1
|
Fang K, Ouyang X, Cheng W, Yu B. Kilohertz High-Frequency Electrical Stimulation Effectively Mitigates Hyperalgesia in Mice With Neuropathic Pain Through Regulation of the Calcium/Calmodulin-Dependent Protein Kinase II/N-Methyl-D-Aspartate 2B Signaling Pathway. Neuromodulation 2025:S1094-7159(25)00135-7. [PMID: 40243981 DOI: 10.1016/j.neurom.2025.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Kilohertz high-frequency electrical stimulation (KHES), an avant-garde neuromodulation strategy, is progressively emerging in the field of neuropathic pain management, showing its unique therapeutic potential. This study delves into the mechanisms by which KHES exerts therapeutic effects on neuropathic pain induced by chronic constriction injury (CCI) in mice through modulation of the calcium/calmodulin-dependent protein kinase II (CaMKII)/N-methyl-D-aspartate receptor 2B (NMDAR2B) signaling pathway. MATERIALS AND METHODS In this study, mice were randomly assigned to groups and received intrathecal injections of CaMKII activator BayK8644, CaMKII inhibitor KN93, and N-methyl-D-aspartate (NMDA). Subsequently, mice underwent a week-long KHES treatment, with each session lasting 30 minutes. The impact of KHES on mechanical allodynia and thermal hyperalgesia in mice was assessed through paw withdrawal threshold and thermal withdrawal latency measurements, respectively. In addition, anxiety and depressive-like behaviors in mice were evaluated using pole climbing, open field, and forced swim tests. Quantitative reverse transcription polymerase chain reaction, Western blot, and immunofluorescence techniques were used to detect the expression levels of CaMKII, phosphorylated CaMKII (p-CaMKII), and NMDAR2B in the spinal cord. RESULTS Results indicated that KHES not only significantly reduced mechanical allodynia in CCI mice, with a sustained analgesic effect lasting up to six hours, but also somewhat alleviated anxiety and depressive-like symptoms. KHES inhibited the expression of p-CaMKII and NMDAR2B in the spinal cord. This inhibitory effect was reversed in the presence of BayK8644 and NMDA, suggesting that activation of CaMKII and NMDAR2B may contribute to the maintenance of neuropathic pain. Conversely, KN93 enhanced the analgesic effect of KHES by reducing mechanical allodynia and downregulating p-CaMKII and NMDAR2B expression, further confirming the significance of the CaMKII/NMDAR2B signaling pathway in KHES-mediated neuropathic pain relief. CONCLUSION This study not only unveils the potential therapeutic value of KHES in treating neuropathic pain induced by CCI in mice but also provides insights into its molecular mechanisms of action through inhibition of the CaMKII/NMDAR2B signaling pathway.
Collapse
Affiliation(s)
- Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
4
|
Effect of moxibustion on N-methyl-D-aspartate receptor subtype 2B expression in hippocampus of rheumatoid arthritis model rats. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Fahmi A, Aji YK, Aprianto DR, Wido A, Asadullah A, Roufi N, Indiastuti DN, Subianto H, Turchan A. The Effect of Intrathecal Injection of Dextromethorphan on the Experimental Neuropathic Pain Model. Anesth Pain Med 2021; 11:e114318. [PMID: 34540637 PMCID: PMC8438745 DOI: 10.5812/aapm.114318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Peripheral glucocorticoid receptors (GRs) are altered by peripheral nerve injury and may modulate the development of neuropathic pain. Two central pathogenic mechanisms underlying neuropathic pain are neuroinflammation and N-methyl-D-aspartate receptor (NMDAR)-dependent neural plasticity in the spinal cord. Objectives This study examined the effect of the non-competitive NMDAR antagonist dextromethorphan on partial sciatic nerve ligation (PSL)-induced neuropathic pain and the spinal expression of the glucocorticoid receptor (GR). Methods Male mice were randomly assigned into a sham group and two groups receiving PSL followed by intrathecal saline vehicle or dextromethorphan (iDMP). Vehicle or iDMP was administered 8 - 14 days after PSL. The hotplate paw-withdrawal latency was considered to measure thermal pain sensitivity. The spinal cord was then sectioned and immunostained for GR. Results Thermal hyperalgesia developed similarly in the vehicle and iDMP groups prior to the injections (P = 0.828 and 0.643); however, it was completely mitigated during the iDMP treatment (P < 0.001). GR expression was significantly higher in the vehicle group (55.64 ± 4.50) than in the other groups (P < 0.001). The iDMP group (9.99 ± 0.66) showed significantly higher GR expression than the sham group (6.30 ± 1.96) (P = 0.043). Conclusions The suppression of PLS-induced thermal hyperalgesia by iDMP is associated with the downregulation of GR in the spinal cord, suggesting that this analgesic effect is mediated by inhibiting GR-regulated neuroinflammation.
