1
|
Lim DXE, Yeo SY, Chia ZYA, Fernandis AZ, Lee J, Chua JJE. Schizophrenia: Genetics, neurological mechanisms, and therapeutic approaches. Neural Regen Res 2026; 21:1089-1103. [PMID: 40364647 DOI: 10.4103/nrr.nrr-d-24-01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms, leading to mood disturbances, cognitive impairments, and social withdrawal. While anti-psychotic medications remain the cornerstone of treatment, they often fail to fully address certain symptoms. Additionally, treatment-resistant schizophrenia, affecting 30%-40% of patients, remains a substantial clinical challenge. Positive, negative symptoms and cognitive impairments have been linked to disruptions in the glutamatergic, serotonin, GABAergic, and muscarinic pathways in the brain. Recent advances using genome-wide association study and other approaches have uncovered a significant number of new schizophrenia risk genes that uncovered new, and reinforced prior, concepts on the genetic and neurological underpinnings of schizophrenia, including abnormalities in synaptic function, immune processes, and lipid metabolism. Concurrently, new therapeutics targeting different modalities, which are expected to address some of the limitations of anti-psychotic drugs currently being offered to patients, are currently being evaluated. Collectively, these efforts provide new momentum for the next phase of schizophrenia research and treatment.
Collapse
Affiliation(s)
- Debbie Xiu En Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Quantitative Biosciences, MSD International GmbH, Singapore Branch, Singapore
| | - Shi Yun Yeo
- Quantitative Biosciences, MSD International GmbH, Singapore Branch, Singapore
| | | | | | - Jimmy Lee
- North Region, Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
2
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:149-178. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Yang Y, Wang Y, Wang Y, Ke T. Proteomic analysis by 4D label-free MS-PRM identified that Nptx1, Ptpmt1, Slc25a11, and Cpt1c are involved in diabetes-associated cognitive dysfunction. Int J Neurosci 2024; 134:1663-1673. [PMID: 38099467 DOI: 10.1080/00207454.2023.2292956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/11/2024]
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction (DACD) is a chronic ailment that exerts a substantial influence on the overall well-being of individuals. The hippocampus assumes a pivotal role in the progression and sustenance of cognitive impairment. The identification of differentially expressed proteins (DEPs) in the hippocampus is crucial for understanding the mechanisms of DACD. METHODS A rat model of DACD was established by a high-fat diet combined with streptozotocin intraperitoneal injection. The Morris water maze (MWM), hematoxylin and eosin (H&E) staining, Nissl staining, and transmission electron microscope (TEM) were performed on the rats. The proteins expressed in the hippocampus were detected using 4D label-free quantitative proteomics. Four DEPs, namely Nptx1, Ptpmt1, Slc25a11, and Cpt1c, were validated using parallel reaction monitoring (PRM). RESULT Our study found that hippocampal lesions were present in the DACD rat models. There were 59 up-regulated and 98 down-regulated DEPs in the Model group compared to the Control group. We found that the levels of Nptx1, Ptpmt1, Slc25a11, and Cpt1c were elevated in the Model group, which are important for cell mitochondrial function. It should be noted that in our study, we only used PRM to validate the expression of these proteins. However, more evidence is needed to establish the relationship between these protein changes and DACD. CONCLUSION Our research results may provide further insight into the molecular pathology of hippocampal injury in DACD. In addition, further studies and clinical trials are required to confirm our findings and establish a more conclusive molecular mechanism for DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Elantary R, Othman S. Role of L-carnitine in Cardiovascular Health: Literature Review. Cureus 2024; 16:e70279. [PMID: 39329040 PMCID: PMC11427024 DOI: 10.7759/cureus.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Secondary preventive measures, like anti-platelet medications, B-blockers, and angiotensin-converting enzyme (ACE) inhibitors, have been found to dramatically lower the risk of cardiovascular disease. However, prolonged usage of these drugs has been linked to multiple adverse impacts. Hence, finding more efficient treatments, especially dietary strategies for long-term use in daily life, is advantageous for primary prevention and treatment. L-carnitine, a naturally occurring amino acid derivative normally synthesized in the liver and kidney, is believed to have a considerable influence on cardiovascular health. L-carnitine can enhance both contractile performance and structural integrity of the cardiac muscle by maintaining efficient energy production and reducing oxidative stress. This literature review aims to address several pressing questions regarding the role of L-carnitine in cardiovascular health: what are the physiological functions of L-carnitine, particularly in relation to cardiovascular health; how effective and safe is L-carnitine supplementation in the management of various cardiovascular diseases, primarily ischemic heart disease, heart failure, and peripheral vascular disease; what are the underlying mechanisms through which L-carnitine exerts its cardioprotective effects; what controversies exist in the current research; and finally, what should be the future directions? Through this comprehensive analysis, the review aims to enrich our understanding of L-carnitine's role in cardiovascular health, providing a robust foundation for future academic and clinical endeavors. PubMed, Embase, and Google Scholar have been used to search the following keywords: L-carnitine, cardiovascular health, mitochondrial function, and L-carnitine side effects. Then, using the existing search engine formats, some keyword combinations were used to find the related articles included and every possibility, including using every first keyword combination with another keyword, using every keyword in every place at each given box, etc. Around 308 articles were reviewed using this process, including systemic reviews, meta-analysis studies, randomized controlled trials, and literature review articles. In the end, after leaving the pure articles related to the topic as 35 articles, which are attached below with direct citation, the majority of them were very fresh articles, as recent as 2010, and back words, except just one paper related to the impact of L-carnitine post-myocardial infarction, as its data provided us with a positive and promising impact of L-carnitine in this field. L‑carnitine seems to have a pivotal role in cardiovascular health due to its energy metabolism, anti-oxidative stress, and endothelial role. The safety and effectiveness of L-carnitine administration remain an issue for scientific investigation. One of the major concerns is that the intestinal metabolism of L-carnitine generates trimethylamine-N-oxide (TMAO), a compound that has been linked with faster atherosclerosis progression.
Collapse
Affiliation(s)
- Ramy Elantary
- Department of Acute Medicine, Royal Liverpool University Hospital, Liverpool, GBR
| | - Samar Othman
- Department of Diabetes and Endocrinology, Countess of Chester Hospital, Chester, GBR
| |
Collapse
|
5
|
Baker CE, Marta AG, Zimmerman ND, Korade Z, Mathy NW, Wilton D, Simeone T, Kochvar A, Kramer KL, Stessman HAF, Shibata A. CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules 2024; 14:914. [PMID: 39199302 PMCID: PMC11353230 DOI: 10.3390/biom14080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.
