1
|
Zhu H, Hu H, Hao B, Zhan W, Yan T, Zhang J, Wang S, Hu H, Zhang T. Insights into a Machine Learning-Based Palmitoylation-Related Gene Model for Predicting the Prognosis and Treatment Response of Breast Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241263434. [PMID: 39205467 PMCID: PMC11363247 DOI: 10.1177/15330338241263434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is a prevalent public health concern affecting numerous women globally and is associated with palmitoylation, a post-translational protein modification. Despite increasing focus on palmitoylation, its specific implications for breast cancer prognosis remain unclear. The work aimed to identify prognostic factors linked to palmitoylation in breast cancer and assess its effectiveness in predicting responses to chemotherapy and immunotherapy. METHODS We utilized the "limma" package to analyze the differential expression of palmitoylation-related genes between breast cancer and normal tissues. Hub genes were identified using the "WGCNA" package. Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a prognostic feature associated with palmitoylation and developed a prognostic nomogram with the "regplot" package. The predictive values of the model for chemotherapy and immunotherapy responses were assessed using immunophenoscore (IPS) and the "pRophetic" package. RESULTS We identified 211 differentially expressed genes related to palmitoylation, among which 44 demonstrated prognostic potential. Subsequently, a predictive model comprising eleven palmitoylation-related genes was developed. Patients were classified into high-risk and low-risk groups based on the median risk score. The findings revealed that individuals in the high-risk group exhibited lower survival rates, while those in the low-risk group showed increased immune cell infiltration and improved responses to chemotherapy and immunotherapy. Moreover, the BC-Palmitoylation Tool website was established. CONCLUSION This study developed the first machine learning-based predictive model for palmitoylation-related genes and created a corresponding website, providing clinicians with a valuable tool to improve patient outcomes.
Collapse
Affiliation(s)
- Hongxia Zhu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wendi Zhan
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingdi Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongjuan Hu
- Department of Public Health Service, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Functional regulation of Wnt protein through post-translational modifications. Biochem Soc Trans 2022; 50:1797-1808. [DOI: 10.1042/bst20220735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Wnts are lipid-modified signaling glycoproteins present in all metazoans that play key roles in development and homeostasis. Post-translational modifications of Wnts regulate their function. Wnts have a unique post-translational modification, O-linked palmitoleation, that is absolutely required for their function. This Wnt-specific modification occurs during Wnt biosynthesis in the endoplasmic reticulum (ER), catalyzed by the O-acyltransferase Porcupine (PORCN). Palmitoleation is required for Wnt to bind to its transporter Wntless (WLS/Evi) as well as to its receptor Frizzled (FZD). Recent structural studies have illustrated how PORCN recognizes its substrates, and how drugs inhibit this. The abundance of WLS is tightly regulated by intracellular recycling and ubiquitylation-mediated degradation in the ER. The function of Wnt glycosylation is less well understood, and the sites and types of glycosylation are not largely conserved among different Wnts. In polarized tissues, the type of glycans can determine whether the route of trafficking is apical or basolateral. In addition, pairing of the 24 highly conserved cysteines in Wnts to form disulfide bonds is critical in maintaining proper structure and activities. Extracellularly, the amino terminus of a subset of Wnts can be cleaved by a dedicated glycosylphosphatidylinositol (GPI)-anchored metalloprotease TIKI, resulting in the inactivation of these Wnt proteins. Additionally, NOTUM is a secreted extracellular carboxylesterase that removes the palmitoleate moiety from Wnt, antagonizing its activity. In summary, Wnt signaling activity is controlled at multiple layers by post-translational modifications.
