1
|
Corsini A, Perticarini L, Palermi S, Bettinsoli P, Marchini A. Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the "10 Billion Platelet Dose" in Optimizing Therapeutic Outcomes-A Narrative Review. J Clin Med 2025; 14:2714. [PMID: 40283544 PMCID: PMC12027823 DOI: 10.3390/jcm14082714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Platelet-rich plasma (PRP) therapy is increasingly recognized as a promising treatment for musculoskeletal disorders, including osteoarthritis (OA), tendinopathy, and muscle injuries. This narrative review synthesizes the current literature to evaluate the efficacy of PRP, with a focus on platelet dosing strategies, leukocyte composition, and preparation protocols. Evidence suggests that optimal therapeutic outcomes are achieved when platelet doses exceed 3.5 billion per injection, with cumulative doses of 10-12 billion across multiple treatments. In intra-articular applications, leukocyte-poor PRP (LP-PRP), characterized by reduced neutrophil content, demonstrates superior efficacy compared to leukocyte-rich PRP (LR-PRP). However, its effectiveness in tendon and muscle regeneration remains a subject of debate. Preliminary data suggest that the inclusion of peripheral blood mononuclear cells (PBMNCs) may enhance PRP efficacy, though robust clinical trials are required to confirm these findings. Furthermore, red blood cell contamination and pre-activation have been identified as detrimental to PRP effectiveness, highlighting the need for standardized preparation protocols. This review emphasizes the importance of tailoring PRP formulations to patient-specific factors and musculoskeletal conditions. Future research should focus on refining PRP preparation techniques, identifying optimal leukocyte compositions, and establishing standardized guidelines to enhance clinical outcomes.
Collapse
Affiliation(s)
| | - Loris Perticarini
- Fondazione Poliambulanza Istituti Ospedalieri, 25125 Brescia, Italy;
| | - Stefano Palermi
- Department of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00187 Rome, Italy;
| | | | | |
Collapse
|
2
|
Everts PA, Podesta L, Lana JF, Shapiro G, Domingues RB, van Zundert A, Alexander RW. The Regenerative Marriage Between High-Density Platelet-Rich Plasma and Adipose Tissue. Int J Mol Sci 2025; 26:2154. [PMID: 40076775 PMCID: PMC11900530 DOI: 10.3390/ijms26052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The use of autologous biological preparations (ABPs) and their combinations fills the void in healthcare treatment options that exists between surgical procedures, like plastic reconstructive, cosmetic, and orthopedic surgeries; non-surgical musculoskeletal biological procedures; and current pharmaceutical treatments. ABPs, including high-density platelet-rich plasma (HD-PRP), bone marrow aspirate concentrates (BMACs), and adipose tissue preparations, with their unique stromal vascular fractions (SVFs), can play important roles in tissue regeneration and repair processes. They can be easily and safely prepared at the point of care. Healthcare professionals can employ ABPs to mimic the classical wound healing cascade, initiate the angiogenesis cascade, and induce tissue regenerative pathways, aiming to restore the integrity and function of damaged tissues. In this review, we will address combining autologous HD-PRP with adipose tissue, in particular the tissue stromal vascular fraction (t-SVF), as we believe that this biocellular combination demonstrates a synergistic effect, where the HD-PRP constituents enhance the regenerative potential of t-SVF and its adipose-derived mesenchymal stem cells (AD-MSCs) and pericytes, leading to improved functional tissue repair, tissue regeneration, and wound healing in variety of clinical applications. We will address some relevant platelet bio-physiological aspects, since these properties contribute to the synergistic effects of combining HD-PRP with t-SVF, promoting overall better outcomes in chronic inflammatory conditions, soft tissue repair, and tissue rejuvenation.
Collapse
Affiliation(s)
- Peter A. Everts
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - Luga Podesta
- Bluetail Medical Group and Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| | - José Fabio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - George Shapiro
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Rafael Barnabé Domingues
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - Andre van Zundert
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic and Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative Medicine and Wound Healing, Hamilton, MT 5998840, USA;
- Department of Surgery and Maxillofacial Surgery, University of Washington, Seattle, WA 988104, USA
| |
Collapse
|
3
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
4
|
Shome S, Kodieswaran M, Dadheech R, Chevella M, Sensharma S, Awasthi S, Bandyopadhyay A, Mandal BB. Recent advances in platelet-rich plasma and its derivatives: therapeutic agents for tissue engineering and regenerative medicine. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:012004. [PMID: 39655847 DOI: 10.1088/2516-1091/ad1338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2024]
Abstract
Platelet rich plasma (PRP) is a suspension of bioactive factors and chemokine enriched plasma. Platelets are a distinctive source of membrane bound and soluble proteins that are released upon their activation. The higher count of platelets renders PRP with an array of tissue regenerative abilities. PRP can be employed in the form of platelet containing plasma, platelet lysate plasma, or in the form of a pre-gelled fibrin matrix. PRP has been an essential alternative source of growth factors in the healing and regeneration of various tissues, such as musculoskeletal, cardiovascular, and dermal tissue, with additional applications in other tissues, such as hepatic and neural. A wide range of preparative and isolation strategies have been developed for various forms of PRP at laboratory and commercial scales. Concomitantly, PRP has found its applicability as an active component in several tissue regenerative approaches, including 3D printed/bioprinted constructs, injectable hydrogels, and crosslinked scaffolds. This review focuses on the various forms of PRP and their preparation methods, the latest tissue engineering applications of PRP, and the various tissue-specific clinical trials and findings conducted using PRP. We have further discussed the optimizations required in the methods of preparation, delivery, and long-term storage of PRP. Therefore, this review seeks to benefit the scope of research on PRP-based therapeutic agents in tissue engineering by providing comprehensive insights into the widespread application. We envisage PRP could be instrumental in future patient-specific tissue engineering applications in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sayanti Shome
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - M Kodieswaran
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rajat Dadheech
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Maheshwari Chevella
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sreemoyee Sensharma
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sanu Awasthi
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Cl K, Jeyaraman M, Jeyaraman N, Ramasubramanian S, Khanna M, Yadav S. Antimicrobial Effects of Platelet-Rich Plasma and Platelet-Rich Fibrin: A Scoping Review. Cureus 2023; 15:e51360. [PMID: 38292974 PMCID: PMC10825076 DOI: 10.7759/cureus.51360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Platelet-rich plasma (PRP), derived from the centrifugation and subsequent separation of whole blood, results in an unusually high concentration of platelets. A newer form of platelet concentrate, platelet-rich fibrin (PRF), has also been developed. There has been significant research into the therapeutic effects of PRP, particularly in enhancing wound healing and preventing infections in surgical wounds. This scoping review aims to thoroughly evaluate preclinical and clinical evidence regarding the antimicrobial effects of PRP and PRF. In conducting this review, 612 records were examined, and 36 articles were selected for inclusion. The studies reviewed include preclinical research, such as in-vitro and in-vivo studies, and clinical trials involving human participants. The current clinical evidence suggests a notable trend towards the antimicrobial capabilities of PRP and PRF, underscoring their potential benefits in treating wounds. The application of PRP and PRF in wound management shows encouraging outcomes, but further investigation is needed to optimize their use as antimicrobial agents. Additional research, particularly randomized controlled trials, is essential to substantiate their antimicrobial effectiveness in specific diseases and types of wounds, considering their potential impact on clinical results.
