were included for analysis. In single target biomarkers had a sensitivity of 2-94%, specificity of 46-100%, positive predictive value (PPV) of 47-100% and negative predictive value (NPV) of 21-94%. Multi-target biomarkers achieved a sensitivity of 24-100%, specificity of 48-100%, PPV of 42-95% and NPV of 32-100%. 50 studies achieved a sensitivity and specificity of ≥80%. Protein (n = 59) and transcriptomic (n = 21) biomarkers represents the most studied biomarkers. Multi-target biomarker panels had a better diagnostic accuracy compared to single biomarker targets. Urinary cytology with urinary biomarkers improved the diagnostic ability of the biomarker. The sensitivity and specificity of biomarkers were higher for primary diagnosis compared to patients in the surveillance setting. Most studies were case control studies and did not have a predefined threshold to determine a positive test result indicating a possible risk of bias. CONCLUSION This comprehensive systematic review provides an update on urinary biomarkers of different 'omic' class and highlights promising biomarkers. Few biomarkers achieve a high sensitivity and negative predictive value. Such biomarkers will require external validation in a prospective observational setting before adoption in clinical practice.
Collapse
Affiliation(s)
- Wei Shen Tan
- Division of Surgery and Interventional Science, University College London, 3rd Floor Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; Department of Urology, University College London Hospital at Westmoreland Street, 16-18 Westmoreland Street, London W1G 8PH, UK.
| | - Wei Phin Tan
- Department of Urology, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL 60612, USA
| | - Mae-Yen Tan
- School of Public Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Pramit Khetrapal
- Division of Surgery and Interventional Science, University College London, 3rd Floor Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; Department of Urology, University College London Hospital at Westmoreland Street, 16-18 Westmoreland Street, London W1G 8PH, UK
| | - Liqin Dong
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Patricia deWinter
- Division of Surgery and Interventional Science, University College London, 3rd Floor Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
| | - Andrew Feber
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - John D Kelly
- Division of Surgery and Interventional Science, University College London, 3rd Floor Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; Department of Urology, University College London Hospital at Westmoreland Street, 16-18 Westmoreland Street, London W1G 8PH, UK
| |
Collapse
|
17
|
Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day WA, Espinoza I, Vijayakumar S, Gomez CR. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem 2015; 117:1308-18. [PMID: 26505164 DOI: 10.1002/jcb.25419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022]
Abstract
Despite progression in diagnosis and treatment, prostate cancer (PCa) still represents the main cause of cancer-related mortality and morbidity in men. Although radiation therapy offers clinical benefit over other therapeutic modalities, the success of this therapeutic modality is commonly hampered by the resistance of advanced tumors. So far, the mechanisms governing tumor resistance to radiotherapy are not discussed in detail. Here, we demonstrate for the first time that the resistance of PCa to radiation therapy is attributed to elevated expression of Hepatoma Up-Regulated Protein (HURP). In PCa cells, the induction of HURP expression suppresses γ-irradiation-induced apoptosis. γ-irradiation-induced apoptosis of PCa cells is associated with expression of E2F1, p53, p21 proteins together with the phosphorylation of apoptosis signal-regulating kinase1 (ASK1), c-jun-N-terminal kinase (JNK) and Ataxia-telangiectasia mutated (ATM) and histone family member X (H2AX). Whereas, the induction of HURP expression is able to suppress γ-irradiation-induced effects on E2F1, p53, p21, ATM, ASK1, JNK and ATM, and H2AX. Also, inhibition of γ-irradiation-induced- cytochrome c release, cleavage of caspase-9, caspase-3, PARP, and reactive oxygen species (ROS) were noted in PCa cells induced for HURP expression. The observed radio-resistance of PCa is thought to be the consequence of HURP-mediated destabilization of p53 and ATM proteins that are essential for the modulation of γ-irradiation-induced apoptosis. Thus, based on our findings, PCa resistance to radiation therapy results from the deregulation of ASK1/ JNK; ATM/ H2AX; ATM/p53 and checkpoint kinase 2 (Chk2)/ E2F-1 in response to the elevated expression of HURP.