Collapse
|
5
|
Zhang N, Sun Y, Wang T, Xu X, Cao M. Enabling factor for cancer hallmark acquisition: Small nucleolar RNA host gene 17. Front Oncol 2022; 12:974939. [PMID: 36185210 PMCID: PMC9515549 DOI: 10.3389/fonc.2022.974939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The role of long non-coding RNA (lncRNA) in human tumors has gradually received increasing attention in recent years. Particularly, the different functions of lncRNAs in different subcellular localizations have been widely investigated. The upregulation of lncRNA small nucleolar RNA host gene 17 (SNHG17) has been observed in various human tumors. Growing evidence has proved that SNHG17 plays a tumor-promoting role in tumorigenesis and development. This paper describes the molecular mechanisms by which SNHG17 contributes to tumor formation and development. The different functions of SNHG17 in various subcellular localizations are also emphasized: its function in the cytoplasm as a competing endogenous RNA (ceRNA), its action in the nucleus as a transcriptional coactivator, and its function through the polycomb repressive complex 2 (PRC2)-dependent epigenetic modifications that regulate transcriptional processes. Finally, the correlation between SNHG17 and human tumors is summarized. Its potential as a novel prognostic and diagnostic biomarker for cancer is explored especially.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tuo Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyuan Xu
- Medical Affairs Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Mengru Cao,
| |
Collapse
|
6
|
Zheng D, Jiang C, Yan N, Miao Y, Wang K, Gao G, Jiao Y, Zhang X, He M, Yang Z. Wntless (Wls): A Prognostic Index for Progression and Patient Survival of Breast Cancer. Onco Targets Ther 2020; 13:12649-12659. [PMID: 33335405 PMCID: PMC7737487 DOI: 10.2147/ott.s265324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Wntless (Wls) is an essential protein that is necessary for the secretion of Wnt proteins. While numerous researches have demonstrated that aberrations in Wnt/β-catenin expression lead to tumorigenesis and progression in many cancer types, the effects of Wls in breast cancer (BC) are less studied. METHODS The mRNA and protein expression of Wls in BC cell lines were detected by RT-qPCR and Western blot; the protein expression of patient samples was detected by immunohistochemistry (IHC). The associations between Wls expression and clinicopathological factors as well as survival time, including overall survival (OS) and disease-free survival (DFS) were analyzed. Bioinformatics analysis was used to reveal the correlation between Wls genes and associated genes or pathways. RESULTS Wls was overexpressed in BC cell lines and tissues. The expression level of Wls was significantly correlated with tumor size, estrogen receptor (ER), progesterone receptor (PR), Ki-67, molecular classification, and follow-up status. Spearman correlation analysis showed that Wls protein expression was negatively correlated with ER and PR, which was confirmed by bioinformatics analysis in mRNA level. However, there were positive relationships with MBNG (modified Black's nuclear grade), tumor size, Ki-67, molecular classification, follow-up, and vital status. Univariate and multivariate analysis showed that Wls was an independent prognostic factor for OS and DFS in BC patients. Moreover, Wls was a significant prognostic indicator of OS and DFS in a hormone receptor-positive (HR+) subgroup. GSEA showed that estrogen and androgen response, as well as epithelial-mesenchymal transition pathways, were up-regulated in the Wls high-expression group. CONCLUSION Overexpression of Wls is a significant marker of worse prognosis in BC and might play a crucial role in the HR+ subgroup.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong510120, People’s Republic of China
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Ning Yan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Yayun Miao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Keren Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Xiangkai Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin130022, People’s Republic of China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| |
Collapse
|
7
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