Collapse
Affiliation(s)
- Carly E. Baker
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Aaron G. Marta
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Nathan D. Zimmerman
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Zeljka Korade
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68178, USA;
| | - Nicholas W. Mathy
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Delaney Wilton
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| |
Collapse
|
6
|
Sharma B, Schmidt L, Nguyen C, Kiernan S, Dexter-Meldrum J, Kuschner Z, Ellis S, Bhatia ND, Agriantonis G, Whittington J, Twelker K. The Effect of L-Carnitine on Critical Illnesses Such as Traumatic Brain Injury (TBI), Acute Kidney Injury (AKI), and Hyperammonemia (HA). Metabolites 2024; 14:363. [PMID: 39057686 PMCID: PMC11278892 DOI: 10.3390/metabo14070363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective effect in cases of global and focal cerebral ischemia. Moreover, it is an effective agent in reducing nephrotoxicity by suppressing downstream mitochondrial fragmentation. LC can reduce the severity of renal ischemia-reperfusion injury, renal cast formation, tubular necrosis, iron accumulation in the tubular epithelium, CK activity, urea levels, Cr levels, and MDA levels and restore the function of enzymes such as SOD, catalase, and GPx. LC can also be administered to patients with hyperammonemia (HA), as it can suppress ammonia levels. It is important to note, however, that LC levels are dysregulated in various conditions such as aging, cirrhosis, cardiomyopathy, malnutrition, sepsis, endocrine disorders, diabetes, trauma, starvation, obesity, and medication interactions. There is limited research on the effects of LC supplementation in critical illnesses such as TBI, AKI, and HA. This scarcity of studies highlights the need for further research in this area.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Lee Schmidt
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Samantha Kiernan
- Touro College of Osteopathic Medicine–Harlem, New York, NY 10027, USA;
| | - Jacob Dexter-Meldrum
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Scott Ellis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| |
Collapse
|
7
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
8
|
Saorin A, Saorin G, Duzagac F, Parisse P, Cao N, Corona G, Cavarzerani E, Rizzolio F. Microfluidic production of amiodarone loaded nanoparticles and application in drug repositioning in ovarian cancer. Sci Rep 2024; 14:6280. [PMID: 38491077 PMCID: PMC10943008 DOI: 10.1038/s41598-024-55801-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.
Collapse
Affiliation(s)
- Asia Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14 km 163.5, Basovizza, 34149, Trieste, Italy
- CNR-IOM - Istituto Officina dei Materiali, Area Science Park, s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Ni Cao
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
| |
Collapse
|
9
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
10
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
11
|
Sarnowski C, Huan T, Ma Y, Joehanes R, Beiser A, DeCarli CS, Heard-Costa NL, Levy D, Lin H, Liu CT, Liu C, Meigs JB, Satizabal CL, Florez JC, Hivert MF, Dupuis J, De Jager PL, Bennett DA, Seshadri S, Morrison AC. Multi-tissue epigenetic analysis identifies distinct associations underlying insulin resistance and Alzheimer's disease at CPT1A locus. Clin Epigenetics 2023; 15:173. [PMID: 37891690 PMCID: PMC10612362 DOI: 10.1186/s13148-023-01589-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Alexa Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Nancy L Heard-Costa
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel Levy
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia L Satizabal
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Harvard University, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Josée Dupuis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
12
|
Khedr A, Khayat MT, Khayyat AN, Asfour HZ, Alsilmi RA, Kammoun AK. Accumulation of oxysterols in the erythrocytes of COVID-19 patients as a biomarker for case severity. Respir Res 2023; 24:206. [PMID: 37612691 PMCID: PMC10464166 DOI: 10.1186/s12931-023-02515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Due to the high risk of COVID-19 patients developing thrombosis in the circulating blood, atherosclerosis, and myocardial infarction, it is necessary to study the lipidome of erythrocytes. Specifically, we examined the pathogenic oxysterols and acylcarnitines in the erythrocyte homogenate of COVID-19 patients. These molecules can damage cells and contribute to the development of these diseases. METHODS This study included 30 patients and 30 healthy volunteers. The erythrocyte homogenate extract was analyzed using linear ion trap mass spectrometry combined with high-performance liquid chromatography. The concentrations of oxysterols and acylcarnitines in erythrocyte homogenates of healthy individuals and COVID-19 patients were measured. Elevated levels of toxic biomarkers in red blood cells could initiate oxidative stress, leading to a process known as Eryptosis. RESULTS In COVID-19 patients, the levels of five oxysterols and six acylcarnitines in erythrocyte homogenates were significantly higher than those in healthy individuals, with a p-value of less than 0.05. The mean total concentration of oxysterols in the red blood cells of COVID-19 patients was 23.36 ± 13.47 μg/mL, while in healthy volunteers, the mean total concentration was 4.92 ± 1.61 μg/mL. The 7-ketocholesterol and 4-cholestenone levels were five and ten times higher, respectively, in COVID-19 patients than in healthy individuals. The concentration of acylcarnitines in the red blood cell homogenate of COVID-19 patients was 2 to 4 times higher than that of healthy volunteers on average. This finding suggests that these toxic biomarkers may cause the red blood cell death seen in COVID-19 patients. CONCLUSIONS The abnormally high levels of oxysterols and acylcarnitines found in the erythrocytes of COVID-19 patients were associated with the severity of the cases, complications, and the substantial risk of thrombosis. The concentration of oxysterols in the erythrocyte homogenate could serve as a diagnostic biomarker for COVID-19 case severity.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia.
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Hany Z Asfour
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Rahmah A Alsilmi
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
14
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
15
|
Yong HEJ, Watkins OC, Mah TKL, Cracknell-Hazra VKB, Pillai RA, Selvam P, Islam MO, Sharma N, Cazenave-Gassiot A, Bendt AK, Wenk MR, Godfrey KM, Lewis RM, Chan SY. Increasing maternal age associates with lower placental CPT1B mRNA expression and acylcarnitines, particularly in overweight women. Front Physiol 2023; 14:1166827. [PMID: 37275238 PMCID: PMC10232777 DOI: 10.3389/fphys.2023.1166827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Older pregnant women have increased risks of complications including gestational diabetes and stillbirth. Carnitine palmitoyl transferase (CPT) expression declines with age in several tissues and is linked with poorer metabolic health. Mitochondrial CPTs catalyze acylcarnitine synthesis, which facilitates fatty acid oxidization as fuel. We hypothesized that the placenta, containing maternally-inherited mitochondria, shows an age-related CPT decline that lowers placental acylcarnitine synthesis, increasing vulnerability to pregnancy complications. We assessed CPT1A, CPT1B, CPT1C and CPT2 mRNA expression by qPCR in 77 placentas and quantified 10 medium and long-chain acylcarnitines by LC-MS/MS in a subset of 50 placentas. Older maternal age associated with lower expression of placental CPT1B, but not CPT1A, CPT1C or CPT2. CPT1B expression positively associated with eight acylcarnitines and CPT1C with three acylcarnitines, CPT1A negatively associated with nine acylcarnitines, while CPT2 did not associate with any acylcarnitine. Older maternal age associated with reductions in five acylcarnitines, only in those with BMI≥ 25 kg/m2, and not after adjusting for CPT1B expression. Our findings suggest that CPT1B is the main transferase for placental long-chain acylcarnitine synthesis, and age-related CPT1B decline may underlie decreased placental metabolic flexibility, potentially contributing to pregnancy complications in older women, particularly if they are overweight.