Collapse
Affiliation(s)
- Achmad Fahmi
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
- Corresponding Author: Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia.
| | - Yunus Kuntawi Aji
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Dirga Rachmad Aprianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Akbar Wido
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Asadullah Asadullah
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - Danti Nur Indiastuti
- Department of Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heri Subianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Turchan
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Fu M, Liu F, Zhang YY, Lin J, Huang CL, Li YL, Wang H, Zhou C, Li CJ, Shen JF. The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury. Brain Res Bull 2021; 171:162-171. [PMID: 33811955 DOI: 10.1016/j.brainresbull.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. In this study, a rat model of inferior alveolar nerve transection (IANX) was used to investigate the role of α2δ-1-NMDAR1 interaction in the trigeminal ganglion (TG) in regard to the regulation of orofacial ectopic pain. Western blot (WB) analysis indicated that α2δ-1 and NMDAR1 in the TG were substantially higher in IANX rats than they were in sham/naive rats. Additionally, immunofluorescence (IF) results revealed that α2δ-1 and NMDAR1 were co-expressed and distributed within neurons and activated satellite glial cells in the TG. Co-immunoprecipitation (Co-IP) results indicated that α2δ-1-NMDAR1 complex levels in the TG were higher in IANX rats than they were in sham rats. Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
8
|
Rekatsina M, Paladini A, Piroli A, Zis P, Pergolizzi JV, Varrassi G. Pathophysiologic Approach to Pain Therapy for Complex Pain Entities: A Narrative Review. Pain Ther 2020; 9:7-21. [PMID: 31902121 PMCID: PMC7203327 DOI: 10.1007/s40122-019-00147-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pain management is challenging for both clinicians and patients. In fact, pain patients are frequently undertreated or even completely untreated. Optimal treatment is based on targeting the underlying mechanisms of pain and tailoring the management modality for each patient using a personalized approach. This narrative review deals with pain conditions that have a complex underlying mechanism and need an individualized and frequently multifactorial approach to pain management. The research is based on previously conducted studies, and does not contain any studies with human participants or animals performed by any of the authors. This is not an exhaustive review of the current evidence. However, it provides the clinician with a perspective on pain therapy targeting the underlying pain mechanism(s). When dealing with complex pain conditions, the prudent physician benefits from having a deep knowledge of various underlying pain mechanisms in order to provide a plan for optimal pharmacological pain relief to patients.
Collapse
Affiliation(s)
- Martina Rekatsina
- Department of Anaesthesia and Pain Management, King's College Hospital, London, UK
| | | | - Alba Piroli
- Department of MESVA, University of L'Aquila, 67100, L'Aquila, Italy
| | - Panagiotis Zis
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Joseph V Pergolizzi
- Director of Analgesic Research Fellowship and COO, NEMA Research Inc., Naples, FL, 34108, USA
| | | |
Collapse
|
9
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Genty J, Tetsi Nomigni M, Anton F, Hanesch U. The combination of postnatal maternal separation and social stress in young adulthood does not lead to enhanced inflammatory pain sensitivity and depression-related behavior in rats. PLoS One 2018; 13:e0202599. [PMID: 30142161 PMCID: PMC6108470 DOI: 10.1371/journal.pone.0202599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The cumulative and match/mismatch hypotheses of stress are still under discussion regarding the effects of early life stress (ELS) on the vulnerability or resilience to psychopathology. In this context, an additional stress in later life (second hit) often leads to stress-related disorders that frequently include comorbid pain states. We previously observed that maternal separation (MS), a model of ELS, reduces vulnerability to neuropathic and inflammatory pain in rats. In the present study, we investigated the effects of an additional later stressor on the vulnerability to inflammatory pain. Sprague Dawley pups were divided into 4 groups: controls (CON, no stress), MS, social stress (SS) and MS+SS. At young adult age (from 7 to 15 weeks), stress- as well as pain-related parameters were evaluated prior and during 21 days following the induction of paw inflammation with complete Freund's adjuvant (CFA). Finally spinal glutamatergic transmission, immunocompetent cells, pro-inflammatory cytokines and growth factors were examined using qPCR. None of the stress conditions had a significant impact on corticosterone levels and anhedonia. In the forced swim test, MS and SS displayed increased passive coping whereas the combination of both stressors revoked this effect. The different stress conditions had no influence on basal mechanical thresholds and heat sensitivity. At 4 days post-inflammation all stress groups displayed lower mechanical thresholds than CON but the respective values were comparable at 7, 10, and 14 days. Only on day 21, MS rats were more sensitive to mechanical stimulation compared to the other groups. Regarding noxious heat sensitivity, MS+SS animals were significantly less sensitive than CON at 10 and 21 days after CFA-injection. qPCR results were mitigated. Despite the finding that stress conditions differentially affected different players of glutamatergic transmission, astrocyte activity and NGF expression, our biochemical results could not readily be related to the behavioral observations, precluding a congruent conclusion. The present results do neither confirm the cumulative nor corroborate or disprove the match/mismatch hypothesis.