Collapse
Affiliation(s)
- Karan Cl
- Orthopaedics, Sanjay Gandhi Institute of Trauma & Orthopaedics, Bengaluru, IND
| | - Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | | | - Manish Khanna
- Orthopaedics, Autonomous State Medical College, Ayodhya, IND
| | - Sankalp Yadav
- Internal Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
6
|
Shehab AW, Eleshra A, Fouda E, Elwakeel H, Farag M. Randomized prospective comparative study of platelet-rich plasma versus conventional compression in treatment of post-phlebitic venous ulcer. Vascular 2023; 31:1222-1229. [PMID: 35603798 DOI: 10.1177/17085381221104629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVES to assess the safety and efficacy of platelet-rich plasma (PRP) as adjunctive to compression therapy for post-phlebitic venous ulcers. METHODS This is a single-center randomized controlled trial on patients with persistent chronic post-phlebitic lower limb venous ulcers from March 2019 to March 2020. Patients were randomly allocated to one of two equal cohort groups. Patients group in which patients underwent combined PRP with compression therapy versus control group in which patients underwent placebo+ compression therapy alone. The primary endpoint of the study was the improvement in ulcer topographic measurement. Secondary endpoints included ulcer healing parameters, possible healing factors, reduction in pain score (VAS), and the achievement of complete healing. RESULTS Forty patients were available equally for randomization and analysis in both groups. The median number of PRP applications for every patient in the patient group was 6 (ranging from 3 to 6). There was a significant decline in the median length, width, and depth of ulcers in the patients group versus control group. Consequently, there was a significant decline of the median ulcer area, in the patient group versus control group (4 (3-9) cm2 vs. 10 (6-14) cm2, p = .036). Also, the median volume of the ulcers showed a significant decline in the patient group versus control group (1 (.7-3) cm3 vs 3 (2-6) cm3, p = .008). Complete healing was achieved in 45% of patient group. There was a significant decline in pain scores at 3- and 6 months from the therapy starting point in both groups (patient group: pre-VAS = 6.5 vs. post(3 months)-VAS = 1 vs. post(6 months)-VAS = 0.5) and (control group: pre-VAS = 6.4 vs. post(3 months)-VAS = 4.5 vs. post(6 months)-VAS = 2.2), (p < .0001 for each). On the other hand, the decline in pain scores between both groups was statistically significant in favor of the patient group, (post (3 months); PRP-VAS = 1 vs. control-VAS = 4.5, and post(6 months); PRP-VAS = 0.5 vs. control-VAS = 2.2), (p < .0001). CONCLUSION Platelet-rich plasma as an adjunct to compression therapy for chronic post-phlebitic venous ulcers is safe and effective as regards the ulcer healing and improvement of pain score. PRP may be useful adjunct in treatment of post-phlebitic venous ulcer. However, larger trials are warranted.
Collapse
Affiliation(s)
- Abdelrahman W Shehab
- Department of General Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Eleshra
- Department of Vascular Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elyamani Fouda
- Department of General Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hossam Elwakeel
- Department of Vascular Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Farag
- Department of Vascular Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Ding SL, Ji LF, Zhang MZ, Xiong W, Sun CY, Han ZY, Wang C. Safety and efficacy of intra-articular injection of platelet-rich plasma for the treatment of ankle osteoarthritis: a systematic review and meta-analysis. INTERNATIONAL ORTHOPAEDICS 2023; 47:1963-1974. [PMID: 36943456 DOI: 10.1007/s00264-023-05773-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE To evaluate the safety and efficacy of platelet-rich plasma (PRP) intra-articular injective treatments for ankle osteoarthritis (OA). METHODS A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in PubMed, Scopus, Embase, Google Scholar, and the Cochrane library until May 2022. Both randomized and non-randomized studies were included with the assessment of the risk of bias. We recorded the participant's age, gender, type of PRP, injection volume, the kit used, and activating agent. We subsequently assessed the short-term and long-term efficacy of PRP using the functional scores and visual analog scale (VAS). RESULTS We included four studies with a total of 127 patients, with a mean age of 56.1 years. 47.2% were male (60/127), according to eligibility criteria. There were three cohort studies and one randomized controlled trial (RCT) study, and no study reported severe adverse events. All included studies used the Leukocyte-poor PRP. Short-term follow-up results suggested significant improvement of the American Orthopaedic Foot and Ankle Society (AOFAS) score in the PRP injection group compared to the control group (n = 87 patients; MD: 6.94 [95% CI: 3.59, 10.29]; P < 0.01). Consistently, there was a statistical difference in AOFAS score between PRP injection and control groups in the final follow-up (≥ 6 months) (n = 87 patients; MD: 9.63 [95% CI: 6.31, 12.94]; P < 0.01). Furthermore, we found a significant reduction in VAS scores in the PRP groups at both the short-term follow-up (n = 59 patients; MD, - 1.90 [95% CI, - 2.54, - 1.26]; P < 0.01) and the ≥ six months follow-up (n = 79 patients; MD, - 3.07 [95% CI, - 5.08, - 1.05]; P < 0.01). The improvement of AOFAS and VAS scores at ≥ six months follow-up reached the minimal clinically important difference (MCID). Nevertheless, the treatment effect of AOFAS and VAS scores offered by PRP at short-term follow-up did not exceed the MCID. Substantial heterogeneity was reported at the ≥ six months follow-up in VAS scores (I2: 93%, P < 0.01). CONCLUSION This meta-analysis supports the safety of PRP intra-articular injection for ankle OA. The improvements of AOFAS and VAS scores in the PRP group at short-term follow-up do not exceed the MCID to be clinically significant. PRP injection provides significant improvement of AOFAS score and reduced pain at ≥ six months follow-up. The efficacy of PRP should be interpreted with caution regarding the high heterogeneity and the scarcity of available literature, which urges large-scale RCTs with longer follow-up to confirm the potential efficacy of PRP injection for ankle OA.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Lin-Feng Ji
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China.