Collapse
Affiliation(s)
- Hannah E. J. Yong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tania K. L. Mah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad O. Islam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, United Kingdom
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Trabjerg MS, Andersen DC, Huntjens P, Mørk K, Warming N, Kullab UB, Skjønnemand MLN, Oklinski MK, Oklinski KE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Corthals A, Søndergaard MT, Kjeldal HB, Pedersen CFM, Nieland JDV. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:6. [PMID: 36681683 PMCID: PMC9867753 DOI: 10.1038/s41531-023-00450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023] Open
Abstract
Glucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice. We show that Cpt1a P479L mutant mice are resistant to rotenone-induced PD, and that inhibition of CPT1 is capable of restoring neurological function, normal glucose metabolism, and alleviate markers of PD in the midbrain. Furthermore, we show that downregulation of lipid metabolism via CPT1 alleviates pathological motor and non-motor behavior, oxidative stress, and disrupted glucose homeostasis in Park2 knockout mice. Finally, we confirm that rotenone induces gut dysbiosis in C57Bl/6J and, for the first time, in Park2 knockout mice. We show that this dysbiosis is alleviated by the downregulation of the lipid metabolism via CPT1.
Collapse
Affiliation(s)
- Michael Sloth Trabjerg
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Christian Andersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pam Huntjens
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kasper Mørk
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marie-Louise Nibelius Skjønnemand
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michal Krystian Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kirsten Egelund Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Luise Bolther
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona J. Kroese
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E. J. Pritchard
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Angelique Corthals
- grid.258202.f0000 0004 1937 0116Department of Science, John Jay College of Criminal Justice, City University of New York, New York, NY 10019 USA
| | | | | | - Cecilie Fjord Morre Pedersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|
18
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
19
|
Liang K, Dai JY. Progress of potential drugs targeted in lipid metabolism research. Front Pharmacol 2022; 13:1067652. [PMID: 36588702 PMCID: PMC9800514 DOI: 10.3389/fphar.2022.1067652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Lipids are a class of complex hydrophobic molecules derived from fatty acids that not only form the structural basis of biological membranes but also regulate metabolism and maintain energy balance. The role of lipids in obesity and other metabolic diseases has recently received much attention, making lipid metabolism one of the attractive research areas. Several metabolic diseases are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis. Additionally, lipid metabolism contributes to the rapid growth of cancer cells as abnormal lipid synthesis or uptake enhances the growth of cancer cells. This review introduces the potential drug targets in lipid metabolism and summarizes the important potential drug targets with recent research progress on the corresponding small molecule inhibitor drugs. The significance of this review is to provide a reference for the clinical treatment of metabolic diseases related to lipid metabolism and the treatment of tumors, hoping to deepen the understanding of lipid metabolism and health.
Collapse
Affiliation(s)
- Kai Liang
- School of Life Science, Peking University, Beijing, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China,Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| |
Collapse
|
20
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
21
|
Horgusluoglu E, Neff R, Song W, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo‐Prieto B, Ming C, Nho K, Kastenmüller G, Han X, Baillie R, Zeng Q, Andrews S, Cheng H, Hao K, Goate A, Bennett DA, Saykin AJ, Kaddurah‐Daouk R, Zhang B, for the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Alzheimer Disease Metabolomics Consortium. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease. Alzheimers Dement 2022; 18:1260-1278. [PMID: 34757660 PMCID: PMC9085975 DOI: 10.1002/alz.12468] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and medium/long-chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co-expression network analysis of the AMP-AD brain RNA-seq data suggests the CPT1A- and ABCA1-centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large-scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ryan Neff
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Won‐Min Song
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Minghui Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Qian Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Matthias Arnold
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Jan Krumsiek
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
| | - Beatriz Galindo‐Prieto
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
- Helen and Robert Appel Alzheimer's Disease Research InstituteBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chen Ming
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gabi Kastenmüller
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | | | - Qi Zeng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Shea Andrews
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Haoxiang Cheng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ke Hao
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Alison Goate
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rima Kaddurah‐Daouk
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke Institute of Brain SciencesDuke UniversityDurhamNorth CarolinaUSA
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | | | | |
Collapse
|
22
|
Liu HX, Liu QJ. Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. Int J Radiat Biol 2022; 98:1595-1608. [PMID: 35384773 DOI: 10.1080/09553002.2022.2063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE With the development of radiation metabolomics, a large number of radiation-related metabolic biomarkers have been identified and validated. The L-carnitine and acylcarnitines have the potential to be the new promising candidate indicators of radiation exposure. This review summarizes the effect of carnitine shuttle system on the profile of acylcarnitines and correlates the radiation effects on upstream regulators of carnitine shuttle system with the change characteristics of L-carnitine and acylcarnitines after irradiation across different animal models as well as a few humans. CONCLUSIONS Studies report that acylcarnitines were ubiquitously elevated after irradiation, especially the free L-carnitine and short-chain acylcarnitines (C2-C5). However, the molecular mechanism underlying acylcarnitine alterations after irradiation is not fully investigated, and further studies are needed to explore the biological effect and its mechanism. The activity of the carnitine shuttle system plays a key role in the alteration of L-carnitine and acylcarnitines, and the upstream regulators of the system are known to be affected by irradiation. These evidences indicate that that there is a logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
23
|
Virmani MA, Cirulli M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci 2022; 23:ijms23052717. [PMID: 35269860 PMCID: PMC8910660 DOI: 10.3390/ijms23052717] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria control cellular fate by various mechanisms and are key drivers of cellular metabolism. Although the main function of mitochondria is energy production, they are also involved in cellular detoxification, cellular stabilization, as well as control of ketogenesis and glucogenesis. Conditions like neurodegenerative disease, insulin resistance, endocrine imbalances, liver and kidney disease are intimately linked to metabolic disorders or inflexibility and to mitochondrial dysfunction. Mitochondrial dysfunction due to a relative lack of micronutrients and substrates is implicated in the development of many chronic diseases. l-carnitine is one of the key nutrients for proper mitochondrial function and is notable for its role in fatty acid oxidation. l-carnitine also plays a major part in protecting cellular membranes, preventing fatty acid accumulation, modulating ketogenesis and glucogenesis and in the elimination of toxic metabolites. l-carnitine deficiency has been observed in many diseases including organic acidurias, inborn errors of metabolism, endocrine imbalances, liver and kidney disease. The protective effects of micronutrients targeting mitochondria hold considerable promise for the management of age and metabolic related diseases. Preventing nutrient deficiencies like l-carnitine can be beneficial in maintaining metabolic flexibility via the optimization of mitochondrial function. This paper reviews the critical role of l-carnitine in mitochondrial function, metabolic flexibility and in other pathophysiological cellular mechanisms.