8
|
Chua K, Virshup DM, Odono EG, Chang KTE, Tan NJH, Hue SSS, Sim AYL, Lee VKM. YJ5 as an immunohistochemical marker of osteogenic lineage. Pathology 2020; 53:229-238. [PMID: 33187685 DOI: 10.1016/j.pathol.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Overexpression of WLS, an upstream protein in the Wnt pathway, has been implicated in several non-osteogenic tumours. This study represents the first attempt at evaluating WLS expression in various bone and soft tissue tumours using YJ5, a monoclonal antibody specific to WLS, with the aim of elucidating its utility in discerning tumours with aberrant Wnt signalling and as a marker of osteogenic lineage in challenging cases. Tumour tissue sections of 144 bone mass lesions and 63 soft tissue mass lesions were immunostained with the YJ5 antibody following standardised protocols. Subsequent assessment of immunoreactivity segregated cases into one of three groups: absent/weak, moderate, or strong YJ5 immunoreactivity. For the bone tumours, strong YJ5 immunoreactivity was seen in almost all osteosarcomas and chondroblastomas, all osteoblastomas and osteoid osteomas. In contrast, all other cartilaginous tumours, chordomas, aneurysmal bone cysts, chondromyxoid fibromas, most fibrous dysplasias and most giant cell tumours exhibited absent/weak YJ5 immunostaining. For the soft tissue tumours, a more heterogeneous pattern of YJ5 immunoreactivity was observed. Because diffuse and strong YJ5 expression is identified in almost all benign and malignant bone tumours with osteoblastic activity, it can be potentially utilised as an immunohistochemical marker to support osteogenic lineage. If interpreted in the appropriate context, this marker is useful in determining whether a malignant bone tumour is an osteosarcoma, particularly in those subtypes with no or minimal osteoid or unusual morphological features. This marker can also complement SATB2 to denote osteogenic lineage.
Collapse
Affiliation(s)
- Kenon Chua
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore; Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Eugene G Odono
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Nicholas Jin Hong Tan
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, NUH Advance Molecular Pathology Laboratory, Institute of Molecular and Cellular Biology, Singapore
| | - Arthur Yi Loong Sim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
9
|
Li W, Zheng Y, Mao B, Wang F, Zhong Y, Cheng D. SNHG17 upregulates WLS expression to accelerate lung adenocarcinoma progression by sponging miR-485-5p. Biochem Biophys Res Commun 2020; 533:1435-1441. [PMID: 33109341 DOI: 10.1016/j.bbrc.2020.09.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been uncovered to be essential regulators in the biological processes of human cancers, including lung adenocarcinoma (LUAD). Recently, small nucleolar RNA host gene 17 (SNHG17) has been identified as one novel oncogenic lncRNA in gastric cancer. However, it remains unclear whether SNHG7 exert functions in LUAD progression. METHODS The expression levels of SNHG17, miR-485-5p and Wnt ligand secretion mediator (WLS) in LUAD cells was evaluated by RT-qPCR. The effect of SNHG7 silencing on LUAD cell proliferation was assessed by colony formation and EdU assays. The apoptosis of LUAD cells was measured by flow cytometry analysis. Transwell assays were applied to detect cell migration and invasion. The relationship between SNHG17 and miR-485-5p was validated by RIP, RNA pull down and luciferase reporter assays. RESULTS SNHG17 and WLS were up-regulated in LUAD cell lines. Down-regulation of SNHG17 curbed LUAD cell proliferation, migration and invasion but facilitated apoptosis. SNHG17 acted as miR-485-5p sponge to upregulate WLS expression. CONCLUSION SNHG17 triggers the progression of LUAD via sponging miR-485-5p to upregulate WLS expression.
Collapse
Affiliation(s)
- Wen Li
- Department of Respiration, West China Hospital, Sichuan University, Chengdu, 610000, China; Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yuqiong Zheng
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Bing Mao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunqing Zhong
- Department of Pulmonary Disease, Guangxi International Zhuang Medicine Hospital, Nanning, 530000, China.
