1
|
Chen S, Li S, Qian S, Xing J, Liao J, Guo Z. Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas. Int J Mol Sci 2024; 25:13304. [PMID: 39769069 PMCID: PMC11679888 DOI: 10.3390/ijms252413304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER. Our measurements of photosynthetic parameters showed that these ER stress-inducing compounds caused a significant decline in photosynthetic efficiency. A proteomic analysis confirmed that TM and BFA effectively induce ER stress, as evidenced by the upregulation of ER stress-related proteins. Furthermore, we observed a widespread downregulation of photosynthesis-related proteins, which is consistent with the results obtained from our measurements of photosynthetic parameters. These findings suggest that the stress on ER has a profound impact on chloroplast function, disrupting photosynthetic processes. This study highlights the critical interdependence between the ER and chloroplasts, and it underscores the broader implications of ER stress on the cellular metabolism and energy efficiency of photosynthetic organisms.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shuyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shiyuan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
| |
Collapse
|
2
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
3
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
4
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
5
|
Grama SB, Liu Z, Li J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar Drugs 2022; 20:285. [PMID: 35621936 PMCID: PMC9143385 DOI: 10.3390/md20050285] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, microalgal biotechnology has received increasing interests in producing valuable, sustainable and environmentally friendly bioproducts. The development of economically viable production processes entails resolving certain limitations of microalgal biotechnology, and fast evolving genetic engineering technologies have emerged as new tools to overcome these limitations. This review provides a synopsis of recent progress, current trends and emerging approaches of genetic engineering of microalgae for commercial applications, including production of pharmaceutical protein, lipid, carotenoids and biohydrogen, etc. Photochemistry improvement in microalgae and CO2 sequestration by microalgae via genetic engineering were also discussed since these subjects are closely entangled with commercial production of the above mentioned products. Although genetic engineering of microalgae is proved to be very effective in boosting performance of production in laboratory conditions, only limited success was achieved to be applicable to industry so far. With genetic engineering technologies advancing rapidly and intensive investigations going on, more bioproducts are expected to be produced by genetically modified microalgae and even much more to be prospected.
Collapse
Affiliation(s)
- Samir B. Grama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria;
| | - Zhiyuan Liu
- College of Marine Sciences, Hainan University, Haikou 570228, China;
| | - Jian Li
- College of Agricultural Sciences, Panzhihua University, Panzhihua 617000, China
| |
Collapse
|
6
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
7
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
8
|
Yerlikaya S, Owusu EDA, Frimpong A, DeLisle RK, Ding XC. A Dual, Systematic Approach to Malaria Diagnostic Biomarker Discovery. Clin Infect Dis 2021; 74:40-51. [PMID: 34718455 PMCID: PMC8752250 DOI: 10.1093/cid/ciab251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/15/2022] Open
Abstract
Background The emergence and spread of Plasmodium falciparum parasites that lack HRP2/3 proteins and the resulting decreased utility of HRP2-based malaria rapid diagnostic tests (RDTs) prompted the World Health Organization and other global health stakeholders to prioritize the discovery of novel diagnostic biomarkers for malaria. Methods To address this pressing need, we adopted a dual, systematic approach by conducting a systematic review of the literature for publications on diagnostic biomarkers for uncomplicated malaria and a systematic in silico analysis of P. falciparum proteomics data for Plasmodium proteins with favorable diagnostic features. Results Our complementary analyses led us to 2 novel malaria diagnostic biomarkers compatible for use in an RDT format: glyceraldehyde 3-phosphate dehydrogenase and dihydrofolate reductase-thymidylate synthase. Conclusions Overall, our results pave the way for the development of next-generation malaria RDTs based on new antigens by identifying 2 lead candidates with favorable diagnostic features and partially de-risked product development prospects.
Collapse
Affiliation(s)
- Seda Yerlikaya
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Ewurama D A Owusu
- Foundation for Innovative New Diagnostics, Geneva, Switzerland.,Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.,Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Accra, Ghana
| | | | - Xavier C Ding
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
9
|
Castiglia D, Landi S, Esposito S. Advanced Applications for Protein and Compounds from Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1686. [PMID: 34451730 PMCID: PMC8398235 DOI: 10.3390/plants10081686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
Algal species still show unrevealed and unexplored potentiality for the identification of new compounds. Photosynthetic organisms represent a valuable resource to exploit and sustain the urgent need of sustainable and green technologies. Particularly, unconventional organisms from extreme environments could hide properties to be employed in a wide range of biotechnology applications, due to their peculiar alleles, proteins, and molecules. In this review we report a detailed dissection about the latest and advanced applications of protein derived from algae. Furthermore, the innovative use of modified algae as bio-reactors to generate proteins or bioactive compounds was discussed. The latest progress about pharmaceutical applications, including the possibility to obtain drugs to counteract virus (as SARS-CoV-2) were also examined. The last paragraph will survey recent cases of the utilization of extremophiles as bio-factories for specific protein and molecule production.
Collapse
Affiliation(s)
- Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| |
Collapse
|
10
|
|
11
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
12
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
13
|
Sandoval-Vargas JM, Jiménez-Clemente LA, Macedo-Osorio KS, Oliver-Salvador MC, Fernández-Linares LC, Durán-Figueroa NV, Badillo-Corona JA. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Mol Biotechnol 2019; 61:461-468. [PMID: 30997667 DOI: 10.1007/s12033-019-00177-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biology and genetic engineering in algae offer an unprecedented opportunity to develop species with traits that can help solve the problems associated with food and energy supply in the 21st century. In the green alga Chlamydomonas reinhardtii, foreign genes can be expressed from the chloroplast genome for molecular farming and metabolic engineering to obtain commodities and high-value molecules. To introduce these genes, selectable markers, which rely mostly on the use of antibiotics, are needed. This has risen social concern associated with the potential risk of horizontal gene transfer across life kingdoms, which has led to a quest for antibiotic-free selectable markers. Phosphorus (P) is a scarce nutrient element that most organisms can only assimilate in its most oxidized form as phosphate (Pi); however, some organisms are able to oxidize phosphite (Phi) to Pi prior to incorporation into the central metabolism of P. As an alternative to the use of the two positive selectable makers already available for chloroplast transformation in C. reinhardtii, the aadA and the aphA-6 genes, that require the use of antibiotics, we investigated if a phosphite-based selection method could be used for the direct recovery of chloroplast transformed lines in this alga. Here we show that following bombardment with a vector carrying the ptxD gene from Pseudomonas stutzeri WM88, only cells that integrate and express the gene proliferate and form colonies using Phi as the sole P source. Our results demonstrate that a selectable marker based on the assimilation of Phi can be used for chloroplasts transformation in a biotechnologically relevant organism. The portable selectable marker we have developed is, in more than 18 years, the latest addition to the markers available for selection of chloroplast transformed cells in C. reinhardtii. The ptxD gene will contribute to the repertoire of tools available for synthetic biology and genetic engineering in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- José M Sandoval-Vargas
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Luis A Jiménez-Clemente
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Karla S Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - María C Oliver-Salvador
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Luis C Fernández-Linares
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Noé V Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Jesús A Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico.
| |
Collapse
|