Collapse
Affiliation(s)
- Julien Genty
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| | - Milène Tetsi Nomigni
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
11
|
Eljaja L, Bjerrum OJ, Honoré PH, Abrahamsen B. Effects of the excitatory amino acid transporter subtype 2 (EAAT-2) inducer ceftriaxone on different pain modalities in rat. Scand J Pain 2018; 2:132-136. [PMID: 29913736 DOI: 10.1016/j.sjpain.2011.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/12/2011] [Indexed: 12/17/2022]
Abstract
Glutamate is the major excitatory amino acid in the mammalian CNS and is involved in transmission of pain together with processes for cognition, memory and learning. In order to terminate glutamatergic neurotransmission and avoid excitotoxic damage, a balanced glutamate homeostasis is of critical importance. The level of glutamate in the synaptic cleft is regulated through the action of five subtypes of excitatory amino acid transporters (EAAT1-5). Ceftriaxone, a β-lactam, induces EAAT-2 and has proven effect for the treatment of neuropathic pain. This pilot study investigated the effects of ceftriaxone upon acute and inflammatory pain and additionally, the analgesic effect of ceftriaxone after introduction of neuropathic pain. Methods Rats were tested before, during and after treatment of ceftriaxone for changes in response to both mechanical and thermal stimuli, using calibrated von Frey filaments and Hargreaves instrument, respectively. Inflammatory responses were investigated by assessing the response to intra-plantar injections of formalin; lastly, neuropathic pain was introduced using the spinal nerve ligation (SNL) model after which changes in both mechanical and thermal responses were again investigated. Results A significant increase in mechanical withdrawal threshold was observed following acute pain inducement in ceftriaxone treated rats. A marked increase in thermal withdrawal latency was also observed. In response to intra plantar administered formalin, ceftriaxone delayed the intensity of nocifensive behaviours. Applying the SNL model of neuropathic pain on naive rats created significant mechanical allodynia, but only a negligibly different response to thermal stimulation. After treatment with ceftriaxone the treated rats developed a hypoalgesic response to thermal stimulation, whilst the response to mechanical pain was insignificant. Conclusion In conclusion, ceftriaxone clearly interfered in the transmission of noxious signalling and proved in this study to have an effect upon acute thermal and mechanical pain thresholds as well as pathologic pain conditions. The present results are a piece in the large puzzle where administration route, dosage and pain models must be thoroughly investigated before a study can be planned for a proof of concept in different clinical pain states. Implications The current study demonstrates that ceftriaxone has a mitigating effect upon many pain modalities including acute and inflammatory, and that these modalities should be included in future studies characterising the anti-nociceptive effect of beta-lactams such as ceftriaxone. The fact that β-lactams also has antibiotic properties implies that similar chemical structures could be identified with the positive effect upon expression levels of EAAT2, but lacking the antibiotic side effect.
Collapse
Affiliation(s)
- Laila Eljaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ole J Bjerrum
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Per Hartvig Honoré
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bjarke Abrahamsen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Zanfirescu A, Cristea AN, Nitulescu GM, Velescu BS, Gradinaru D. Chronic Monosodium Glutamate Administration Induced Hyperalgesia in Mice. Nutrients 2017; 10:E1. [PMID: 29267217 PMCID: PMC5793229 DOI: 10.3390/nu10010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Monosodium glutamate (MSG) is a widely used food additive. Although it is generally considered safe, some questions regarding the impact of its use on general health have arisen. Several reports correlate MSG consumption with a series of unwanted reactions, including headaches and mechanical sensitivity in pericranial muscles. Endogenous glutamate plays a significant role in nociceptive processing, this neurotransmitter being associated with hyperalgesia and central sensitization. One of the mechanisms underlying these phenomena is the stimulation of Ca2+/calmodulin sensitive nitric oxide synthase, and a subsequent increase in nitric oxide production. This molecule is a key player in nociceptive processing, with implications in acute and chronic pain states. Our purpose was to investigate the effect of this food additive on the nociceptive threshold when given orally to mice. Hot-plate and formalin tests were used to assess nociceptive behaviour. We also tried to determine if a correlation between chronic administration of MSG and variations in central nitric oxide (NO) concentration could be established. We found that a dose of 300 mg/kg MSG given for 21 days reduces the pain threshold and is associated with a significant increase in brain NO level. The implications of these findings on food additive-drug interaction, and on pain perception in healthy humans, as well as in those suffering from affections involving chronic pain, are still to be investigated.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, TraianVuia 6, 020956 Bucharest, Romania.
| | | | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, TraianVuia 6, 020956 Bucharest, Romania.
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, TraianVuia 6, 020956 Bucharest, Romania.
| | - Daniela Gradinaru
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, TraianVuia 6, 020956 Bucharest, Romania.