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Wang Y, Cui K, Zhu M, Gu Y. Coexpression Module Construction by Weighted Gene Coexpression Network Analysis and Identify Potential Prognostic Markers of Breast Cancer. Cancer Biother Radiopharm 2020; 37:612-623. [PMID: 33052716 DOI: 10.1089/cbr.2020.3821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Breast cancer (BC) is a malignant tumor with the highest morbidity among women, disrupting millions of their lives worldwide each year. However, the molecular mechanisms underlying remain unclear. Methods: The RNA-Sequencing and clinical data of BC patients from The Cancer Genome Atlas (TCGA) database were analyzed by weighted gene coexpression network analysis (WGCNA). Additionally, coexpressed modules were used to detect their correlation with the clinical traits of BC. Next, nodes of the most significant coexpression modules were used for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, mRNA-lncRNA coexpression network and survival analyses. Results: In total, 2056 differentially expressed mRNAs (DEmRNAs) and 297 differentially expressed lncRNAs (DElncRNAs) were identified and subjected to WGCNA analysis, and 12 coexpression modules were generated. The top five significant modules (turquoise, green, red, brown, and blue modules) were related to one or more clinical traits of BC. In particular, the turquoise and green modules were chosen for further analysis. Next, by lncRNA-mRNA coexpression analysis of the turquoise and green modules, 12 DEmRNAs and 2 DElncRNAs were identified as hub nodes. The lncRNA-associated mRNAs of the networks were commonly related to several cancer-related pathways. Moreover, these networks also revealed central roles for RP11-389C8.2 and TGFBR2 in the turquoise module and MYLK, KIT, and RP11-394O4.5 in the green module. Furthermore, 16 DEmRNAs and 3 DElncRNAs in these two modules were significantly correlated with the overall survival of BC patients. Conclusions: The authors' study identified some prognostic biomarkers that might play important roles in the development and treatment of BC. In particular, lncRNAs AC016995.3, RP1-193H18.2, and RP11-166D19.1 were novel biomarkers for BC.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zhou J, Du G, Fu H. miR‑296‑3p promotes the proliferation of glioblastoma cells by targeting ICAT. Mol Med Rep 2020; 21:2151-2161. [PMID: 32323769 PMCID: PMC7115191 DOI: 10.3892/mmr.2020.11011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/04/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNA/miRs) serve an important function in the regulation of gene expression, and have been indicated to mediate a number of cellular biological processes, including cell proliferation, the cell cycle, cell apoptosis and cell differentiation. The altered expression of miRNAs has been revealed to result in a variety of human diseases, including glioblastoma multiforme (GBM). The present study indicated an increase in miR‑296‑3p in glioma tumor types compared with normal brain, particularly in the samples from patients with high grade GBM. Antagonizing miR‑296‑3p was demonstrated to induce cell growth arrest and cell cycle redistribution in U251 cells. The miR‑296‑3p antagonist altered the expression of a number of key genes that are involved in cell cycle control, including cyclin D1 and p21. Additionally, the decrease of miR‑296‑3p increased inhibitor of β‑catenin and T cell factor (ICAT) expression, and increased miR‑296‑3p‑inhibited ICAT expression in U251 cells. Bioinformatics analysis indicated that ICAT is a target gene of miR‑296‑3p, which was further validated using a dual‑luciferase reporter assay. Through the regulation of ICAT, the miR‑296‑3p antagonist decreased β‑catenin protein expression and increased the expression of its target genes. Silencing ICAT was indicated to reverse the miR‑296‑3p downregulation‑induced inactivation of Wnt signaling and cell growth arrest in glioma cells. The present study also indicated a negative correlation between ICAT mRNA levels and miR‑296‑3p levels in glioma tumor types. In conclusion, the present study identified an oncogenic function of miR‑296‑3p in glioblastoma via the direct regulation of ICAT.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guobo Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hongmei Fu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
