1
|
Manco C, Righi D, Locci S, Lucchese G, De Stefano N, Plantone D. A Systematic Review Focusing on the Link between Engineered Nanoparticles and Neurodegeneration. ACS Chem Neurosci 2025; 16:1420-1432. [PMID: 40178529 DOI: 10.1021/acschemneuro.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Engineered nanoparticles (ENPs) have widely revolutionized many fields, including medicine, technology, environmental science, and industry. However, with the wide use of ENPs in everyday life, concerns are increasingly being raised about their potential neurotoxic effects on the central nervous system (CNS), particularly in relation to neurodegeneration and neuroinflammation. The present systematic review focuses on reporting the current knowledge about the neurotoxic potential of ENPs, with particular attention to their mechanism of action in neuroinflammation and neurodegeneration. This PRISMA based systematic review encompassed studies from Pubmed, Embase, and Web of Science. Eligibility criteria included focusing on engineered NPs and their impacts on neuroinflammation, neurodegeneration, and neurotoxicity. Evidence shows that ENPs easily can cross the blood-brain barrier (BBB) inducing neuronal damage and neurotoxicity due to oxidative stress, inflammation, mitochondrial dysfunction, and cell death. Inflammation plays a crucial role in activating glial cells, such as microglia and astrocytes, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species (ROS). This increases the vulnerability of the brain to systemic inflammation. In conclusion, as ENP exposure continues to increase, understanding their long-term effects on the brain is fundamental to developing effective strategies to mitigate their impact on neuronal human health.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guglielmo Lucchese
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
- Department of Neurology, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Alaei M, Koushki K, Taebi K, Yousefi Taba M, Keshavarz Hedayati S, Keshavarz Shahbaz S. Metal nanoparticles in neuroinflammation: impact on microglial dynamics and CNS function. RSC Adv 2025; 15:5426-5451. [PMID: 39967886 PMCID: PMC11833603 DOI: 10.1039/d4ra07798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are crucial in maintaining brain homeostasis and responding to pathological changes. While they play protective roles, their activation can lead to neuroinflammation and the progression of neurodegenerative diseases. Metal nanoparticles (NPs), due to their unique ability to cross the blood-brain barrier (BBB), have emerged as promising agents for drug delivery to the CNS. In this way, we aim to review the dual role of metal-containing NPs, gold (AuNPs), silver (AgNPs), iron oxide (IONPs), zinc oxide (ZnONPs), cobalt (CoNPs), titanium dioxide (TiO2NPs), and silica (SiO2NPs) in modulating microglial activity. Some NPs promote anti-inflammatory effects, while others exacerbate neuroinflammation. We examine how these NPs influence microglial activation, focusing on their potential therapeutic benefits and risks. A deeper understanding of NP-microglia interactions is crucial for developing safe and efficient treatments for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, University of Texas Houston Health Science Center (UTHealth) Houston TX USA
| | - Kimia Taebi
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Mahdieh Yousefi Taba
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences Qazvin 34197-59811 Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| |
Collapse
|
3
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
4
|
Fernández-Bertólez N, Alba-González A, Touzani A, Ramos-Pan L, Méndez J, Reis AT, Quelle-Regaldie A, Sánchez L, Folgueira M, Laffon B, Valdiglesias V. Toxicity of zinc oxide nanoparticles: Cellular and behavioural effects. CHEMOSPHERE 2024; 363:142993. [PMID: 39097108 DOI: 10.1016/j.chemosphere.2024.142993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Due to their extensive use, the release of zinc oxide nanoparticles (ZnO NP) into the environment is increasing and may lead to unintended risk to both human health and ecosystems. Access of ZnO NP to the brain has been demonstrated, so their potential toxicity on the nervous system is a matter of particular concern. Although evaluation of ZnO NP toxicity has been reported in several previous studies, the specific effects on the nervous system are not completely understood and, particularly, effects on genetic material and on organism behaviour are poorly addressed. We evaluated the potential toxic effects of ZnO NP in vitro and in vivo, and the role of zinc ions (Zn2+) in these effects. In vitro, the ability of ZnO NP to be internalized by A172 glial cells was verified, and the cytotoxic and genotoxic effects of ZnO NP or the released Zn2+ ions were addressed by means of vital dye exclusion and comet assay, respectively. In vivo, behavioural alterations were evaluated in zebrafish embryos using a total locomotion assay. ZnO NP induced decreases in viability of A172 cells after 24 h of exposure and genetic damage after 3 and 24 h. The involvement of the Zn2+ ions released from the NP in genotoxicity was confirmed. ZnO NP exposure also resulted in decreased locomotor activity of zebrafish embryos, with a clear role of released Zn2+ ions in this effect. These findings support the toxic potential of ZnO NP showing, for the first time, genetic effects on glial cells and proving the intervention of Zn2+ ions.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía-CICA, Rúa As Carballeiras, 15071, A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Josefina Méndez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain; Translational Research for Neurological Diseases, Institut Imagine, INSERM UMR 1163, Université Paris Cité, F-75015, Paris, France
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía-CICA, Rúa As Carballeiras, 15071, A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain.