| | - Wei Xiong
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Cheng-Yi Sun
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Ze-Yu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Chao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| |
Collapse
|
8
|
Todeschi J, Dannhoff G, Coca AH, Timbolschi DI, Proust F, Lefebvre F, Lelievre V, Poisbeau P, Vallat L, Salvat E, Bohren Y. Effect of an intraoperative periradicular application of platelet-rich fibrin (PRF) on residual post-surgical neuropathic pain after disc herniation surgery: study protocol for NeuroPRF, a randomized controlled trial. Trials 2023; 24:418. [PMID: 37337269 DOI: 10.1186/s13063-023-07420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/27/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The prevalence of post-surgical lumbar neuropathic radiculopathy is approximately 30%. Poor response to the recommended treatments for neuropathic pain, namely antidepressants and/or gabapentinoids, requires the development of new techniques to prevent chronic pain. One such well-tolerated technique is the administration of autologous plasma enriched in platelets and fibrin (PRF). This approach is largely used in regenerative medicine owing to the anti-inflammatory and analgesic properties of PRF. It could also be an interesting adjuvant to surgery, as it reduces neurogenic inflammation and promotes nerve recovery, thereby reducing the incidence of residual postoperative chronic pain. The aim of the present study is to evaluate the benefit of periradicular intraoperative application of PRF on the residual postsurgical neuropathic pain after disc herniation surgery. METHODS A randomized, prospective, interventional, controlled, single-blind study with evaluation by a blind outcome assessor will be performed in Strasbourg University Hospital. We will compare a control group undergoing conventional surgery to an experimental group undergoing surgery and periradicular administration of PRF (30 patients in each arm). The primary outcome is the intensity of postoperative neuropathic radicular pain, measured by a visual analog scale (VAS) at 6 months post-surgery. The secondary outcomes are the characteristics of neuropathic pain (NPSI), the quality of life (SF-12 and PGIC), the presence of anxiety/depression symptoms (HAD), and the consumption of analgesics. We will also carry out transcriptomic analysis of a panel of pro- and anti-inflammatory cytokines in blood samples, before surgery and at 6 months follow-up. These gene expression results will be correlated with clinical data, in particular, with the apparition of postoperative neuropathic pain. DISCUSSION This study is the first randomized controlled trial to assess the efficacy of PRF in the prevention of neuropathic pain following surgery for herniated disc. This study addresses not only a clinical question but will also provide information on the physiopathological mechanisms of neuropathic pain. TRIAL REGISTRATION This study is registered at ClinicalTrials.gov: NCT05196503 , February 24, 2022.
Collapse
Affiliation(s)
- Julien Todeschi
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Dannhoff
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Andres Hugo Coca
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Ionut Timbolschi
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France
| | - François Proust
- Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - François Lefebvre
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Laurent Vallat
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Département de Génétique Moléculaire Des Cancers, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre d'Evaluation Et Traitement de La Douleur (CETD), Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200, Strasbourg, France.
| |
Collapse
|
9
|
Horgos MS, Pop OL, Sandor M, Borza IL, Negrean RA, Cote A, Neamtu AA, Grierosu C, Sachelarie L, Huniadi A. Platelets Rich Plasma (PRP) Procedure in the Healing of Atonic Wounds. J Clin Med 2023; 12:3890. [PMID: 37373585 DOI: 10.3390/jcm12123890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Patients suffering from chronic wounds report physical, mental, and social consequences due to their existence and care. There is a global need for tissue repair strategies and, in our case, for chronic wound healing. PRP therapy is based on the fact that platelet-derived growth factors (PGF) support the three phases of the wound healing and repair cascade (inflammation, proliferation, and remodeling); (2) Methods: A comparative study was carried out on two groups of patients with atonic wounds totaling a total of 80 cases as follows: a study group in which the PRP procedure was applied and a control group in which the biological product was not injected. The study was carried out in the surgery clinic of the Clinical Hospital C.F. Oradea City; (3) Results: A much faster healing was achieved in the case of patients who benefited from the platelet-rich plasma injection therapy compared to the group of patients in whom this therapy was not used. Three weeks after the plasma injection, a considerable reduction of the wound was evident, with some of the patients presenting with a closed wound; (4) Conclusions: The effect of PRP on the healing of chronic wounds is promising in most cases. A positive effect was also highlighted in terms of reducing treatment costs by considerably reducing the materials used as well as the number of hospitalizations for the same pathology.