12
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Risk stratification of triple-negative breast cancer with core gene signatures associated with chemoresponse and prognosis. Breast Cancer Res Treat 2019; 178:185-197. [PMID: 31342312 DOI: 10.1007/s10549-019-05366-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Neoadjuvant chemotherapy studies have consistently reported a strong correlation between pathologic response and long-term outcome in triple-negative breast cancer (TNBC). We aimed to define minimal gene signatures for predicting chemoresponse by a three-step approach and to further develop a risk-stratification method of TNBC. METHODS The first step involved the detection of genes associated with resistance to docetaxel in eight TNBC cell lines, leading to identification of thousands of candidate genes. Through subsequent second and third step analyses with gene set enrichment analysis and survival analysis using public expression profiles, the candidate gene list was reduced to prognostic core gene signatures comprising ten or four genes. RESULTS The prognostic core gene signatures include three up-regulated (CEBPD, MMP20, and WLS) and seven down-regulated genes (ASF1A, ASPSCR1, CHAF1B, DNMT1, GINS2, GOLGA2P5, and SKA1). We further develop a simple risk-stratification method based on expression profiles of the core genes. Relative expression values of the up-regulated and down-regulated core genes were averaged into two scores, Up and Down scores, respectively; then samples were stratified by a diagonal line in a xy plot of the Up and Down scores. Based on this method, the patients were successfully divided into subgroups with distinct chemoresponse and prognosis. The prognostic power of the method was validated in three independent public datasets containing 230, 141, and 117 TNBC patients with chemotherapy. In multivariable Cox regression analysis, the core gene signatures were significantly associated with prognosis independent of tumor stage and age at diagnosis. In meta-analysis, we found that five core genes (CEBPD, WLS, CHAF1B, GINS2, and SKA1) play opposing roles, either tumor promoter or suppressor, in TNBC and non-TNBC tumors respectively, depending on estrogen receptor status. CONCLUSIONS The results may provide a promising prognostic tool for predicting chemotherapy responders among TNBC patients prior to initiation of chemotherapeutic treatment.
Collapse
|
14
|
Seo J, Lee SH, Park SY, Jeong MH, Lee SY, Kim MJ, Yoo JY, Jang S, Choi KC, Yoon HG. GPR177 promotes gastric cancer proliferation by suppressing endoplasmic reticulum stress-induced cell death. J Cell Biochem 2019; 120:2532-2539. [PMID: 30206979 DOI: 10.1002/jcb.27545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
Gastric cancer is the fourth most common cancer worldwide. Despite the high incidence of gastric cancer, efficient chemotherapy treatments still need to be developed. In this study, we examined the anticancer effects of endoplasmic reticulum (ER) stress inducer tunicamycin in gastric cancer. Previously, we found that overexpression of WLS1/GPR177 correlated with poor prognosis in patients with gastric cancer. Furthermore, tunicamycin treatment downregulated GPR177 expression in a dose-dependent manner. GPR177 transports WNT ligand from ER to the plasma membrane, mediating its secretion to the extracellular matrix. In gastric cancer cells, GPR177 preferentially localizes to the ER. Small interfering RNA-mediated knockdown of GPR177 leads to sensitization to ER stress and induces apoptosis of cancer cells along with tunicamycin treatment. GPR177 suppression promoted the ER stress-mediated proapoptotic pathway, such as PERK-CHOP cascade. Furthermore, fluorouracil treatment combined with tunicamycin dramatically reduced cancer cell proliferation. Efficacy of tunicamycin chemotherapy treatments depended on GPR177 expression in gastric cancer cell lines. Together, our results indicate that ER stress can potentiate anticancer effects and suggest GPR177 as a potential gastric cancer therapeutic target.