Collapse
Affiliation(s)
- Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Abdelouahid El Khattouti
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Ahmed Ejaeidi
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Tangeng Ma
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - William A Day
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Biology, Belhaven University, 1500 Peachtree Street Jackson, Mississippi, 39202
| | - Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Biochemistry, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Srinivasan Vijayakumar
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| |
Collapse
|
18
|
Ismail MF, El Boghdady NA, Shabayek MI, Awida HA, Abozeed H. Evaluation and screening of mRNA S100A genes as serological biomarkers in different stages of bladder cancer in Egypt. Tumour Biol 2015; 37:4621-31. [DOI: 10.1007/s13277-015-4264-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
|
19
|
Koonrungsesomboon N, Wadagni AC, Mbanefo EC. Molecular markers and Schistosoma-associated bladder carcinoma: A systematic review and meta-analysis. Cancer Epidemiol 2015; 39:487-96. [PMID: 26162479 DOI: 10.1016/j.canep.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Molecular mechanisms and pathogenesis of schistosomal-associated bladder cancer (SABC), one of the most common malignancies in Africa and parts of the Middle East, is still unclear. Identification of host molecular markers involved in schistosomal related bladder carcinogenesis is of value in prediction of high-risk group, early detection and timely intervention. METHODS PubMed, Scopus, Google Scholar, Cochrane Library and African Journals Online databases were systematically searched and reviewed. A total of 63 articles reporting 41 host molecular factors were included in the meta-analysis. RESULTS Pooled odds ratio demonstrated associations of p53 expression, telomerase activity and sFas with SABC as compared to other schistosomal patients (p53 expression: OR=9.46, 95%CI=1.14-78.55, p=0.04; telomerase by TERT: OR=37.38, 95%CI=4.17-334.85, p=0.001; telomerase by TRAP: OR=10.36, 95%CI=6.08-17.64, p<0.00001; sFas: OR=34.37, 95%CI=3.32-355.51, p=0.003). In comparison to bladder cancers of other etiology, positive associations were found between SABC and p15 deletion, p16 deletion, telomerase activity and sFas (p15 deletion: OR=4.20, 95%CI=2.58-6.82, p<0.00001; p16 deletion: OR=4.93, 95%CI=2.52-9.65, p<0.00001; telomerase by TERT: OR=3.01, 95%CI=1.51-5.97, p=0.002; telomerase by TRAP: OR=2.66, 95%CI=1.18-6.01, p=0.02; sFas: OR=4.50, 95%CI=1.78-11.40, p=0.001). Other identified associations were reported by few numbers of studies to enable reliable interpretation. CONCLUSIONS Variations in gene expression or genomic alterations of some molecular markers in SABC as compared to non-SABC or other schistosomal patients were identified. These suggest minute differences in the pathogenesis and physiological profile of SABC, in relation to non-SABC.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| | - Anita Carolle Wadagni
- Centre for Buruli Ulcer Screening and Treatment, Ministry of Health, Cotonou, BP 03, Allada, Benin.
| | - Evaristus Chibunna Mbanefo
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| |
Collapse
|
20
|
Eissa S, Matboli M, Shawky S, Essawy NOE. Urine biomarkers of schistosomiais and its associated bladder cancer. Expert Rev Anti Infect Ther 2015; 13:985-93. [PMID: 26105083 DOI: 10.1586/14787210.2015.1051032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schistosomiasis (SCH) is the second only to malaria among the parasitic diseases affecting humans regarding the prevalence of infection worldwide. In this nonsystematic review, we summarize the existing data on commercially available and promising investigational urine markers for the detection of SCH and its associated bladder cancer (BC). We searched PubMed, Scopus and Cochran without time limits. We reviewed the recent literatures on urine-based markers for SCH and its associated BC. Many studies identified several urine biomarkers of Schistosoma haematobium and Schistosoma mansoni worms and their associated BC using automated, inexpensive, quantitative assays in urine. These markers may aid in early detection of bladder carcinoma and have the potential to reduce the number of follow-up cystoscopy, thus reducing healthcare costs and patient discomfort, at the same time. Nevertheless, clinical evidence is insufficient to warrant the substitution of the cystoscopic follow-up scheme by any of the currently available urine marker tests.
Collapse
Affiliation(s)
- Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt
| | | | | | | |
Collapse
|
21
|
Eissa S, Matboli M, Hegazy MGA, Kotb YM, Essawy NOE. Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis. Transl Res 2015; 165:731-9. [PMID: 25620614 DOI: 10.1016/j.trsl.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/10/2023]
Abstract
We assessed the differential expression of a urinary panel of microRNAs (miRs) in terms of potential application as diagnostic markers of bladder cancer (BC) and relationship to bilharziasis. We investigated voided urine samples and blood from patients with BC (n = 188), benign bladder lesions (n = 88), and age-matched controls (n = 92). Five miRs (miR-210, miR-10b, miR-29c, miR-221, and miR-23a) were selected from previous microarray signature profiling (released by miR2Disease). Afterward, they were validated using polymerase chain reaction array. The expression levels of miR-210, miR-10b, and miR-29c in the urine samples were significantly higher in BC (P < 0.001). The receiver-operating characteristic curve analyses demonstrated that each miR had good sensitivity and specificity for distinguishing patients with BC from patients without BC (miR-210, 71.3% and 91.1%; miR-10b, 80.9% and 91.1%; and miR-183, 71.3% and 88.9%). On combining the 3 miR detection data with the urinary cytology, the results sensitivity increased to 95.2%. Relative quantity mean rank of the miR-29c was significantly higher in the bilharzial-positive patients compared with bilharzial-negative patients. To conclude, urine miR-210, miR-10b, and miR-29c are promising tumor markers for BC: bilharzial and nonbilharzial.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa G A Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Youssef M Kotb
- Urology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada O E Essawy
- Pharmacogenetics and Stratified Medicine, University College London, London, UK
| |
Collapse
|