Collapse
|
24
|
Shimada Y, Kawano N, Goto M, Watanabe H, Ihara K. Stability of amino acids, free and acyl-carnitine in stored dried blood spots. Pediatr Int 2022; 64:e15072. [PMID: 34817917 PMCID: PMC9313883 DOI: 10.1111/ped.15072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Newborn screening of inborn errors of metabolism using tandem mass spectrometry has become a public health strategy in many developed countries. Retrospective analyses using stored dried blood specimens have been limited, mainly due to a lack of biochemical information on the long-term stability of acylcarnitines and amino acids in stored specimens. We studied the characteristic profiles of the stability of amino acid, free carnitine, and acyl carnitines in dried blood specimens stored in a refrigerator after newborn screening. METHODS Dried blood specimens from 198 healthy newborns, which had been stored in a refrigerator at 5 °C after newborn screening, were prospectively subjected to tandem mass spectrometry analyses after 1, 3, 6 months, 1 and 2 years of storage. We also retrospectively re-analyzed the stored samples from 90 newborns, which had been analyzed and stored at 5 °C for 4 years. RESULTS We found that proline (Pro) and tyrosine (Tyr) were stable for 2 years, and that alanine (Ala), arginine (Arg), and phenylalanine (Phe) decayed with linear regression. The C0 increased during the time-course of 2 years, whereas most acylcarnitines gradually decayed and some showed a linear correlation. The retrospective analysis of samples stored for 4 years revealed that Ala, Phe, Pro and Tyr were almost stable, leucine (Leu), valine (Val) decayed with linear regression, C0 increased, and C10, C12, C14, C14:1, C16, C18, C18:1 decreased, while maintaining a linear correlation. CONCLUSIONS These data suggested that some metabolic parameters from refrigerator-stored dried blood specimens were applicable for the detection of inborn errors of metabolism.
Collapse
Affiliation(s)
- Yumi Shimada
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Nanae Kawano
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Miho Goto
- Department of Clinical Laboratory, Almeida Memorial Hospital, Oita City, Oita, Japan
| | - Hiromi Watanabe
- Department of Clinical Laboratory, Almeida Memorial Hospital, Oita City, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| |
Collapse
|
25
|
Tan YJ, Wong BYX, Vaidyanathan R, Sreejith S, Chia SY, Kandiah N, Ng ASL, Zeng L. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis Rep 2021; 5:805-813. [PMID: 34870106 PMCID: PMC8609483 DOI: 10.3233/adr-210311] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer’s disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD). Objective: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores. Methods: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p. Results: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534– 0.870, and showed significant correlation with lower CSF Aβ42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-β and tau metabolism in AD. Conclusion: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Benjamin Y X Wong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | | | - Sivaramapanicker Sreejith
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
26
|
Ding Y, Zhang H, Liu Z, Li Q, Guo Y, Chen Y, Chang Y, Cui H. Carnitine palmitoyltransferase 1 (CPT1) alleviates oxidative stress and apoptosis of hippocampal neuron in response to beta-Amyloid peptide fragment Aβ 25-35. Bioengineered 2021; 12:5440-5449. [PMID: 34424821 PMCID: PMC8806834 DOI: 10.1080/21655979.2021.1967032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
CPT1C, which is expressed in hippocampus, influences ceramide level, endogenous cannabinoid and oxidation process, as well as plays an important role in various brain functions such as learning. This study aimed to investigate the role of CPT1C in Alzheimer's disease (AD) and its underlying mechanism. We established a model of Alzheimer's disease in vitro by exposing primary hippocampal neurons to beta-Amyloid peptide fragment 25-35 (Aβ25-35). The cell viability, lactate dehydrogenase (LDH) level, expressions of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected using Cell Counting Kit-8 (CCK-8), LDH assay, ROS kits, malondialdehyde (MDA) kits and SOD kits, respectively. Moreover, the expression of oxidative stress-related proteins as well as the expressions of amyloid precursor protein (App), p-Tau andβ-site APP-cleaving enzyme1 (Bace-1) were measured using quantitative reverse transcription PCR (RT-qPCR) and western blot. Tunel and western blot were adopted to detect apoptosis as well as its related proteins. After the treatment of peroxisome proliferators-activated receptor alpha (PPARα), CPT1C expression was detected with the application of RT-qPCR and western blot. CPT1C expression was reduced in Aβ25-35-induced HT22 cells. Overexpression of CPT1C relieved cell viability and toxic injury as well as attenuated oxidative stress, apoptosis and expression levels of AD marker proteins. Moreover, higher doses of PPARα agonist activate the expression of CPT1C in Aβ25-35-induced HT22 cells. In conclusion, CPT1C alleviates Aβ25-35-induced oxidative stress, apoptosis and deposition of AD marker proteins in hippocampal neurons, suggesting that CPT1C has favorable effects on alleviating AD and participates in PPARα activation.
Collapse
Affiliation(s)
- Yiyun Ding
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongxia Zhang
- Laboratory Division, Ankang Center for Disease Control and Prevention, Ankang, Shaanxi Province, China
| | - Zhaojun Liu
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiuping Li
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yujiao Guo
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ye Chen
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Chang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongyan Cui
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys 2021; 712:109030. [PMID: 34517010 DOI: 10.1016/j.abb.2021.109030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) is a complicated autoimmune disease characterized by inflammatory and demyelinating events in the central nervous system. The exact etiology and pathogenesis of MS have not been elucidated. However, a set of metabolic changes and their effects on immune cells and neural functions have been explained. This review highlights the contribution of carbohydrates and lipids metabolism to the etiology and pathogenesis of MS. Then, we have proposed a hypothetical relationship between such metabolic changes and the immune system in patients with MS. Finally, the potential clinical implications of these metabolic changes in diagnosis, prognosis, and discovering therapeutic targets have been discussed. It is concluded that research on the pathophysiological alterations of carbohydrate and lipid metabolism may be a potential strategy for paving the way toward MS treatment.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark; Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
28
|
Wang QY, You LH, Xiang LL, Zhu YT, Zeng Y. Current progress in metabolomics of gestational diabetes mellitus. World J Diabetes 2021; 12:1164-1186. [PMID: 34512885 PMCID: PMC8394228 DOI: 10.4239/wjd.v12.i8.1164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders of pregnancy and can cause short- and long-term adverse effects in both pregnant women and their offspring. However, the etiology and pathogenesis of GDM are still unclear. As a metabolic disease, GDM is well suited to metabolomics study, which can monitor the changes in small molecular metabolites induced by maternal stimuli or perturbations in real time. The application of metabolomics in GDM can be used to discover diagnostic biomarkers, evaluate the prognosis of the disease, guide the application of diet or drugs, evaluate the curative effect, and explore the mechanism. This review provides comprehensive documentation of metabolomics research methods and techniques as well as the current progress in GDM research. We anticipate that the review will contribute to identifying gaps in the current knowledge or metabolomics technology, provide evidence-based information, and inform future research directions in GDM.