Collapse
Affiliation(s)
- Maur Sebastian Horgos
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| | - Ovidiu Laurean Pop
- Department of Pathology, County Clinical Emergency Hospital, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410087 Oradea, Romania
| | - Mircea Sandor
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| | - Ioan Lucian Borza
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| | - Rodica Anamaria Negrean
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| | - Adrian Cote
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| | - Andreea-Adriana Neamtu
- Department of Surgical Disciplines, Developmental Biology Biochemistry & Molecular Biology Area Studies Chemistry Communication, Faculty of Medicine and Pharmacy & Dental Medicine, Vasile Goldis Western University, 310045 Arad, Romania
| | - Carmen Grierosu
- Department of Preclinical Disciplines, Faculty of Medicine, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| | - Liliana Sachelarie
- Department of Preclinical Disciplines, Faculty of Medicine, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| | - Anca Huniadi
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square No. 10, 410073 Oradea, Romania
| |
Collapse
|
10
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
11
|
Zhou J, Scott C, Miab ZR, Lehmann C. Current approaches for the treatment of ketamine-induced cystitis. Neurourol Urodyn 2023; 42:680-689. [PMID: 36780131 DOI: 10.1002/nau.25148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023]
Abstract
AIMS Ketamine is a dissociative anesthetic, historically used in a clinical setting for the induction and maintenance of anesthesia. Ketamine usage can produce undesirable psychological manifestations including hallucinations and long-term psychotomimetic effects. As a results of its fast onset and short period of action, ketamine is widely used as a recreational drug. Chronic abuse of ketamine can lead to significant urinary system complications including ketamine-induced cystitis (KIC). Common side effects of chronic ketamine abuse are urinary pain and discomfort and decreased bladder compliance and voiding pressure. Cessation of ketamine use is associated with improvement of symptoms however the exact pathophysiology of KIC remains unknown, complicating the ability of clinicians to treat this condition. METHOD A literature search was performed using the National Center for Biotechnology Information (NCBI) Pubmed database up to May 2021. RESULTS Animal models of KIC are necessary to further our understanding of KIC pathophysiology and explore potential treatment options. In all cases, cessation of ketamine use is the first line of treatment and is most effective in managing KIC. In addition to cessation, treatment plans must be tailored to the individual, based on the severity of symptoms and disease progression, and include options such as: oral anti-inflammatories, intravesical treatment and in the most severe cases, surgical intervention. CONCLUSION KIC is a painful condition that currently lacks standardized treatment methods. Both animal models of KIC and clinical trials to further elucidate the mechanism of KIC pathophysiology must be explored to create targeted treatment plans.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesia Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cassidy Scott
- Department of Anesthesia Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziba Rovei Miab
- Department of Anesthesia Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Anesthesia Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Jiang J, Cong X, Alageel S, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. In Vitro Comparison of Lymphangiogenic Potential of Hypoxia Preconditioned Serum (HPS) and Platelet-Rich Plasma (PRP). Int J Mol Sci 2023; 24:ijms24031961. [PMID: 36768283 PMCID: PMC9916704 DOI: 10.3390/ijms24031961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Strategies for therapeutic lymphangiogenesis are gradually directed toward the use of growth factor preparations. In particular, blood-derived growth factor products, including Hypoxia Preconditioned Serum (HPS) and Platelet-rich Plasma (PRP), are both clinically employed for accelerating tissue repair and have received considerable attention in the field of regenerative medicine research. In this study, a comparative analysis of HPS and PRP was conducted to explore their lymphangiogenic potential. We found higher pro-lymphangiogenic growth factor concentrations of VEGF-C, PDGF-BB, and bFGF in HPS in comparison to normal serum (NS) and PRP. The proliferation and migration of lymphatic endothelial cells (LECs) were promoted considerably with both HPS and PRP, but the strongest effect was achieved with HPS-40% dilution. Tube formation of LECs showed the highest number of tubes, branching points, greater tube length, and cell-covered area with HPS-10%. Finally, the effects were double-validated using an ex vivo lymphatic ring assay, in which the highest number of sprouts and the greatest sprout length were achieved with HPS-10%. Our findings demonstrate the superior lymphangiogenic potential of a new generation blood-derived secretome obtained by hypoxic preconditioning of peripheral blood cells-a method that offers a novel alternative to PRP.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
13
|
Everts PA, Mazzola T, Mautner K, Randelli PS, Podesta L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022; 10:biomedicines10112933. [PMID: 36428501 PMCID: PMC9687216 DOI: 10.3390/biomedicines10112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient's own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns.
Collapse
Affiliation(s)
- Peter A. Everts
- Education & Research Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-961-6457
| | - Timothy Mazzola
- Breakthrough Regenerative Orthopedics, Boulder, CO 80305, USA
| | - Kenneth Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, GA 30329, USA
| | - Pietro S. Randelli
- Instituto Orthopedico Gaetano Pini, Milan University, 20122 Milan, Italy
| | | |
Collapse
|
14
|
Basic Science of Autologous Orthobiologics Part 1. Platelet-Rich Plasma. Phys Med Rehabil Clin N Am 2022; 34:1-23. [DOI: 10.1016/j.pmr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Galán V, Iñigo-Dendariarena I, Galán I, Prado R, Padilla S, Anitua E. The Effectiveness of Plasma Rich in Growth Factors (PRGF) in the Treatment of Nerve Compression Syndromes of the Upper Extremity: A Retrospective Observational Clinical Study. J Clin Med 2022; 11:jcm11164789. [PMID: 36013028 PMCID: PMC9409748 DOI: 10.3390/jcm11164789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Nerve compression syndromes of the upper extremity are a common cause of neuropathic pain and functional impairment. Recently, platelet-rich plasma (PRP) infiltrations have emerged as an effective biological approach to the treatment of this type of injury. The objectives of this retrospective observational study were to assess clinical improvement in patients with median and ulnar nerve entrapment syndrome after undergoing biologically-assisted nerve release surgery with plasma-rich-in-growth-factors (PRGF) technology. Methods: Participants (n = 39) with moderate-to-severe nerve compression syndrome of the upper limb diagnosed by both electromyography and clinical examination, and who were treated with PRGF, were identified from the center’s medical records. The evaluation was based on patient-reported outcomes. Pre- and post-treatment differences in the Visual analog scale (VAS), the Boston carpal tunnel questionnaire (BCTQ), and the Quick-DASH score were assessed. Results: Three study groups were conducted: patients with carpal tunnel syndrome (n = 16), with recurrent carpal tunnel syndrome (n = 8), and with ulnar nerve entrapment (n = 15). The median follow-up was 12 months (interquartile range (IQR), 9−16). In comparison to pre-treatment values, all three study groups obtained statistically significant improvements for the three analyzed scales at the end of the follow-up, with p < 0.001 for all scales in the carpal tunnel syndrome and ulnar nerve entrapment groups and p < 0.01 for all scales in the recurrent carpal tunnel syndrome group. There were no serious adverse effects in the analyzed patients. Conclusion: PRGF-assisted open surgical nerve release treatment (intraneural and perineural liquid PRGF infiltrations and nerve wrapping with PRGF membrane) exerts long-term beneficial effects on pain reduction and functional improvement in the nerve and nerve−muscle unit in patients with upper extremity compression syndromes.