| |
Collapse
|
13
|
Larsson M. Non-canonical heterogeneous cellular distribution and co-localization of CaMKIIα and CaMKIIβ in the spinal superficial dorsal horn. Brain Struct Funct 2017; 223:1437-1457. [PMID: 29151114 PMCID: PMC5869946 DOI: 10.1007/s00429-017-1566-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a key enzyme in long-term plasticity in many neurons, including in the nociceptive circuitry of the spinal dorsal horn. However, although the role of CaMKII heterooligomers in neuronal plasticity is isoform-dependent, the distribution and co-localization of CaMKII isoforms in the dorsal horn have not been comprehensively investigated. Here, quantitative immunofluorescence analysis was used to examine the distribution of the two major neuronal CaMKII isoforms, α and β, in laminae I–III of the rat dorsal horn, with reference to inhibitory interneurons and neuronal populations defined by expression of parvalbumin, calretinin, and calbindin D28k. Unexpectedly, all or nearly all inhibitory and excitatory neurons showed both CaMKIIα and CaMKIIβ immunoreactivity, although at highly variable levels. Lamina III neurons showed less CaMKIIα immunoreactivity than laminae I–II neurons. Whereas CaMKIIα immunoreactivity was found at nearly similar levels in inhibitory and excitatory neurons, CaMKIIβ generally showed considerably lower immunoreactivity in inhibitory neurons. Distinct populations of inhibitory calretinin neurons and excitatory parvalbumin neurons exhibited high CaMKIIα-to-CaMKIIβ immunoreactivity ratios. CaMKIIα and CaMKIIβ immunoreactivity showed positive correlation at GluA2+ puncta in pepsin-treated tissue. These results suggest that, unlike the forebrain, the dorsal horn is characterized by similar expression of CaMKIIα in excitatory and inhibitory neurons, whereas CaMKIIβ is less expressed in inhibitory neurons. Moreover, CaMKII isoform expression varies considerably within and between neuronal populations defined by laminar location, calcium-binding protein expression, and transmitter phenotype, suggesting differences in CaMKII function both between and within neuronal populations in the superficial dorsal horn.
Collapse
Affiliation(s)
- Max Larsson
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, SE-581 85, Linköping, Sweden.
| |
Collapse
|
14
|
Uy J, Yu M, Jiang X, Jones C, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Glutamatergic Mechanisms Involved in Bladder Overactivity and Pudendal Neuromodulation in Cats. J Pharmacol Exp Ther 2017; 362:53-58. [PMID: 28428223 PMCID: PMC5454588 DOI: 10.1124/jpet.117.240895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/19/2017] [Indexed: 01/12/2023] Open
Abstract
The involvement of ionotropic glutamate receptors in bladder overactivity and pudendal neuromodulation was determined in α-chloralose anesthetized cats by intravenously administering MK801 (a NMDA receptor antagonist) or CP465022 (an AMPA receptor antagonist). Infusion of 0.5% acetic acid (AA) into the bladder produced bladder overactivity. In the first group of 5 cats, bladder capacity was significantly (P < 0.05) reduced to 55.3±10.0% of saline control by AA irritation. Pudendal nerve stimulation (PNS) significantly (P < 0.05) increased bladder capacity to 106.8 ± 15.0% and 106.7 ± 13.3% of saline control at 2T and 4T intensity, respectively. T is threshold intensity for inducing anal twitching. MK801 at 0.3 mg/kg prevented the increase in capacity by 2T or 4T PNS. In the second group of 5 cats, bladder capacity was significantly (P < 0.05) reduced to 49.0 ± 7.5% of saline control by AA irritation. It was then significantly (P < 0.05) increased to 80.8±13.5% and 79.0±14.0% of saline control by 2T and 4T PNS, respectively. CP465022 at 0.03-1 mg/kg prevented the increase in capacity by 2T PNS and at 0.3-1 mg/kg prevented the increase in capacity by 4T PNS. In both groups, MK801 at 0.3 mg/kg and CP465022 at 1 mg/kg significantly (P < 0.05) increased the prestimulation bladder capacity (about 80% and 20%, respectively) and reduced the amplitude of bladder contractions (about 30 and 20 cmH2O, respectively). These results indicate that NMDA and AMPA glutamate receptors are important for PNS to inhibit bladder overactivity and that tonic activation of these receptors also contributes to the bladder overactivity induced by AA irritation.
Collapse
Affiliation(s)
- Jamie Uy
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Michelle Yu
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Xuewen Jiang
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Cameron Jones
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Bing Shen
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Jicheng Wang
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - James R Roppolo
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - William C de Groat
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| | - Changfeng Tai
- Department of Urology (J.U., M.Y., X.J., C.J., B.S., J.W., C.T.), Department of Pharmacology and Chemical Biology (J.R.R., W.C.D., C.T.), and Department of Bioengineering (C.T.),University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (X.J.)
| |
Collapse
|
15
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
16
|
Bravo D, Ibarra P, Retamal J, Pelissier T, Laurido C, Hernandez A, Constandil L. Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord. Pain 2014; 155:2108-15. [PMID: 25102401 DOI: 10.1016/j.pain.2014.07.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
Pannexin 1 (panx1) is a large-pore membrane channel expressed in many tissues of mammals, including neurons and glial cells. Panx1 channels are highly permeable to calcium and adenosine triphosphatase (ATP); on the other hand, they can be opened by ATP and glutamate, two crucial molecules for acute and chronic pain signaling in the spinal cord dorsal horn, thus suggesting that panx1 could be a key component for the generation of central sensitization during persistent pain. In this study, we examined the effect of three panx1 blockers, namely, 10panx peptide, carbenoxolone, and probenecid, on C-reflex wind-up activity and mechanical nociceptive behavior in a spared nerve injury neuropathic rat model involving sural nerve transection. In addition, the expression of panx1 protein in the dorsal horn of the ipsilateral lumbar spinal cord was measured in sural nerve-transected and sham-operated control rats. Sural nerve transection resulted in a lower threshold for C-reflex activation by electric stimulation of the injured hindpaw, together with persistent mechanical hypersensitivity to pressure stimuli applied to the paw. Intrathecal administration of the panx1 blockers significantly depressed the spinal C-reflex wind-up activity in both neuropathic and sham control rats, and decreased mechanical hyperalgesia in neuropathic rats without affecting the nociceptive threshold in sham animals. Western blotting showed that panx1 was similarly expressed in the dorsal horn of lumbar spinal cord from neuropathic and sham rats. The present results constitute the first evidence that panx1 channels play a significant role in the mechanisms underlying central sensitization in neuropathic pain.