Collapse
Affiliation(s)
- Qian-Yi Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, Jiangsu Province, China
| | - Liang-Hui You
- Nanjing Maternity and Child Health Care Institute, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Lan-Lan Xiang
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yi-Tian Zhu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yu Zeng
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| |
Collapse
|
29
|
Peng J, Yin L, Wang X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm Behav 2021; 133:105006. [PMID: 34087669 DOI: 10.1016/j.yhbeh.2021.105006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/25/2021] [Accepted: 05/22/2021] [Indexed: 01/16/2023]
Abstract
Obesity is strongly related to leptin resistance that refers to the state in which leptin fails to inhibit appetite, enhance energy expenditure and regulate glycolipid metabolism, whereas decreasing leptin resistance is important for obesity treatment. Leptin resistance that develops in brain and also directly in peripheral tissues is considered as central and peripheral leptin resistance, respectively. The mechanism of central leptin resistance is the focus of intensive studies but still not totally clarified. A challenged notion about the effect of impaired leptin BBB transport emerges and a concept of "selective leptin resistance" is discussed. Peripheral leptin resistance, especially leptin resistance in muscle, has drawn more attention recently, while its mechanism remains unclear. Exercise is an effective way to reduce obesity, which is at least in part due to the alleviation of leptin resistance. Here, we summarized newly discovered data about the associated factors of central leptin resistance and peripheral leptin resistance, and the actions of exercise on leptin resistance, which is important to understand the mechanisms of leptin resistance and exercise-induced alleviation of leptin resistance, and to facilitate clinical application of leptin in obesity treatment.
Collapse
Affiliation(s)
- Jin Peng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
30
|
Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites 2021; 11:metabo11010034. [PMID: 33466490 PMCID: PMC7824812 DOI: 10.3390/metabo11010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with 'omics' technology to study their contribution. The aim of our study was to investigate serum amino acid and acylcarnitine levels in antipsychotics-treated patients with chronic schizophrenia compared with healthy donors. We measured serum levels of 15 amino acids and 30 acylcarnitines in 37 patients with schizophrenia and 36 healthy donors by means of tandem mass spectrometry. In summary, patients with chronic schizophrenia had an altered concentration of a few amino acids and acylcarnitines in comparison to the healthy probands. Further research is needed to assess and understand the identified changes.
Collapse
|
31
|
Castilhos RM, Augustin MC, Santos JAD, Pedroso JL, Barsottini O, Saba R, Ferraz HB, Vargas FR, Furtado GV, Polese-Bonatto M, Rodrigues LP, Sena LS, Vargas CR, Saraiva-Pereira ML, Jardim LB, Neurogenética R. Free carnitine and branched chain amino acids are not good biomarkers in Huntington's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:81-87. [PMID: 32159721 DOI: 10.1590/0004-282x20190152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Huntington's disease (HD), caused by an expanded CAG repeat at HTT, has no treatment, and biomarkers are needed for future clinical trials. OBJECTIVE The objective of this study was to verify if free carnitine and branched chain amino acids levels behave as potential biomarkers in HD. METHODS Symptomatic and asymptomatic HD carriers and controls were recruited. Age, sex, body mass index (BMI), age of onset, disease duration, UHDRS scores, and expanded CAG tract were obtained; valine, leucine, isoleucine, and free carnitine were measured. Baseline and longitudinal analysis were performed. RESULTS Seventy-four symptomatic carriers, 20 asymptomatic carriers, and 22 non-carriers were included. At baseline, valine levels were reduced in symptomatic and asymptomatic HD carriers when compared to non-carriers. No difference in free carnitine or isoleucine+leucine levels were observed between groups. BMI of symptomatic individuals was lower than those of non-carriers. Valine levels correlated with BMI. Follow-up evaluation was performed in 43 symptomatic individuals. UHDRS total motor score increased 4.8 points/year on average. No significant reductions in BMI or valine were observed, whereas free carnitine and isoleucine+leucine levels increased. CONCLUSIONS Although valine levels were lower in HD carriers and were related to BMI losses observed in pre-symptomatic individuals, none of these metabolites seem to be biomarkers for HD.
Collapse
Affiliation(s)
- Raphael Machado Castilhos
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre RS, Brazil
| | - Marina Coutinho Augustin
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - José Augusto Dos Santos
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - José Luiz Pedroso
- Disciplina de Neurologia Clínica, UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Orlando Barsottini
- Disciplina de Neurologia Clínica, UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Roberta Saba
- Disciplina de Neurologia Clínica, UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Henrique Ballalai Ferraz
- Disciplina de Neurologia Clínica, UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Fernando Regla Vargas
- Hospital Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro RJ, Brazil.,Laboratório de Epidemiologia de Malformações Congênitas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriel Vasata Furtado
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre RS, Brazil
| | - Marcia Polese-Bonatto
- Programa de pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| | - Luiza Paulsen Rodrigues
- Programa de pós-graduação em Biologia Molecular e Celular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre RS, Brazil
| | - Lucas Schenatto Sena
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Carmen Regla Vargas
- Programa de pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Programa de pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Programa de pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Programa de pós-graduação em Biologia Molecular e Celular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre RS, Brazil
| | - Rede Neurogenética
- Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
32
|
Justice AE, Chittoor G, Gondalia R, Melton PE, Lim E, Grove ML, Whitsel EA, Liu CT, Cupples LA, Fernandez-Rhodes L, Guan W, Bressler J, Fornage M, Boerwinkle E, Li Y, Demerath E, Heard-Costa N, Levy D, Stewart JD, Baccarelli A, Hou L, Conneely K, Mori TA, Beilin LJ, Huang RC, Gordon-Larsen P, Howard AG, North KE. Methylome-wide association study of central adiposity implicates genes involved in immune and endocrine systems. Epigenomics 2020; 12:1483-1499. [PMID: 32901515 PMCID: PMC7923253 DOI: 10.2217/epi-2019-0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aim: We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. Materials & methods: We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). Results & conclusion: We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near TXNIP, ADCY7, SREBF1 and RAP1GAP2 that had not previously been associated with obesity-related traits.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillip E Melton
- School of Biomedical Science, Faculty of Health & Medical Sciences, The University of Western Australia, Perth, WA 6000, Australia
- School of Pharmacy & Biomedical Sciences, Faculty of Health Sciences, Curtin University, MRF Building, Perth, WA 6000, Australia
- Menzies Institute for Medical Research, College of Health & Medicine, University of Tasmania, Hobart, TA, 7000 Australia
| | - Elise Lim
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA, 01701, USA
| | - Lindsay Fernandez-Rhodes
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Myriam Fornage
- Center for Human Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ellen Demerath
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Dan Levy
- Population sciences branch, NHLBI Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University, Boston, MA 02118, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences & Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | | | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| |
Collapse
|
33
|
Chen P, Zhang Q, Zhang H, Gao Y, Zhou Y, Chen Y, Guan L, Jiao T, Zhao Y, Huang M, Bi H. Carnitine palmitoyltransferase 1C reverses cellular senescence of MRC-5 fibroblasts via regulating lipid accumulation and mitochondrial function. J Cell Physiol 2020; 236:958-970. [PMID: 32632982 DOI: 10.1002/jcp.29906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a state of growth arrest, is involved in various age-related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC-5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC-5 fibroblasts, as evidenced by reduced senescence-associated β-galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence-associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain-of-function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC-5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain-of-function. Consequently, CPT1C gain-of-function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC-5 cellular proliferation and can reverse MRC-5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.