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| |
Collapse
|
5
|
Suthar JK, Vaidya A, Ravindran S. Size, Surface Properties, and Ion Release of Zinc Oxide Nanoparticles: Effects on Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition in Neuronal PC-12 Cells. Biol Trace Elem Res 2024; 202:2254-2271. [PMID: 37713055 DOI: 10.1007/s12011-023-03832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
The extensive applications of zinc oxide nanoparticles (ZnO NPs) have resulted in a substantial risk of human exposure. However, the knowledge of the toxicity of these NPs in the nervous system is still limited. A comparative analysis of ZnO NPs of various sizes and NPs of the same size, with and without surface coating, and the potential role of released zinc ions is yet to be thoroughly explored. As a result, we have studied the cellular toxicity of two different-sized ZnO NPs, ZnO-22 (22 nm) and ZnO-43 (43 nm), and NPs with similar size but with polyvinylpyrrolidone coating (ZnO-P, 45 nm). The findings from our study suggested a time-, size-, and surface coating-dependent cytotoxicity in PC-12 cells at a concentration ≥ 10 μg/ml. ZnO NP treatment significantly elevated reactive oxygen and reactive nitrogen species, thereby increasing oxidative stress. The exposure of ZnO-22 and ZnO-43 significantly upregulated the expression of monoamine oxidase-A and downregulated the α-synuclein gene expression associated with the dopaminergic system. The interaction of NPs enzymes in the nervous system is also hazardous. Therefore, the inhibition activity of acetylcholinesterase enzyme was also studied for its interaction with these NPs, and the results indicated a dose-dependent inhibition of enzyme activity. Particle size, coating, and cellular interactions modulate ZnO NP's cytotoxicity; smaller sizes enhance cellular uptake and reactivity, while coating reduces cytotoxicity by limiting direct cell contact and potentially mitigating oxidative stress. Furthermore, the study of released zinc ions from the NPs suggested no significant contribution to the observed cytotoxicity compared to the NPs.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India.
| |
Collapse
|
6
|
Wang Y, Song Y, Zhang L, Huang X. The paradoxical role of zinc on microglia. J Trace Elem Med Biol 2024; 83:127380. [PMID: 38171037 DOI: 10.1016/j.jtemb.2023.127380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Zinc is an essential trace element for humans, and its homeostasis is essential for the health of the central nervous system. Microglia, the resident immune cells in the central nervous system, play the roles of sustaining, nourishing, and immune surveillance. Microglia are sensitive to microenvironment changes and are easily activated to M1 phenotype to enhance disease progression or the M2 phenotype to improve peripheral nerves injury repair. Zinc is requisite for microglial activation, However, the cytotoxicity outcome of zinc against microglia, the activated microglia phenotype, and activated microglia function are ambiguous. Herein, we have reviewed the neurological function of zinc and microglia, particularly the ambiguous role of zinc on microglia. We also pay attention to the role of zinc homeostasis on microglial function within the central nervous system disease. Finally, we observe the relationship between zinc and microglia, attempting to design new therapeutic measures against major nervous system disorders.