Collapse
Affiliation(s)
- Víctor Galán
- Hand, Wrist and Microsurgery Unit, Clínica Indautxu, 48010 Bilbao, Spain
- Correspondence:
| | | | - Iñigo Galán
- School of Medicine, European University, 28670 Madrid, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| | - Sabino Padilla
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
| |
Collapse
|
16
|
Leme KC, Neri GM, Biscaro GG, Bulgareli AA, Duran N, Parisi MCR, Luzo ÂCM. Full Diabetic Foot Ulcer Healing and Pain Relief Based on Platelet-Rich-Plasma gel Formulation Treatment and the Involved Pathways. INT J LOW EXTR WOUND 2022:15347346221109758. [PMID: 35786036 DOI: 10.1177/15347346221109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetic foot ulcer is a severe Diabetic Mellitus-associated complication. It is induced by poor glycemic control, which leads to peripheral neuropathy and vascular diseases. Platelet-rich plasma could be beneficial for healing processes due to its active biomolecules that promotes immunomodulation, angiogenesis, cell proliferation and analgesia.
Collapse
Affiliation(s)
- Krissia Caroline Leme
- Transfusion Medicine Service, Stem Cell Processing Laboratory, Umbilical Cord Blood Bank, Haematology Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Martins Neri
- Transfusion Medicine Service, Stem Cell Processing Laboratory, Umbilical Cord Blood Bank, Haematology Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriel Gaspar Biscaro
- Transfusion Medicine Service, Stem Cell Processing Laboratory, Umbilical Cord Blood Bank, Haematology Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andreia Afaz Bulgareli
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, SP, Brazil
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), 425753Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Ângela Cristina Malheiros Luzo
- Transfusion Medicine Service, Stem Cell Processing Laboratory, Umbilical Cord Blood Bank, Haematology Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
17
|
Chueh KS, Huang KH, Lu JH, Juan TJ, Chuang SM, Lin RJ, Lee YC, Long CY, Shen MC, Sun TW, Juan YS. Therapeutic Effect of Platelet-Rich Plasma Improves Bladder Overactivity in the Pathogenesis of Ketamine-Induced Ulcerative Cystitis in a Rat Model. Int J Mol Sci 2022; 23:ijms23105771. [PMID: 35628581 PMCID: PMC9147926 DOI: 10.3390/ijms23105771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
The present study attempted to elucidate whether intravesical instillation of platelet-rich plasma (PRP) could decrease bladder inflammation and ameliorate bladder hyperactivity in ketamine ulcerative cystitis (KIC) rat model. Female Sprague Dawley (S-D) rats were randomly divided into control group, ketamine-treated group, ketamine with PRP treated group, and ketamine with platelet-poor plasma (PPP) treated group. Cystometry and micturition frequency/volume studies were performed to investigate bladder function. The morphological change of bladder was investigated by Mason’s trichrome staining. Western blotting analysis were carried out to examine the protein expressions of inflammation, urothelial differentiation, proliferation, urothelial barrier function, angiogenesis and neurogenesis related proteins. The results revealed that treatment with ketamine significantly deteriorated bladder capacity, decreased voiding function and enhanced bladder overactivity. These pathological damage and interstitial fibrosis may via NF-κB/COX-2 signaling pathways and muscarinic receptor overexpression. PRP treatment decreased inflammatory fibrotic biosynthesis, attenuated oxidative stress, promoted urothelial cell regeneration, and enhanced angiogenesis and neurogenesis, thereafter recovered bladder dysfunction and ameliorate the bladder hyperactivity in KIC rat model. These findings suggested that the PRP therapy may offer new treatment options for those clinical KIC patients.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (C.-Y.L.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Kuan-Hua Huang
- Divisions of Urological Oncology, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Department of Medicine, National Defense Medical College, Taipei 11490, Taiwan;
| | - Shu-Mien Chuang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Rong-Jyh Lin
- Department of Parasitology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Yu Long
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (C.-Y.L.)
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Chen Shen
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Ting-Wei Sun
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (C.-Y.L.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (S.-M.C.); (M.-C.S.); (T.-W.S.)