Collapse
Affiliation(s)
- Jaesung Seo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-H Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Y Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-H Jeong
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Y Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-J Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Y Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Subhin Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-C Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-G Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Seo J, Kee HJ, Choi HJ, Lee JE, Park SY, Lee SH, Jeong MH, Guk G, Lee S, Choi KC, Choi YY, Kim H, Noh SH, Yoon HG, Cheong JH. Inhibition of Wntless/GPR177 suppresses gastric tumorigenesis. BMB Rep 2018; 51:255-260. [PMID: 29555015 PMCID: PMC5988581 DOI: 10.5483/bmbrep.2018.51.5.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 12/23/2022] Open
Abstract
Wntless/GPR177 functions as WNT ligand carrier protein and activator of WNT/β-catenin signaling, however, its molecular role in gastric cancer (GC) has remained elusive. We investigated the role of GPR177 in gastric tumorigenesis and provided the therapeutic potential of a clinical development of anti-GPR177 monoclonal antibodies. GPR177 mRNA expression was assessed in GC transcriptome data sets (GSE15459, n = 184; GSE66229, n = 300); protein expression was assessed in independent patient tumor tissues (Yonsei TMA, n = 909). GPR177 expression were associated with unfavorable prognosis [log-rank test, GSE15459 (P = 0.00736), GSE66229 (P = 0.0142), and Yonsei TMA (P = 0.0334)] and identified as an independent risk predictor of clinical outcomes: GSE15459 [hazard ratio (HR) 1.731 (95% confidence interval; CI; 1.103–2.715), P = 0.017], GSE66229 [HR 1.54 (95% CI, 1.10–2.151), P = 0.011], and Yonsei TMA [HR 1.254 (95% CI, 1.049–1.500), P = 0.013]. Either antibody treatment or GPR177 knockdown suppressed proliferation of GC cells and sensitized cells to apoptosis. And also inhibition of GPR177 suppresses in vitro and in vivo tumorogenesis in GC cells and inhibits WNT/β-catenin signaling. Finally, targeting and inhibition of GPR177 with antibody suppressed tumorigenesis in PDX model. Together, these results suggest GPR177 as a novel candidate for prognostic marker as well as a promising target for treatment of GC patients.
Collapse
Affiliation(s)
- Jaesung Seo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun Jung Kee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hye Ji Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea; Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Eun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi-Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Garam Guk
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - SooYeon Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yoon Young Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea; Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
16
|
Zhou C, Sun Y, Guo S, Chen X, Bao G, Wang J. Wls Expression Correlates with Tumor Differentiation and TNM Stage in Hepatocellular Carcinoma. Dig Dis Sci 2018; 63:166-172. [PMID: 29127606 DOI: 10.1007/s10620-017-4823-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive cancer with a poor prognosis. Effective biomarkers are necessary to predict the clinical course and outcome of patients with HCC. Wntless (Wls) is a key modulator of Wnt protein secretion and is overexpressed in various human cancers. However, the mechanism and alteration of Wls expression in HCC have not been clarified. AIMS The aim of this study was to evaluate expression level of Wls in HCC and its clinical significance. METHODS The levels of Wls expression were investigated in 84 HCC tissues using immunohistochemistry. RESULTS Wls was negatively expressed in normal liver tissue and was negatively or weakly (score 0) expressed in liver cirrhosis. Twenty-eight out of 84 samples (33.3%) were negative or weakly (score 0) expressed Wls, 38 out of 84 (45.2%) moderately (1+) expressed Wls, and 18 out of 84 (21.4%) strongly (2+) expressed Wls. Wls expression was positively associated with tumor size (P = 0.005, r = 0.302), tumor TNM stage (P = 0.017, r = 0.261), AFP (P = 0.051), and HBV infection (P = 0.009, r = 0.283), and was negatively associated with differentiation (P < 0.001, r = - 0.552). No significant relationship between Wls expression and liver cirrhosis, ALT, GGT, age, sex, or tumor focality was found. CONCLUSIONS Our data showed that Wls was differentially expressed in HCC. Statistical analysis results suggest that Wls expression might increase as HCC progresses.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Infection, Danyang People's Hospital of Jiangsu Province, No.2 Xinmin Xi Lu, Dan Yang, Jiangsu, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, Jiangsu, China
| | - Shuwei Guo
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China
| | - Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China
| | - Genchong Bao
- Department of Infection, Danyang People's Hospital of Jiangsu Province, No.2 Xinmin Xi Lu, Dan Yang, Jiangsu, China.