Collapse
Affiliation(s)
- David Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Paula Ibarra
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jeffri Retamal
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Teresa Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Laurido
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandro Hernandez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Lin JH, Chiang YH, Chen CC. Lumbar radiculopathy and its neurobiological basis. World J Anesthesiol 2014; 3:162-173. [DOI: 10.5313/wja.v3.i2.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Lumbar radiculopathy, a group of diseases in which the dorsal root ganglia (DRG) or dorsal roots are adversely affected by herniated discs or spinal stenosis, are clinically characterized by spontaneous and evoked types of pain. The pain is underpinned by various distinct pathophysiological mechanisms in the peripheral and central nervous systems. However, the diagnosis of lumbar radiculopathy is still unsatisfactory, because the association of the pain with the neurobiological basis of radiculopathy is largely unknown. Several animal models used to explore the underlying neurobiological basis of lumbar radiculopathy could be classified as mechanical, chemical, or both based on the component of injury. Mechanical injury elevates the intraneural pressure, reduces blood flow, and eventually establishes ischemia in the dorsal root and the DRG. Ischemia may induce ischemic pain and cause nerve damage or death, and the subsequent nerve damage or death may induce neuropathic pain. Chemical injury predominately induces inflammation surrounding the dorsal roots or DRG and consequent inflammatory mediators cause inflammatory pain. Furthermore, DRG neurons sensitized by inflammatory mediators are hypersensitive to innocuous mechanical force (stretch or compression) and responsible for mechanical allodynia in radiculopathy. As well, central sensitization in the spinal cord may play an important role in pain generation in lumbar radiculopathy. Increasing knowledge of pain-generating mechanisms and their translation into clinical symptoms and signs might allow for dissecting the mechanisms that operate in each patient. With precise clinical phenotypic characterization of lumbar radiculopathy and its connection to a specific underlying mechanism, we should be able to design optimal treatments for individuals. This review discusses the present knowledge of lumbar radiculopathy and proposes a novel mechanism-based classification.
Collapse
|
18
|
Gosselin RD, Meylan P, Decosterd I. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front Cell Neurosci 2013; 7:251. [PMID: 24368897 PMCID: PMC3857901 DOI: 10.3389/fncel.2013.00251] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/22/2013] [Indexed: 12/14/2022] Open
Abstract
Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.
Collapse
Affiliation(s)
- Romain-Daniel Gosselin
- Pain Center, Department of Anesthesiology, University Hospital Center, and University of Lausanne Lausanne, Switzerland
| | - Patrick Meylan
- Pain Center, Department of Anesthesiology, University Hospital Center, and University of Lausanne Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, University Hospital Center, and University of Lausanne Lausanne, Switzerland ; Department Fundamental Neuroscience, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
19
|
Decoding the Role of Epigenetics and Genomics in Pain Management. Pain Manag Nurs 2013; 14:358-367. [DOI: 10.1016/j.pmn.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/30/2022]
|
20
|
Osgood DB, Harrington WF, Kenney EV, Harrington JF. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats. Surg Neurol Int 2013; 4:106. [PMID: 24032081 PMCID: PMC3766326 DOI: 10.4103/2152-7806.116791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/12/2013] [Indexed: 01/23/2023] Open
Abstract
Background: The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Methods: Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. Results: The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Conclusions: Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.