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
18
|
Lai CY, Li TY, Lam KHS, Chou YC, Hueng DY, Chen LC, Wu YT. The long-term analgesic effectiveness of platelet-rich plasma injection for carpal tunnel syndrome: a cross-sectional cohort study. PAIN MEDICINE 2022; 23:1249-1258. [PMID: 35043941 DOI: 10.1093/pm/pnac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Interest in perineural platelet-rich-plasma (PRP) injections for the treatment of carpal tunnel syndrome (CTS) has increased in recent years. However, evidence supporting the long-term effectiveness of PRP is lacking. Therefore, the aim of our cross-sectional cohort study was to investigate the long-term results of PRP injections for CTS. METHODS Eighty-one patients diagnosed with CTS of any grade who received a single PRP injection at least 2 years prior were enrolled. Through structured telephone interviews, all patients were asked of their post-injection outcomes compared to their pre-injection condition. Symptom relief ≥50%, compared to the pre-injection condition, was considered an effective outcome. Binary logistic regression was applied to analyze each baseline variable as a regressor for determining the prognostic outcome factors. RESULTS In total, 70% of patients reported positive outcomes ≥2 years post-injection. Shorter duration of symptoms before treatment (odds ratio: 0.991; 95% confidence interval [CI] 0.983-0.999; p = 0.023) and lower electrodiagnostic severity of CTS were the main prognostic factors for an effective outcome (mild grade vs. severe grade, odds ratio: 17.652; 95% CI 1.43-221.1; p = 0.025). Although there was a trend toward positive outcomes at longer follow-up durations (2-3 years vs. 3-4 years vs. 4-5 years), the difference was not statistically significant. CONCLUSION A single perineural PRP injection has a long-term analgesic effect on CTS, especially in mild-to-moderate cases.
Collapse
Affiliation(s)
- Chia-Ying Lai
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tsung-Ying Li
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - King Hei Stanley Lam
- The Hong Kong Institute of Musculoskeletal Medicine, Hong Kong.,Department of Family Medicine, The Chinese University of Hong Kong, Hong Kong.,Department of Family Medicine, The University of Hong Kong, Hong Kong.,Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Liang-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Research and Development, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
19
|
Sethi D, Martin KE, Shrotriya S, Brown BL. Systematic literature review evaluating evidence and mechanisms of action for platelet-rich plasma as an antibacterial agent. J Cardiothorac Surg 2021; 16:277. [PMID: 34583720 PMCID: PMC8480088 DOI: 10.1186/s13019-021-01652-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 12/09/2022] Open
Abstract
Platelet rich plasma or PRP is a supraphysiologic concentrate of platelets derived by centrifugation and separation of whole blood components. Along with platelets and plasma, PRP contains various cell types including white blood cells (WBC)/leukocytes, both granulocytes (neutrophils, basophils, eosinophils) and agranulocytes (monocytes, lymphocytes). Researchers and clinicians have explored the application of PRP in wound healing and prevention of surgical wound infections, such as deep sternal wounds. We conducted this systematic literature review to evaluate the preclinical and clinical evidence for the antibacterial effect of PRP and its potential mechanism of action. 526 records were identified for screening. 34 unique articles were identified to be included in this literature review for data summary. Overall, the quality of the clinical trials in this review is low, and collectively qualify as Oxford level C. Based on the available clinical data, there is a clear trend towards safety of autologous PRP and potential efficacy in deep sternal wound management. The preclinical and bench data is very compelling. The application of PRP in treatment of wounds or prevention of infection with PRP is promising but there is a need for foundational bench and preclinical animal research to optimize PRP as an antibacterial agent, and to provide data to aid in the design and conduct of well-designed RCTs with adequate power to confirm antimicrobial efficacy of PRP in specific disease states and wound types.
Collapse
Affiliation(s)
- Dalip Sethi
- Terumo Blood and Cell Technologies, Inc., 10810 West Collins Avenue, Lakewood, CO, 80215, USA.
| | - Kimberly E Martin
- Boulder Clinical Science, 302 Urban Prairie St., Fort Collins, CO, 80524, USA
| | | | - Bethany L Brown
- American Red Cross, Biomedical Services, Holland Laboratory, Rockville, MD, 20855, USA
| |
Collapse
|
20
|
Tatsis D, Vasalou V, Kotidis E, Anestiadou E, Grivas I, Cheva A, Koliakos G, Venetis G, Pramateftakis MG, Ouzounidis N, Angelopoulos S. The Combined Use of Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells Promotes Healing. A Review of Experimental Models and Future Perspectives. Biomolecules 2021; 11:1403. [PMID: 34680036 PMCID: PMC8533225 DOI: 10.3390/biom11101403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Wound healing and tissue regeneration are a field of clinical medicine presenting high research interest, since various local and systematic factors can inhibit these processes and lead to an inferior result. New methods of healing enhancement constantly arise, which, however, require experimental validation before their establishment in everyday practice. Platelet-rich plasma (PRP) is a well-known autologous factor that promotes tissue healing in various surgical defects. PRP derives from the centrifugation of peripheral blood and has a high concentration of growth factors that promote healing. Recently, the use of adipose-derived mesenchymal stem cells (ADMSCs) has been thoroughly investigated as a form of wound healing enhancement. ADMSCs are autologous stem cells deriving from fat tissue, with a capability of differentiation in specific cells, depending on the micro-environment that they are exposed to. The aim of the present comprehensive review is to record the experimental studies that have been published and investigate the synergistic use of PRP and ADMSC in animal models. The technical aspects of experimentations, as well as the major results of each study, are discussed. In addition, the limited clinical studies including humans are also reported. Future perspectives are discussed, along with the limitations of current studies on the long-term follow up needed on efficacy and safety.
Collapse
Affiliation(s)
- Dimitris Tatsis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
- Oral and Maxillofacial Surgery Department, School of Dentistry, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Varvara Vasalou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| | - Efstathios Kotidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| | - Elissavet Anestiadou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgios Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Gregory Venetis
- Oral and Maxillofacial Surgery Department, School of Dentistry, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Manousos-George Pramateftakis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| | - Nikolaos Ouzounidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| | - Stamatis Angelopoulos
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (V.V.); (E.K.); (E.A.); (M.-G.P.); (N.O.); (S.A.)