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
17
|
Schmid SC, Sathe A, Guerth F, Seitz AK, Heck MM, Maurer T, Schwarzenböck SM, Krause BJ, Schulz WA, Stoehr R, Gschwend JE, Retz M, Nawroth R. Wntless promotes bladder cancer growth and acts synergistically as a molecular target in combination with cisplatin. Urol Oncol 2017; 35:544.e1-544.e10. [PMID: 28501564 DOI: 10.1016/j.urolonc.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE To analyze the contribution of Wnt signaling pathway to bladder cancer growth in order to identify suitable target molecules for therapy. MATERIAL AND METHODS Expression of Wnt 2/4/7, LRP5/6, TCF1/2/4, LEF-1, and β-actin was detected by reverse transcription polymerase chain reaction in a panel of 9 and for Wntless (WLS) in 17 bladder cancer cell lines. Protein expression of WLS was detected in 6 cell lines. Wnt/β-catenin activity was analyzed using the TOPflash/FOPflash luciferase reporter assay. Expression level of β-catenin, WIF1, Dickkopf proteins (DKK), HSulf-2, sFRP4, and WLS was modulated by transfecting or infecting cells transiently or stably with respective shRNAs, siRNAs, or cDNAs. For protein detection, whole cell lysates were applied to sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by immunoblots. Effects on cell growth were determined by cell viability assays and BrdU/APC incorporation/staining. For 3-dimensional tumor growth, the chicken chorioallantoic membrane model was used. Tumor growth was characterized by weight. RESULTS Expression of molecular components and activation of the Wnt signaling pathway could be detected in all cell lines. Expression level of β-catenin, WIF1, DKK, WLS, and HSulf-2 influenced Wnt activity. Expression of WLS was confirmed in 17 cell lines by reverse transcription polymerase chain reaction and in 6 cell lines by immunoblotting. WLS positively regulates Wnt signaling, cell proliferation, and tumor growth in vitro and in vivo. These effects could be reversed by the expression of the Wnt antagonist WIF1 and DKK. Synergistic activity of cisplatin and WLS inactivation by genetic silencing could be observed on cell viability. CONCLUSION The Wnt signaling pathway is ubiquitously activated in bladder cancer and regulates tumor growth. WLS might be a target protein for novel therapies in combination with established chemotherapy regimens.
Collapse
Affiliation(s)
- Sebastian C Schmid
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anuja Sathe
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ferdinand Guerth
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna-Katharina Seitz
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias M Heck
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Maurer
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Wolfgang A Schulz
- Department of Urology, Heinrich-Heine-University, Du¨sseldorf, Germany
| | - Robert Stoehr
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Margitta Retz
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Roman Nawroth
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
18
|
Zhang W, Tao H, Chen X, Sugimura H, Wang J, Zhou P. High expression of Wls is associated with lymph node metastasis and advanced TNM stage in gastric carcinomas. Pathol Int 2017; 67:141-146. [PMID: 28110490 DOI: 10.1111/pin.12508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023]
Abstract
The roles of Wnt protein in carcinogenesis have been well documented in human cancers. Wls is a key modulator for the secretion of Wnt protein. We previously found that Wls was aberrantly expressed in colorectal carcinomas. Studies have revealed that dysregulation of Wnt signal transduction plays an important role in gastric carcinoma. We hypothesized that Wls may play a role in the development and progression of gastric carcinoma. In this study, three gastric cancer cell lines MGC-803, SGC-7901, and AGS, and a set of gastric carcinoma tissue specimens were subjected to immunohistochemistry. The relationship between the expression of Wls and clinicopathological parameters was analyzed. Wls was negatively detected in MGC-803, positively detected in SGC-7901 and AGS cell lines. Wls was weakly expressed in 9.7% (15/154), moderately in 33.1% (51/154), and strongly in 57.1% (88/154) of tested gastric carcinoma specimens. High expression of Wls was positively associated with well and moderately differentiated tumors (P = 0.035, rs = 0.170), lymph node metastasis (P = 0.001, rs = 0.276), and advanced TNM stage (P = 0.006, rs = 0.219). Our data suggest that Wls protein is related to tumor metastasis and advanced TNM stage, and may be used as a new marker for prognosis of gastric carcinoma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangshu 225400, China