Collapse
Affiliation(s)
- Doreen B Osgood
- Department of Neurosurgical Research, Roger Williams Medical Center, Rhode Island, USA
| | | | | | | |
Collapse
|
21
|
Larsson M, Agalave N, Watanabe M, Svensson C. Distribution of transmembrane AMPA receptor regulatory protein (TARP) isoforms in the rat spinal cord. Neuroscience 2013; 248:180-93. [DOI: 10.1016/j.neuroscience.2013.05.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 02/08/2023]
|
22
|
Pergolizzi J, Ahlbeck K, Aldington D, Alon E, Coluzzi F, Dahan A, Huygen F, Kocot-Kępska M, Mangas AC, Mavrocordatos P, Morlion B, Müller-Schwefe G, Nicolaou A, Pérez Hernández C, Sichère P, Schäfer M, Varrassi G. The development of chronic pain: physiological CHANGE necessitates a multidisciplinary approach to treatment. Curr Med Res Opin 2013; 29:1127-35. [PMID: 23786498 PMCID: PMC3793283 DOI: 10.1185/03007995.2013.810615] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic pain is currently under-diagnosed and under-treated, partly because doctors' training in pain management is often inadequate. This situation looks certain to become worse with the rapidly increasing elderly population unless there is a wider adoption of best pain management practice. This paper reviews current knowledge of the development of chronic pain and the multidisciplinary team approach to pain therapy. The individual topics covered include nociceptive and neuropathic pain, peripheral sensitization, central sensitization, the definition and diagnosis of chronic pain, the biopsychosocial model of pain and the multidisciplinary approach to pain management. This last section includes an example of the implementation of a multidisciplinary approach in Belgium and describes the various benefits it offers; for example, the early multidimensional diagnosis of chronic pain and rapid initiation of evidence-based therapy based on an individual treatment plan. The patient also receives continuity of care, while pain relief is accompanied by improvements in physical functioning, quality of life and emotional stress. Other benefits include decreases in catastrophizing, self-reported patient disability, and depression. Improved training in pain management is clearly needed, starting with the undergraduate medical curriculum, and this review is intended to encourage further study by those who manage patients with chronic pain.
Collapse
Affiliation(s)
- Joseph Pergolizzi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang RX, Yan XB, Gu YH, Huang D, Gan L, Han R, Huang LH. Gene silencing of NR2B-containing NMDA receptor by intrathecal injection of short hairpin RNA reduces formalin-induced nociception in C57BL/6 mouse. Int J Neurosci 2013; 123:650-6. [PMID: 23528046 DOI: 10.3109/00207454.2013.789873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal NR2B-containing N-methyl-D-aspartate receptors (NR2B) play a critical role in the formation of central sensitization and persistent pain. Previous studies show that gene silencing of the spinal NR2B subunit by small interfering RNA (siRNA) could alleviate nociception in animals. The siRNA is a 19- to 23-nt RNA duplex, which can be synthesized in vitro or derived from short hairpin RNAs (shRNAs). In the present study, we investigated whether intrathecal injection of shRNAs targeting NR2B (GRIN2B shRNA) could affect nociception on formalin-induced pain in mice. Our results showed that intrathecal injection of GRIN2B shRNA could decrease NR2B mRNA and protein expression levels and hence effectively relieve formalin-induced nociception in mice, suggesting that intrathecal delivery of GRIN2B shRNA can be an efficient way to silence the target gene and provide new insights into the treatment of chronic pain.
Collapse
Affiliation(s)
- Rao-Xiang Zhang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Miyamoto M, Tsuboi Y, Honda K, Kobayashi M, Takamiya K, Huganir RL, Kondo M, Shinoda M, Sessle BJ, Katagiri A, Kita D, Suzuki I, Oi Y, Iwata K. Involvement of AMPA receptor GluR2 and GluR3 trafficking in trigeminal spinal subnucleus caudalis and C1/C2 neurons in acute-facial inflammatory pain. PLoS One 2012; 7:e44055. [PMID: 22937151 PMCID: PMC3427165 DOI: 10.1371/journal.pone.0044055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI), GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR) cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.
Collapse
Affiliation(s)
- Makiko Miyamoto
- Department of Anesthesiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Kogo Takamiya
- Department of Medical Sciences, Section of Integrative Physiology Faculty of medicine, Graduate School of Medicine University of Miyazaki, Kihara, Kiyotake-cho, Miyazaki-shi, Miyazaki, Japan
| | - Richard L. Huganir
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Masahiro Kondo
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Barry J. Sessle
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Daiju Kita
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Ikuko Suzuki
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Yoshiyuki Oi
- Department of Anesthesiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
25
|
Doolen S, Blake CB, Smith BN, Taylor BK. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons. Mol Pain 2012; 8:56. [PMID: 22839304 PMCID: PMC3490774 DOI: 10.1186/1744-8069-8-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. RESULTS Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1) Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2) 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3) 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4) In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX)- and AMPA (GYKI 52466)-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5), kainate (UBP-301) and class I mGluRs (AIDA) did not. Compared to sham controls, peripheral nerve injury significantly decreased mechanical paw withdrawal threshold and increased glutamate-evoked Ca2+ signals. CONCLUSIONS Bulk-loading fura-2 AM into spinal cord slices is a successful means for determining glutamate-evoked Ca2+ mobilization in naïve adult dorsal horn neurons. AMPA receptors mediate the majority of these responses. Peripheral neuropathic injury potentiates Ca2+ signaling in dorsal horn.