| |
Collapse
|
21
|
Brewer CF, Smith A, Miranda BH. The use of platelet-rich products for skin graft donor site healing: a systematic review and meta-analysis. J Plast Surg Hand Surg 2021; 55:133-140. [PMID: 33190577 DOI: 10.1080/2000656x.2020.1846544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023]
Abstract
Split thickness skin grafting is a common reconstructive technique which carries unavoidable donor site morbidity. The aim of this systematic review and meta-analysis is to present the evidence for the use of platelet rich plasma as an adjunct to donor site wound healing. A comprehensive literature search was performed, according to PRISMA guidelines from inception to August 2020, for studies regarding platelet rich plasma and skin graft donor site healing. Animal studies, case series of less than three cases and studies reporting histological outcomes only were excluded. The literature search identified 114 articles. After applying the exclusion criteria, four randomised control trials and two case-control studies remained, incorporating a total of 218 wounds in 139 patients. Four out of six studies reported total healing times for donor site wounds. Pooled analysis showed a significant reduction in healing time when donor wounds were treated with PRP versus controls [MD 5.95, 95% CI 5.04-6.85, p < 0.001]. Of the five studies which reported pain at dressing change, four showed significantly reduced pain scores for the platelet rich plasma treated wounds versus control. There were no significant complications recorded in the treated wounds. The current evidence basis for platelet rich plasma in donor site healing is limited by heterogeneous methodology and reporting outcomes and low powered studies. Nevertheless, the preponderance of data supports its use for accelerating wound healing and reducing pain at dressing change. These preliminary findings need to be substantiated with higher powered randomised controlled trials with standardised PRP manufacture and reporting structures.
Collapse
Affiliation(s)
- Christopher F Brewer
- St Andrew's Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, UK
| | - Alexander Smith
- St Andrew's Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, UK
| | - Ben H Miranda
- St Andrew's Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, UK
| |
Collapse
|
22
|
Ruzafa N, Pereiro X, Fonollosa A, Araiz J, Acera A, Vecino E. Plasma Rich in Growth Factors (PRGF) Increases the Number of Retinal Müller Glia in Culture but Not the Survival of Retinal Neurons. Front Pharmacol 2021; 12:606275. [PMID: 33767620 PMCID: PMC7985077 DOI: 10.3389/fphar.2021.606275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
Plasma rich in growth factors (PRGF) is a subtype of platelet-rich plasma (PRP) that stimulates tissue regeneration and may promote neuronal survival. It has been employed in ophthalmology to achieve tissue repair in some retinal pathologies, although how PRGF acts in the retina is still poorly understood. As a part of the central nervous system, the retina has limited capacity for repair capacity following damage, and retinal insult can provoke the death of retinal ganglion cells (RGCs), potentially producing irreversible blindness. RGCs are in close contact with glial cells, such as Müller cells, that help maintain homeostasis in the retina. In this study, the aim was to determine whether PRGF can protect RGCs and whether it increases the number of Müller cells. Therefore, PRGF were tested on primary cell cultures of porcine RGCs and Müller cells, as well as on co-cultures of these two cell types. Moreover, the inflammatory component of PRGF was analyzed and the cytokines in the different PRGFs were quantified. In addition, we set out to determine if blocking the inflammatory components of PRGF alters its effect on the cells in culture. The presence of PRGF compromises RGC survival in pure cultures and in co-culture with Müller cells, but this effect was reversed by heat-inactivation of the PRGF. The detrimental effect of PRGF on RGCs could be in part due to the presence of cytokines and specifically, to the presence of pro-inflammatory cytokines that compromise their survival. However, other factors are likely to be present in the PRGF that have a deleterious effect on the RGCs since the exposure to antibodies against these cytokines were insufficient to protect RGCs. Moreover, PRGF promotes Müller cell survival. In conclusion, PRGF hinders the survival of RGCs in the presence or absence of Müller cells, yet it promotes Müller cell survival that could be the reason of retina healing observed in the in vivo treatments, with some cytokines possibly implicated. Although PRGF could stimulate tissue regeneration, further studies should be performed to evaluate the effect of PRGF on neurons and the implication of its potential inflammatory role in such processes.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| | - Alex Fonollosa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain.,Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Javier Araiz
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Biodonostia Health Research Institute, Donostia Hospital, San Sebastian, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| |
Collapse
|
23
|
Ruzafa N, Pereiro X, Fonollosa A, Araiz J, Acera A, Vecino E. The Effect of Plasma Rich in Growth Factors on Microglial Migration, Macroglial Gliosis and Proliferation, and Neuronal Survival. Front Pharmacol 2021; 12:606232. [PMID: 33716738 PMCID: PMC7953148 DOI: 10.3389/fphar.2021.606232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma rich in growth factors (PRGF) is a subtype of platelet-rich plasma that has being employed in the clinic due to its capacity to accelerate tissue regeneration. Autologous PRGF has been used in ophthalmology to repair a range of retinal pathologies with some efficiency. In the present study, we have explored the role of PRGF and its effect on microglial motility, as well as its possible pro-inflammatory effects. Organotypic cultures from adult pig retinas were used to test the effect of the PRGF obtained from human as well as pig blood. Microglial migration, as well as gliosis, proliferation and the survival of retinal ganglion cells (RGCs) were analyzed by immunohistochemistry. The cytokines present in these PRGFs were analyzed by multiplex ELISA. In addition, we set out to determine if blocking some of the inflammatory components of PRGF alter its effect on microglial migration. In organotypic cultures, PRGF induces microglial migration to the outer nuclear layers as a sign of inflammation. This phenomenon could be due to the presence of several cytokines in PRGF that were quantified here, such as the major pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Heterologous PRGF (human) and longer periods of cultured (3 days) induced more microglia migration than autologous porcine PRGF. Moreover, the migratory effect of microglia was partially mitigated by: 1) heat inactivation of the PRGF; 2) the presence of dexamethasone; or 3) anti-cytokine factors. Furthermore, PRGF seems not to affect gliosis, proliferation or RGC survival in organotypic cultures of adult porcine retinas. PRGF can trigger an inflammatory response as witnessed by the activation of microglial migration in the retina. This can be prevented by using autologous PRGF or if this is not possible due to autoimmune diseases, by mitigating its inflammatory effect. In addition, PRGF does not increase either the proliferation rate of microglial cells or the survival of neurons. We cannot discard the possible positive effect of microglial cells on retinal function. Further studies should be performed to warrant the use of PRGF on the nervous system.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Alex Fonollosa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
- Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Javier Araiz
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Biodonostia Health Research Institute, Donostia Hospital, San Sebastian, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| |
Collapse
|
24
|