Collapse
Affiliation(s)
- Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianbin Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tingying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingyuan Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Kathuria A, Lopez-Lengowski K, Jagtap SS, McPhie D, Perlis RH, Cohen BM, Karmacharya R. Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell-Derived Cerebral Organoids in Schizophrenia. JAMA Psychiatry 2020; 77:745-754. [PMID: 32186681 PMCID: PMC7081156 DOI: 10.1001/jamapsychiatry.2020.0196] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Three-dimensional cerebral organoids generated from patient-derived induced pluripotent stem cells (iPSCs) may be used to interrogate cellular-molecular underpinnings of schizophrenia. OBJECTIVE To determine transcriptomic profiles and functional characteristics of cerebral organoids from patients with schizophrenia using gene expression studies, complemented with investigations of mitochondrial function through measurement of real-time oxygen consumption rate, and functional studies of neuronal firing with microelectrode arrays. DESIGN, SETTING, AND PARTICIPANTS This case-control study was conducted at Massachusetts General Hospital between 2017 and 2019. Transcriptomic profiling of iPSC-derived cerebral organoids from 8 patients with schizophrenia and 8 healthy control individuals was undertaken to identify cellular pathways that are aberrant in schizophrenia. Induced pluripotent stem cells and cerebral organoids were generated from patients who had been diagnosed as having schizophrenia and from heathy control individuals. MAIN OUTCOMES AND MEASURES Transcriptomic analysis of iPSC-derived cerebral organoids from patients with schizophrenia show differences in expression of genes involved in synaptic biology and neurodevelopment and are enriched for genes implicated in schizophrenia genome-wide association studies (GWAS). RESULTS The study included iPSC lines generated from 11 male and 5 female white participants, with a mean age of 38.8 years. RNA sequencing data from iPSC-derived cerebral organoids in schizophrenia showed differential expression of genes involved in synapses, in nervous system development, and in antigen processing. The differentially expressed genes were enriched for genes implicated in schizophrenia, with 23% of GWAS genes showing differential expression in schizophrenia and control organoids: 10 GWAS genes were upregulated in schizophrenia organoids while 15 GWAS genes were downregulated. Analysis of the gene expression profiles suggested dysregulation of genes involved in mitochondrial function and those involved in modulation of excitatory and inhibitory pathways. Studies of mitochondrial respiration showed lower basal consumption rate, adenosine triphosphate production, proton leak, and nonmitochondrial oxygen consumption in schizophrenia cerebral organoids, without any differences in the extracellular acidification rate. Microelectrode array studies of cerebral organoids showed no differences in baseline electrical activity in schizophrenia but revealed a diminished response to stimulation and depolarization. CONCLUSIONS AND RELEVANCE Investigations of patient-derived cerebral organoids in schizophrenia revealed gene expression patterns suggesting dysregulation of a number of pathways in schizophrenia, delineated differences in mitochondrial function, and showed deficits in response to stimulation and depolarization in schizophrenia.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge
| | - Smita S. Jagtap
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts
| | - Roy H. Perlis
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts,Program in Neuroscience, Harvard University,
Cambridge, Massachusetts,Program in Chemical Biology, Harvard University,
Cambridge, Massachusetts,Harvard Stem Cell Institute, Cambridge,
Massachusetts
| |
Collapse
|
35
|
Wang Y, Yu T, Zhou Y, Wang S, Zhou X, Wang L, Ou T, Chen Y, Zhou Y, Zhang H, Wang Y, Fan X, Chen P, Gonzalez FJ, Yu A, Huang P, Huang M, Bi H. Carnitine palmitoyltransferase 1C contributes to progressive cellular senescence. Aging (Albany NY) 2020; 12:6733-6755. [PMID: 32289751 PMCID: PMC7202531 DOI: 10.18632/aging.103033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023]
Abstract
Stable transfection manipulation with antibiotic selection and passaging induces progressive cellular senescence phenotypes. However, the underlying mechanisms remain poorly understood. This study demonstrated that stable transfection of the empty vector induced PANC-1 cells into cellular senescence. Metabolomics revealed several acylcarnitines and their upstream regulatory gene, carnitine palmitoyltransferase 1C (CPT1C) involved in fatty acid β-oxidation in mitochondria, were strikingly decreased in senescent PANC-1 cells. Low CPT1C expression triggered mitochondrial dysfunction, inhibited telomere elongation, impaired cell survival under metabolic stress, and hindered the malignance and tumorigenesis of senescent cells. On the contrary, mitochondrial activity was restored by CPT1C gain-of-function in senescent vector PANC-1 cells. PPARα and TP53/CDKN1A, crucial signaling components in cellular senescence, were downregulated in senescent PANC-1 cells. This study identifies CPT1C as a key regulator of stable transfection-induced progressive PANC-1 cell senescence that inhibits mitochondrial function-associated metabolic reprogramming. These findings confirm the need to identify cell culture alterations after stable transfection, particularly when cells are used for metabolomics and mitochondria-associated studies, and suggest inhibition of CPT1C could be a promising target to intervene pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China.,Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tao Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shike Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xunian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tianmiao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yawen Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Ying Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Aiming Yu
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Peng Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China.,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510275, P.R. China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
36
|
Hoya S, Watanabe Y, Nunokawa A, Otsuka I, Shibuya M, Igeta H, Hishimoto A, Someya T. Whole-exome sequencing in a family with a monozygotic twin pair concordant for schizophrenia and a follow-up case-control study of identified de-novo variants. Psychiatr Genet 2020; 30:60-63. [PMID: 32106127 DOI: 10.1097/ypg.0000000000000250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whole-exome sequencing (WES) studies have shown that de-novo variants contribute to the genetic etiology of schizophrenia. WES studies of families with a monozygotic twin pair concordant or discordant for a disease may be fruitful for identifying de-novo pathogenic variants. Here, we performed WES in six individuals from one family (affected monozygotic twins, their unaffected parents, and two siblings) and identified three de-novo missense variants (CPT2 Ala283Thr, CPSF3 Val584Ile, and RNF148 Val210Ile) in the monozygotic twin pair concordant for schizophrenia. These three missense variants were not found in 1760 patients with schizophrenia or schizoaffective disorder or 1508 healthy controls. Our data do not support the role of the three missense variants in conferring risk for schizophrenia.