Collapse
Affiliation(s)
- Suzanne Doolen
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
26
|
Olesen AE, Andresen T, Staahl C, Drewes AM. Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 2012; 64:722-79. [PMID: 22722894 DOI: 10.1124/pr.111.005447] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain models in animals have shown low predictivity for analgesic efficacy in humans, and clinical studies are often very confounded, blurring the evaluation. Human experimental pain models may therefore help to evaluate mechanisms and effect of analgesics and bridge findings from basic studies to the clinic. The present review outlines the concept and limitations of human experimental pain models and addresses analgesic efficacy in healthy volunteers and patients. Experimental models to evoke pain and hyperalgesia are available for most tissues. In healthy volunteers, the effect of acetaminophen is difficult to detect unless neurophysiological methods are used, whereas the effect of nonsteroidal anti-inflammatory drugs could be detected in most models. Anticonvulsants and antidepressants are sensitive in several models, particularly in models inducing hyperalgesia. For opioids, tonic pain with high intensity is attenuated more than short-lasting pain and nonpainful sensations. Fewer studies were performed in patients. In general, the sensitivity to analgesics is better in patients than in healthy volunteers, but the lower number of studies may bias the results. Experimental models have variable reliability, and validity shall be interpreted with caution. Models including deep, tonic pain and hyperalgesia are better to predict the effects of analgesics. Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods and can increase sensitivity. The models need to be designed with careful consideration of pharmacological mechanisms and pharmacokinetics of analgesics. Knowledge obtained from this review can help design experimental pain studies for new compounds entering phase I and II clinical trials.
Collapse
Affiliation(s)
- Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark.
| | | | | | | |
Collapse
|
27
|
Godin AM, Ferreira WC, Rocha LTS, Ferreira RG, Paiva ALL, Merlo LA, Nascimento EB, Bastos LFS, Coelho MM. Nicotinic acid induces antinociceptive and anti-inflammatory effects in different experimental models. Pharmacol Biochem Behav 2012; 101:493-8. [DOI: 10.1016/j.pbb.2012.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/03/2012] [Accepted: 02/11/2012] [Indexed: 01/07/2023]
|
28
|
Zou M, Li S, Klein WH, Xiang M. Brn3a/Pou4f1 regulates dorsal root ganglion sensory neuron specification and axonal projection into the spinal cord. Dev Biol 2012; 364:114-27. [PMID: 22326227 DOI: 10.1016/j.ydbio.2012.01.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/10/2012] [Accepted: 01/27/2012] [Indexed: 11/19/2022]
Abstract
The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA(+) afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC(+) proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB(+) and TrkC(+) neurons as well as TrkA(+)/TrkB(+) and TrkA(+)/TrkC(+) double positive cells at early embryonic stages. At later stages in the mutant, TrkB(+), TrkC(+) and parvalbumin(+) neurons diminish while there is a significant increase of CGRP(+) and c-ret(+) neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets.
Collapse
Affiliation(s)
- Min Zou
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
29
|
Gadotti VM, Zamponi GW. Cellular prion protein protects from inflammatory and neuropathic pain. Mol Pain 2011; 7:59. [PMID: 21843375 PMCID: PMC3170224 DOI: 10.1186/1744-8069-7-59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022] Open
Abstract
Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours. We compared nociceptive thresholds between wild type and PrPC null mice in models of inflammatory and neuropathic pain, in the presence and the absence of a NMDA receptor antagonist. 2-3 months old male PrPC null mice exhibited an MK-801 sensitive decrease in the paw withdrawal threshold in response both mechanical and thermal stimuli. PrPC null mice also exhibited significantly longer licking/biting time during both the first and second phases of formalin-induced inflammation of the paw, which was again prevented by treatment of the mice with MK-801, and responded more strongly to glutamate injection into the paw. Compared to wild type animals, PrPC null mice also exhibited a significantly greater nociceptive response (licking/biting) after intrathecal injection of NMDA. Sciatic nerve ligation resulted in MK-801 sensitive neuropathic pain in wild-type mice, but did not further augment the basal increase in pain behaviour observed in the null mice, suggesting that mice lacking PrPC may already be in a state of tonic central sensitization. Altogether, our data indicate that PrPC exerts a critical role in modulating nociceptive transmission at the spinal cord level, and fit with the concept of NMDA receptor hyperfunction in the absence of PrPC.
Collapse
Affiliation(s)
- Vinicius M Gadotti
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| | | |
Collapse
|
30
|
Huang PP, Khan I, Suhail MSA, Malkmus S, Yaksh TL. Spinal botulinum neurotoxin B: effects on afferent transmitter release and nociceptive processing. PLoS One 2011; 6:e19126. [PMID: 21559464 PMCID: PMC3084763 DOI: 10.1371/journal.pone.0019126] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/25/2011] [Indexed: 12/01/2022] Open
Abstract
Botulinum neurotoxin B (BoNT-B) mediates proteolytic cleavage of VAMP I/II (synaptobrevins I/II), which prevents vesicle-membrane fusion and blocks neurotransmitter release. In the present study, we investigated the effects of BoNT-B on neurotransmitter release in vivo from spinal primary afferent sensory fibers and the effects of this blockade on nociception. With intrathecally (IT) delivered BoNT-B in C57B/l6 mice, we characterized the effects of such block on the release of substance P (SP) from spinal afferent nociceptors (as measured by neurokinin-1 receptor, NK1-R, internalization), spinal neuronal activation (as indicated by spinal C-Fos expression) and nociceptive behavior after intraplantar (IPLT) formalin. In addition, we investigated the effect of IT BoNT-B on spinal nerve ligation-induced tactile allodynia. A single percutaneous IT injection of BoNT-B 0.5 U at 2 or 5 days prior to IPLT formalin reduced NK1-R internalization and C-Fos expression. These effects correlated with BoNT-B cleavage of VAMPI/II protein in tissue lysate. IT BoNT-B also produced a corresponding reduction in phase 2 of formalin-evoked flinching behavior for over 30 days after IT injection. In mice with spinal nerve ligation (SNL), tactile allodynia was observed, which was attenuated by IT BoNT-B 0.5 U over the next 15 days, as compared to vehicle animals. These effects were observed without effects upon motor function. The specificity of the IT BoNT-B effect is indicated by: i) IT co-injection of BoNT-B and anti-BoNTB antibody prevented effects on SP release, and ii) IT BoNT-B 50 U in the Sprague Dawley rats showed no effect on formalin-evoked flinching or SNL-induced tactile allodynia, which is consistent with rat resistance to BoNT-B. IT BoNT-B blocks transmitter release from spinal primary afferents, and attenuates inflammatory nociceptive response and spinal nerve injury-induced neuropathic pain, in the absence of motor impairment. These observations provide an initial assessment of the ability of IT BoNT-B to regulate spinal nociceptive processing.
