1
|
Kim M, Vergara E, Tran A, Paul MJ, Kwon T, Ma JK, Jang Y, Reljic R. Marked enhancement of the immunogenicity of plant-expressed IgG-Fc fusion proteins by inclusion of cholera toxin non-toxic B subunit within the single polypeptide. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1402-1416. [PMID: 38163285 PMCID: PMC11022806 DOI: 10.1111/pbi.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Immunoglobulin G (IgG)-based fusion proteins have been widely exploited as a potential vaccine delivery platform but in the absence of exogenous adjuvants, the lack of robust immunity remains an obstacle. Here, we report on a key modification that overcomes that obstacle. Thus, we constructed an IgG-Fc vaccine platform for dengue, termed D-PCF, which in addition to a dengue antigen incorporates the cholera toxin non-toxic B subunit (CTB) as a molecular adjuvant, with all three proteins expressed as a single polypeptide. Following expression in Nicotiana benthamiana plants, the D-PCF assembled as polymeric structures of similar size to human IgM, a process driven by the pentamerization of CTB. A marked improvement of functional properties in vitro and immunogenicity in vivo over a previous iteration of the Fc-fusion protein without CTB [1] was demonstrated. These include enhanced antigen presenting cell binding, internalization and activation, complement activation, epithelial cell interactions and ganglioside binding, as well as more efficient polymerization within the expression host. Following immunization of mice with D-PCF by a combination of systemic and mucosal (intranasal) routes, we observed robust systemic and mucosal immune responses, as well as systemic T cell responses, significantly higher than those induced by a related Fc-fusion protein but without CTB. The induced antibodies could bind to the domain III of the dengue virus envelope protein from all four dengue serotypes. Finally, we also demonstrated feasibility of aerosolization of D-PCF as a prerequisite for vaccine delivery by the respiratory route.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Department of Molecular BiologyJeonbuk National UniversityJeonjuRepublic of Korea
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emil Vergara
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Andy Tran
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | | | - Julian K.C. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Yong‐Suk Jang
- Department of Molecular BiologyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
2
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
3
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
4
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
5
|
Kim TG, Lan TT, Lee JY. Immunogenicity of Fusion Protein of Cholera Toxin B Subunit-Porphyromonas gingivalis 53-kDa Minor Fimbrial Protein Produced in Nicotiana benthamiana. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
7
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
8
|
Kim M, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos‐Olvera I, Reyes‐del Valle J, Yang M, Jang Y, Reljic R, Ma JK. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1590-1601. [PMID: 28421694 PMCID: PMC5698049 DOI: 10.1111/pbi.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | | | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Gina R. Webster
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emily Julik
- School of Life SciencesArizona State UniversityTempeAZUSA
| | | | | | - Moon‐Sik Yang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
9
|
Abstract
The One Health initiative is increasingly becoming a prominent discussion topic in animal and human health, with its focus on prevention of spread of zoonotic diseases, both in animals, and from animals to humans. An important part of One Health is that diagnostics and vaccines for diseases may be the same thing - and be used for both humans and animals. One potential problem standing in the way of wider adoption of One Health principles, though, is that use of conventional cell fermentation systems for production of the recombinant proteins that could be used as diagnostics or vaccines is often expensive and is not easily scalable. A solution to this may be the use of plants or plant cells as bioreactors: molecular farming, or the production of biologics in plants, is now a well-established science with many proofs of principle and important proofs of efficacy for especially animal vaccines. This review discusses how molecular farming could enable important advances in One Health, using as examples plant-made vacccines, reagents and therapeutics for influenza viruses, ebolaviruses, rabies virus, bunyaviruses and flaviviruses.
Collapse
Affiliation(s)
- Edward Peter Rybicki
- a Biopharming Research Unit, Department of Molecular & Cell Biology , University of Cape Town; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
10
|
Pang EL, Loh HS. Towards development of a universal dengue vaccine – How close are we? ASIAN PAC J TROP MED 2017; 10:220-228. [DOI: 10.1016/j.apjtm.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/16/2022] Open
|
11
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
12
|
Gottschamel J, Lössl A, Ruf S, Wang Y, Skaugen M, Bock R, Clarke JL. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. PLANT MOLECULAR BIOLOGY 2016; 91:497-512. [PMID: 27116001 DOI: 10.1007/s11103-016-0484-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.
Collapse
Affiliation(s)
- Johanna Gottschamel
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
- BOKU-University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Andreas Lössl
- BOKU-University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yanliang Wang
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | | | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Jihong Liu Clarke
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway.
| |
Collapse
|
13
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
14
|
Kim TG, Kim MY, Tien NQD, Huy NX, Yang MS. Dengue virus E glycoprotein production in transgenic rice callus. Mol Biotechnol 2014; 56:1069-78. [PMID: 25069989 DOI: 10.1007/s12033-014-9787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5 ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Dukjindong 664-14, Jeollabuk-do, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Nguyen NL, So KK, Kim JM, Kim SH, Jang YS, Yang MS, Kim DH. Expression and characterization of an M cell-specific ligand-fused dengue virus tetravalent epitope using Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:19-27. [PMID: 25027708 DOI: 10.1016/j.jbiosc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
A fusion construct (Tet-EDIII-Co1) consisting of an M cell-specific peptide ligand (Co1) at the C-terminus of a recombinant tetravalent gene encoding the amino acid sequences of dengue envelope domain III (Tet-EDIII) from four serotypes was expressed and tested for binding activity to the mucosal immune inductive site M cells for the development of an oral vaccine. The yeast episomal expression vector, pYEGPD-TER, which was designed to direct gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator, was used to clone the Tet-EDIII-Co1 gene and resultant plasmids were then used to transform Saccharomyces cerevisiae. PCR and back-transformation into Escherichia coli confirmed the presence of the Tet-EDIII-Co1 gene-containing plasmid in transformants. Northern blot analysis of transformed S. cerevisiae identified the presence of the Tet-EDIII-Co1-specific transcript. Western blot analysis indicated that the produced Tet-EDIII-Co1 protein with the expected molecular weight was successfully secreted into the culture medium. Quantitative Western blot analysis and ELISA revealed that the recombinant Tet-EDIII-Co1 protein comprised approximately 0.1-0.2% of cell-free extracts (CFEs). In addition, 0.1-0.2 mg of Tet-EDIII-Co1 protein per liter of culture filtrate was detected on day 1, and this quantity peaked on day 3 after cultivation. In vivo binding assays showed that the Tet-EDIII-Co1 protein was delivered specifically to M cells in Peyer's patches (PPs) while the Tet-EDIII protein lacking the Co1 ligand did not, which demonstrated the efficient targeting of this antigenic protein through the mucosal-specific ligand.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Kum-Kang So
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Sae-Hae Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Yong-Suk Jang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Moon-Sik Yang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.
| |
Collapse
|
16
|
|