| | - Hong Tao
- Department of Pathology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatus 431-3192, Japan
| | - Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Haruhiko Sugimura
- Department of Pathology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatus 431-3192, Japan
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhou
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangshu 225400, China
| |
Collapse
|
19
|
Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem Cell Res 2016; 17:607-615. [PMID: 27838585 DOI: 10.1016/j.scr.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling plays a central role in tumor initiation and tumor progression. Mutations in Wnt pathway components, such as the tumor suppressor APC, lead to malignant transformation. While previous studies focused on Wnt-related changes in cancer cells, the impact of aberrant Wnt signaling on the tumor microenvironment is only beginning to emerge. In order to investigate the role of increased Wnt secretion on tumor growth and the microenvironment, we generated a novel germ cell tumor model by overexpressing the Wnt secretion factor Evi/Wls in mouse embryonic stem cells. Evi-overexpressing teratoma were characterized by enhanced tumor growth in supporting a tumor-promoting role of Wnt secretion. Interestingly, enhanced Evi expression correlated with impaired immune cell recruitment. Specifically, T- and B-cell infiltration was reduced in Evi-overexpressing teratomas, which was independent of teratoma size and differentiation. Our study suggests that Wnt secretion impairs immunosurveillance. Since immune cell infiltration has been shown to have prognostic value, the levels of secreted Wnt activity might impact the efficiency of cancer immunotherapy.
Collapse
|
20
|
Galli LM, Zebarjadi N, Li L, Lingappa VR, Burrus LW. Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling. Exp Cell Res 2016; 347:171-183. [PMID: 27492485 DOI: 10.1016/j.yexcr.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/31/2016] [Indexed: 12/30/2022]
Abstract
Loss-of-function studies have identified Porcupine (PORCN) and Wntless (WLS) as essential mediators of Wnt secretion and signaling. Whereas PORCN is thought to palmitoylate Wnt proteins, WLS is believed to transport palmitoylated Wnt proteins to the cell surface. However, little is known about how these two proteins cooperate to regulate Wnt palmitoylation, trafficking, secretion, and signaling. We first investigated possible interactions between PORCN, WLS, and WNT1, by carrying out co-immunoprecipitation studies. These studies demonstrate the existence of a complex containing PORCN and WLS. They further show that PORCN and WLS compete for binding to WNT1. Then, we used gain-of-function studies to investigate the cooperation between PORCN and WLS as well as possible biochemical interactions between PORCN, WLS, and WNT1. Consistent with the proposed roles for PORCN and WLS, we show that overexpression of PORCN promotes palmitoylation of WNT1 while overexpression of WLS does not. Overexpression of PORCN enhances the ability of WLS to promote WNT1 trafficking to the cell surface as well as secretion, but decreases the ability of WLS to activate WNT1 signaling in target cell. These observations suggest that the levels of WNT1 on the cell surface and in the media are not the sole determinants of the activation of Wnt signaling in target cells.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Navid Zebarjadi
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
21
|
Xu H, Jiang W, Zhu F, Zhu C, Wei J, Wang J. Expression of Wntless in colorectal carcinomas is associated with invasion, metastasis, and poor survival. APMIS 2016; 124:522-8. [PMID: 27102079 DOI: 10.1111/apm.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Hanfeng Xu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Wen Jiang
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Fang Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Chuandong Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Juan Wei
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Jiandong Wang
- Department of Pathology; Jinling Hospital; Nanjing China
| |
Collapse
|