Collapse
Affiliation(s)
- Polly P. Huang
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Imran Khan
- United States Food and Drug Administration, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Mohammed S. A. Suhail
- School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shelle Malkmus
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Osgood DP, Kenney EV, Harrington WF, Harrington JF. Excrescence of neurotransmitter glutamate from disc material has nociceptive qualities: evidence from a rat model. Spine J 2010; 10:999-1006. [PMID: 20863766 DOI: 10.1016/j.spinee.2010.07.390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/09/2010] [Accepted: 07/26/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND CONTEXT The authors have previously demonstrated that herniated human lumbar disc is rich in free glutamate from degradation of aggrecan. Prior data have suggested that free glutamate could contribute to a nociceptive state. PURPOSE Previous behavioral experiments suggested glutamate-related nociception by comparing pre- and postglutamate infusion responses only. This indirectly suggested nociceptive effects of epidural glutamate but was not a definitive evidence. Now, by using larger numbers of subjects, we have demonstrated that lumbar epidural glutamate infusion causes significant left-to-right differences in hind paw response during treatment, demonstrating more directly the focal nociceptive effects of glutamate. STUDY DESIGN Behavioral studies and immunohistochemistry were used to assess for evidence of a nociceptive state. All researchers were blinded to infusion solution. METHODS Via an implanted mini osmotic pump, the epidural space of rats was infused with 0.02 mM glutamate or normal saline for 72 hours. Signs of nociception were assessed by von Frey and plantar thermal stimulation testing and by glutamate receptor expression in the corresponding dorsal horn of the spinal cord and dorsal root ganglion. RESULTS Both von Frey mechanical and plantar thermal stimulations showed differences in hind paw reactivity depending on whether it was on the ipsilateral or contralateral side of glutamate infusion. Saline infusion had no significant behavioral effects. Dorsal horn expression of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid and N-methyl-d-aspartic acid receptors was significantly increased in glutamate-infused animals, further indicative of a nociceptive state related to glutamate infusion. CONCLUSIONS Elevated epidural glutamate concentrations caused a focal hyperesthetic state. Increased epidural glutamate concentration could be a driving force or "chemical" component of disc-related radiculopathy.
Collapse
Affiliation(s)
- Doreen P Osgood
- Department of Neurosurgical Research, Roger Williams Medical Center, Providence, RI 02908, USA
| | | | | | | |
Collapse
|
32
|
Thomas Cheng H. Spinal cord mechanisms of chronic pain and clinical implications. Curr Pain Headache Rep 2010; 14:213-20. [PMID: 20461476 DOI: 10.1007/s11916-010-0111-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic pain is a prevalent and challenging problem for most medical practitioners. Because of the complex pathologic mechanisms involved in chronic pain, optimal treatment is still under development. The spinal cord is an important gateway for peripheral pain signals transmitted to the brain. In chronic pain states, painful stimuli trigger afferent fibers in the dorsal horn to release neuropeptides and neurotransmitters. These events induce multiple inflammatory and neuropathic processes in the spinal cord dorsal horn, and trigger modification and plasticity of local neural circuits. As a result, ongoing noxious signals to the brain are amplified and prolonged, a phenomenon known as central sensitization. In this review, the molecular events associated with central sensitization, as well as their clinical implications, are discussed.
Collapse
Affiliation(s)
- Hsinlin Thomas Cheng
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Liu XJ, Salter MW. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. Eur J Neurosci 2010; 32:278-89. [PMID: 20629726 DOI: 10.1111/j.1460-9568.2010.07351.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Considerable evidence suggests that both ionotropic and metabotropic glutamate receptors are involved in pain hypersensitivity. However, glutamate receptor-based therapies are limited by side-effects because the activities of glutamate receptors are essential for many important physiological functions. Here, we review recent key findings in molecular and cellular mechanisms of glutamate receptor regulation and their roles in triggering and sustaining pain hypersensitivity. Targeting these molecular mechanisms could form the basis for new therapeutic strategies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xue Jun Liu
- Program in Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|