Use of platelet concentrate gel in second-intention wound healing: a case report. J Med Case Rep 2021; 15:85. [PMID: 33597001 PMCID: PMC7890957 DOI: 10.1186/s13256-020-02649-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background Wound healing is a complex and dynamic process. Healing of acute and chronic wounds can be impaired by patient factors (that is, comorbidities) and/or wound factors (that is, infection). Regenerative medicine products, such as autologous/homologous platelet-rich plasma gel, may speed up the healing process. Autologous/homologous platelet-rich plasma is an advanced wound therapy used for hard-to-heal acute and chronic wounds. The cytokines and growth factors contained in platelet-rich plasma play a crucial role in the healing process. Case presentation A 61-year-old Caucasian male patient, suffering from mental retardation following meningitis, with a transplanted kidney due to prior renal impairment, and under immunosuppressant therapy, was submitted to aneurysmectomy of his proximal left forearm arteriovenous fistula. A few days later, the patient came to our attention with substantial blood loss from the surgical site. The wound presented no signs of healing, and after fistula reparation and considering persistent infection of the surgical site (by methicillin-resistant Staphylococcus aureus), surgeons decided for second-intention healing. To favor healing, 10 mL homologous platelet concentrate gel was sequentially applied. After each application, wound was covered with nonadherent antiseptic dressing. After only seven applications of homologous platelet concentrate gel, wound completely recovered and no amputation was necessary. Conclusions Topical application of homologous platelet-rich plasma gel in healing wound shows beneficial results in wound size reduction and induces granulation tissue formation. Platelet-rich plasma could be a safe and cost-effective treatment for managing the cutaneous wound healing process to shorten the recovery period and thereby improve patient quality of life.
Collapse
|
25
|
Steward EN, Patel H, Pandya H, Dewan H, Bhavsar B, Shah U, Dholakia K. Efficacy of Platelet-Rich Plasma and Concentrated Growth Factor in Treating Androgenetic Alopecia - A Retrospective Study. Ann Maxillofac Surg 2020; 10:409-416. [PMID: 33708587 PMCID: PMC7943983 DOI: 10.4103/ams.ams_154_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 06/22/2020] [Accepted: 10/03/2020] [Indexed: 11/12/2022] Open
Abstract
Introduction: Plasma derivatives have been practiced a lot in orthopedics, burns, and sport medicine. Microneedling (MN) with platelet-rich plasma (PRP) therapy has been proven to improve the micro-circulation and thus improve hair growth. The role of concentrated growth factor (CGF) for hair growth has not been mentioned anywhere in the literature for hair growth which we tried to prove in our article by comparing it with various other studies. Materials and Methods: This is a retrospective randomized study involving 20 male patients whose ages ranged from 21 years to 56 years. PRP was prepared using the dual-spin method and injected after activation; post-MN, CGF gel was applied topically. Four sessions were performed, and a follow-up was done after 6 months. Statistical analysis was done using the Statistical Package for the Social Sciences software version 21 for Windows (SPSS, IBM Corp, Armonk, NY, USA). Paired t-test was used for the various comparisons. Results: Hair loss reduced by the end of the first month. At the end of 6 months, postfirst session, microscopic examination showed statistically significant difference in the hair count compared to those during the baseline. Discussion: PRP having platelet-derived growth factor and vascular endothelial growth factor acts on stem cells in the follicles, stimulating the development of new follicles and promoting neovascularization. CGF helps stimulating cell proliferation and matrix remodeling due to numerous growth factors in a concentrated form. Thus, this therapy combined helps to boost the hair growth in a very significant way. Summary: This study provides the preliminary evidence of efficacy of PRP along with MN and CGF in treating androgenetic alopecia by promoting angiogenesis along with vascularization and promotes hair follicles to enter and extend the anagen phase. Most of the results obtained show improved results with this therapy. A larger case study for the same can further be done for a stronger recommendation of the use of CGF for hair growth therapy further.
Collapse
Affiliation(s)
- Enosh Nirmalkumar Steward
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Hiren Patel
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Haren Pandya
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Hitesh Dewan
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Bijal Bhavsar
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Urvi Shah
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Kartik Dholakia
- Department of Oral & Maxillofacial Surgery, Faculty of Dental Science, Dharmsinh Desai University, Nadiad, Gujarat, India
| |
Collapse
|
26
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 waitfor delay '0:0:5'-- wvzy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
27
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null-- rqgz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
28
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
29
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null,null,null-- tbwa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
30
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and sleep(5)-- larb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
31
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
32
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null-- wfik] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
33
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794;select dbms_pipe.receive_message(chr(114)||chr(122)||chr(104)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
34
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9425=(select 9425 from pg_sleep(5))-- untq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
35
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and sleep(5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
36
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9425=(select 9425 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
37
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
38
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null,null,null,null-- fsob] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
39
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null-- kwux] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
40
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null-- lozi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
41
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null-- krmy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
42
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
43
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null-- pkke] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
44
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9280=9280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
45
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794;select dbms_pipe.receive_message(chr(78)||chr(83)||chr(109)||chr(74),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
46
|
Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020; 21:ijms21207794. [PMID: 33096812 PMCID: PMC7589810 DOI: 10.3390/ijms21207794] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
Affiliation(s)
- Peter Everts
- Gulf Coast Biologics, Research and Science Division, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-848-9555
| | - Kentaro Onishi
- Department of PM&R and Orthopedic Surgery, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA;
| | - Prathap Jayaram
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA;
| | - José Fábio Lana
- The Bone and Cartilage Institute, Indaiatuba, Sao Paulo, Brazil;
| | - Kenneth Mautner
- Emory Sports Medicine and Primary Care Sports Medicine, Emory University, Atlanta, GA 30329, USA;
| |
Collapse
|
47
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
48
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
49
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9139=9139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
50
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 5095=5846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|