Collapse
Affiliation(s)
- Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences.,Minamihama Hospital, Niigata
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences.,Minamihama Hospital, Niigata
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences.,Mano Mizuho Hospital, Sado, Niigata
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
37
|
Bax K, Isackson PJ, Moore M, Ambrus JL. Carnitine Palmitoyl Transferase Deficiency in a University Immunology Practice. Curr Rheumatol Rep 2020; 22:8. [PMID: 32067119 DOI: 10.1007/s11926-020-0879-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This report describes the clinical manifestations of 35 patients sent to a University Immunology clinic with a diagnosis of fatigue and exercise intolerance who were identified to have low carnitine palmitoyl transferase activity on muscle biopsies. RECENT FINDINGS All of the patients presented with fatigue and exercise intolerance and many had been diagnosed with fibromyalgia. Their symptoms responded to treatment of the metabolic disease. Associated symptoms included bloating, diarrhea, constipation, gastrointestinal reflux symptoms, recurrent infections, arthritis, dyspnea, dry eye, visual loss, and hearing loss. Associated medical conditions included Hashimoto thyroiditis, Sjogren's syndrome, seronegative arthritis, food hypersensitivities, asthma, sleep apnea, and vasculitis. This study identifies clinical features that should alert physicians to the possibility of an underlying metabolic disease. Treatment of the metabolic disease leads to symptomatic improvement.
Collapse
Affiliation(s)
- Kiley Bax
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Paul J Isackson
- Department of Pediatrics, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Molly Moore
- Department of Surgery, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA.
- Division of Allergy, Immunology and Rheumatology SUNY at Buffalo School of Medicine, Room 8030C, Center for Translational Research, 875 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
38
|
Ucci S, Renzini A, Russi V, Mangialardo C, Cammarata I, Cavioli G, Santaguida MG, Virili C, Centanni M, Adamo S, Moresi V, Verga-Falzacappa C. Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. Int J Mol Sci 2019; 20:ijms20225754. [PMID: 31731814 PMCID: PMC6888244 DOI: 10.3390/ijms20225754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormones regulate a wide range of cellular responses, via non-genomic and genomic actions, depending on cell-specific thyroid hormone transporters, co-repressors, or co-activators. Skeletal muscle has been identified as a direct target of thyroid hormone T3, where it regulates stem cell proliferation and differentiation, as well as myofiber metabolism. However, the effects of T3 in muscle-wasting conditions have not been yet addressed. Being T3 primarily responsible for the regulation of metabolism, we challenged mice with fasting and found that T3 counteracted starvation-induced muscle atrophy. Interestingly, T3 did not prevent the activation of the main catabolic pathways, i.e., the ubiquitin-proteasome or the autophagy-lysosomal systems, nor did it stimulate de novo muscle synthesis in starved muscles. Transcriptome analyses revealed that T3 mainly affected the metabolic processes in starved muscle. Further analyses of myofiber metabolism revealed that T3 prevented the starvation-mediated metabolic shift, thus preserving skeletal muscle mass. Our study elucidated new T3 functions in regulating skeletal muscle homeostasis and metabolism in pathological conditions, opening to new potential therapeutic approaches for the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Valentina Russi
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Claudia Mangialardo
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Ilenia Cammarata
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Giorgia Cavioli
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Maria Giulia Santaguida
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
- Correspondence:
| | - Cecilia Verga-Falzacappa
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| |
Collapse
|
39
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
40
|
Chaumette B, Kebir O, Pouch J, Ducos B, Selimi F, ICAAR study group, Gaillard R, Krebs MO. Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis. Schizophr Bull 2019; 45:247-255. [PMID: 29471546 PMCID: PMC6293211 DOI: 10.1093/schbul/sby009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Boris Chaumette
- Universite Paris Descartes, Université Sorbonne Paris Cite, Paris, France,INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France,GDR3557-Institut de Psychiatrie, Paris, France,Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Oussama Kebir
- Universite Paris Descartes, Université Sorbonne Paris Cite, Paris, France,INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France,GDR3557-Institut de Psychiatrie, Paris, France,Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Juliette Pouch
- Plateforme qPCR-HD-GPC, Ecole Normale Supérieure, Fondation Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Bertrand Ducos
- Plateforme qPCR-HD-GPC, Ecole Normale Supérieure, Fondation Pierre-Gilles de Gennes, PSL Research University, Paris, France,Laboratoire de Physique Statistique, Ecole normale Supérieure, PSL Research University, Université Paris-Diderot Sorbonne Paris-Cité, Sorbonne Universités Univ Paris, CNRS UMR, Paris, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR and INSERM U1050, Paris, France
| | - ICAAR study group
- Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Raphael Gaillard
- Universite Paris Descartes, Université Sorbonne Paris Cite, Paris, France,INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France,GDR3557-Institut de Psychiatrie, Paris, France,Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Marie-Odile Krebs
- Universite Paris Descartes, Université Sorbonne Paris Cite, Paris, France,INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France,GDR3557-Institut de Psychiatrie, Paris, France,Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France,To whom correspondence should be addressed; Service Hospitalo-Universitaire, Centre Hospitalier Sainte Anne, 7 rue Cabanis, 75014 Paris, France; tel: +33 14 5658 646, fax: +33 14 5658 160, e-mail:
| |
Collapse
|
41
|
Zhao H, Li H, Chung ACK, Xiang L, Li X, Zheng Y, Luan H, Zhu L, Liu W, Peng Y, Zhao Y, Xu S, Li Y, Cai Z. Large-Scale Longitudinal Metabolomics Study Reveals Different Trimester-Specific Alterations of Metabolites in Relation to Gestational Diabetes Mellitus. J Proteome Res 2018; 18:292-300. [PMID: 30488697 DOI: 10.1021/acs.jproteome.8b00602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the increasing research attention paid to gestational diabetes mellitus (GDM) due to its high prevalence, limited knowledge is available about its pathogenesis. In this study, 428 serum samples were collected from 107 pregnant women suffering from GDM and 107 matched healthy controls. The nontargeted metabolomics data of maternal serum samples from the first (T1, n = 214) and second trimesters (T2, n = 214) were acquired by using ultrahigh performance liquid chromatography coupled with Orbitrap mass spectrometry (MS). A total of 93 differential metabolites were identified on the basis of the accurate mass and MS/MS fragmentation. After false discovery rate correction, the levels of 31 metabolites in GDM group were significantly altered in the first trimester. The differential metabolites were mainly attributed to purine metabolism, fatty acid β-oxidation, urea cycle, and tricarboxylic acid cycle pathways. The fold changes across pregnancy (T2/T1) of six amino acids (serine, proline, leucine/isoleucine, glutamic acid, tyrosine, and ornithine), a lysophosphatidylcholine (LysoPC(20:4)), and uric acid in GDM group were significantly different from those in the control groups, suggesting that these 8 metabolites might have contributed to the occurrence and progression of GDM. The findings revealed that the amino acid metabolism, lipid metabolism, and other pathways might be disturbed prior to GDM onset and during the period from the first to the second trimester of pregnancy.
Collapse
Affiliation(s)
- Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Han Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Xiaona Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Hemi Luan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yaxing Zhao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
42
|
Mørkholt AS, Kastaniegaard K, Trabjerg MS, Gopalasingam G, Niganze W, Larsen A, Stensballe A, Nielsen S, Nieland JD. Identification of brain antigens recognized by autoantibodies in experimental autoimmune encephalomyelitis-induced animals treated with etomoxir or interferon-β. Sci Rep 2018; 8:7092. [PMID: 29728570 PMCID: PMC5935685 DOI: 10.1038/s41598-018-25391-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease, where chronic inflammation plays an essential role in its pathology. A feature of MS is the production of autoantibodies stimulated by an altered-peptide-ligand response and epitope spreading, resulting in loss of tolerance for self-proteins. The involvement of autoantibodies in MS pathogenesis has been suggested to initiate and drive progression of inflammation; however, the etiology of MS remains unknown. The effect of etomoxir and interferon-β (IFN-β) was examined in an experimental-autoimmune-encephalomyelitis (EAE) model of MS. Moreover, the impact of etomoxir and IFN-β on recognition of brain proteins in serum from EAE rats was examined with the purpose of identifying the autoantibody reactivities involved in MS. Animals treated with etomoxir on day 1 exhibited a statistically significantly lower disease score than animals treated with IFN-β (on day 1 or 5) or placebo. Etomoxir treatment on day 5 resulted in a significantly lower disease score than IFN-β treatment on day 1. After disease induction antibodies was induced to a broad pallet of antigens in the brain. Surprisingly, by blocking CPT1 and therewith lipid metabolism several alterations in the antibody response was observed suggesting that autoantibodies play a role in the EAE animal model.
Collapse
Affiliation(s)
| | | | | | - Gopana Gopalasingam
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Wanda Niganze
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
43
|
Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ 2018; 25:735-748. [PMID: 29317762 DOI: 10.1038/s41418-017-0013-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
Cellular senescence is a fundamental biological process that has profound implications in cancer development and therapeutics, but the underlying mechanisms remain elusive. Here we show that carnitine palmitoyltransferase 1C (CPT1C), an enzyme that catalyzes carnitinylation of fatty acids for transport into mitochondria for β-oxidation, plays a major role in the regulation of cancer cell senescence through mitochondria-associated metabolic reprograming. Metabolomics analysis suggested alterations in mitochondria activity, as revealed by the marked decrease in acylcarnitines in senescent human pancreatic carcinoma PANC-1 cells, indicating low CPT1C activity. Direct analyses of mRNA and protein show that CPT1C is significantly reduced in senescent cells. Furthermore, abnormal mitochondrial function was observed in senescent PANC-1 cells, leading to lower cell survival under metabolic stress and suppressed tumorigenesis in a mouse xenograft model. Knock-down of CPT1C in PANC-1 cells induced mitochondrial dysfunction, caused senescence-like growth suppression and cellular senescence, suppressed cell survival under metabolic stress, and inhibited tumorigenesis in vivo. Further, CPT1C knock-down suppressed xenograft tumor growth in situ. Silencing of CPT1C in five other tumor cell lines also caused cellular senescence. On the contrary, gain-of-function of CPT1C reversed PANC-1 cell senescence and enhanced mitochondrial function. This study identifies CPT1C as a novel biomarker and key regulator of cancer cell senescence through mitochondria-associated metabolic reprograming, and suggests that inhibition of CPT1C may represent a new therapeutic strategy for cancer treatment through induction of tumor senescence.
Collapse
|
44
|
Blocking of carnitine palmitoyl transferase 1 potently reduces stress-induced depression in rat highlighting a pivotal role of lipid metabolism. Sci Rep 2017; 7:2158. [PMID: 28526869 PMCID: PMC5438386 DOI: 10.1038/s41598-017-02343-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder is a complex and common mental disease, for which the pathology has not been elucidated. The purpose of this study is to provide knowledge about the importance of mitochondrial dysfunction, dysregulated lipid metabolism and inflammation. Mitochondrial carnitine palmitoyl transferase 1a (CPT1a) is a key molecule involved in lipid metabolism and mutations in CPT1a causing reduced function is hypothesized to have a protective role in the development of depression. Moreover, CPT1a is found to be upregulated in suicide patients with history of depression. Therefore, we hypothesized that inhibition of CPT1a activity can be developed as an innovative treatment strategy for depression. Stress exposure combined with different pharmacological treatment regimens; Etomoxir, CPT1 blocker, and Escitalopram, a favoured antidepressant drug, was applied in state-of-the-art chronic mild stress model. Etomoxir treatment induced statistical significant reduction of anhedonic behavior compared to vehicle treatment (p < 0.0001) and reversed depression-like phenotype in 90% of the rats (p = 0.0007), whereas Escitalopram only proved 57% efficacy. Moreover, Etomoxir revealed downregulation of interferon-γ, interleukin-17α and tumor necrosis factor-α. This indicate that alteration in metabolism is pivotal in the pathogenesis of depression, since CPT1 blockage is highly efficient in treating anhedonia and inflammation, thereby opening up for a novel class of antidepressant medication.
Collapse
|
45
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
46
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
47
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|