Collapse
Affiliation(s)
- Yehong Wang
- Graduate Faculty, Xi'an Physical Education University, Xi'an 710068, PR China; Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China.
| | - Lingdang Zhang
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
7
|
Farag MR, Alagawany M, Alsulami LS, Di Cerbo A, Attia Y. Ameliorative effects of Dunaliella salina microalgae on nanoparticle (ZnO NPs)-induced toxicity in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121915-121928. [PMID: 37957498 DOI: 10.1007/s11356-023-30933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Dunaliella salina (D. salina) is a well-known microalga that contains considerable amounts of nutritious and medicinal bioactive components. This work studied the modulatory role of D. salina against zinc oxide nanoparticle (ZnO NPs)-induced neurotoxic effects in adult zebrafish. Fishes were subjected to 0.69 mg L-1 (1/5th 96-h LC50) for 4 weeks; then, fishes were supplemented with D. salina in the diet for 2 weeks at two levels (15 and 30%). Exposure to ZnO NPs induced a significant increase in the levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) while accompanied with downregulation of antioxidant genes in the brain of exposed fishes. Brain neurochemistry and enzyme activities were also altered following ZnO NP exposure. ZnO NPs significantly reduced the neurotransmitters and acetylcholinesterase (AchE) activity while increasing Alzheimer's disease-related proteins and inflammatory response via upregulation of tumor necrosis factor (TNF-α). Additionally, ZnO NPs increased the indices of brain's DNA oxidative damage, increasing brain tissue's metallothionein (MT) and zinc residues. ZnO NPs upregulated the transcription patterns of apoptosis-related genes (casp3 and p53). D. salina dietary co-supplementation with ZnO NPs alleviated the ZnO NPsZnO NP-induced neuro-oxidative damages by lowering the lipid, DNA damage, and inflammatory biomarkers. Besides, D. salina alleviating responses were linked with increasing the levels of the assessed antioxidants. Conclusively, D. salina dietary supplementation induced potential alleviating effects of the ZnO NP-induced neurotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Lafi S Alsulami
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Youssef Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Hamdi E, Muñiz-Gonzalez AB, Hidouri S, Bermejo AM, Sakly M, Venero C, Amara S. Prevention of neurotoxicity and cognitive impairment induced by zinc nanoparticles by oral administration of saffron extract. J Anim Physiol Anim Nutr (Berl) 2023; 107:1473-1494. [PMID: 37246965 DOI: 10.1111/jpn.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The accumulation of relatively higher dose of zinc oxide nanoparticles in brain was reported to produce neurotoxicity. Indeed, nanoparticles have a high ability to penetrate biological membranes and be uptaken by cells, which may cause cell disorders and physiological dysfunctions. The aim of the current study was to evaluate, whether oral administration of saffron extract, in rats, can protect from neurotoxicity and behavioural disturbances induced by chronic administration of ZnO-NPs. Daily oral administration of ZnO-NPs was performed for 21 consecutive days to induce oxidative stress-like situation. Then after the saffron extract was concomitantly administrated in several rat groups to overcome the nanotoxicological effect induced by ZnO-NPs. In the frontal cortex, the hippocampus and the cerebellum, ZnO-NPs induced a H2 O2 -oxydative stress-like effect reflected in reduced enzymatic activities of catalase, superoxide dismutase and glutathione S-transferase, and decreased acetylcholinesterase activity. In addition, increased levels of proinflammatory interleukins IL-6 and IL-1-⍺ occurred in the hippocampus, reveal the existence of brain inflammation. The concomitant administration of saffron extract to animals exposed to ZnO-NPs prevented the enhanced anxiety-related to the behaviour in the elevated plus-maze test, the open field test and preserved spatial learning abilities in the Morris water maze. Moreover, animals exposed to ZnO-NPs and saffron showed abnormal activity of several antioxidant enzymes as well as acetylcholinesterase activity, an effect that may underly the preserved anxiety-like behaviour and spatial learning abilities observed in these animals. Saffron extract has a potential beneficial therapeutic effect: antioxidant, anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Essia Hamdi
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana-Belén Muñiz-Gonzalez
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
| | - Slah Hidouri
- Department of Chemistry, Faculté des Sciences de Bizerte, Zarzouna, Tunisie
| | - Alberto M Bermejo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Salem Amara
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Afif, Faculty of Sciences and Humanities, Shaqra University, Sahqra, Saudi Arabia
| |
Collapse
|
9
|
Abstract
Primary brain cancer or brain cancer is the overgrowth of abnormal or malignant cells in the brain or its nearby tissues that form unwanted masses called brain tumors. People with malignant brain tumors suffer a lot, and the expected life span of the patients after diagnosis is often only around 14 months, even with the most vigorous therapies. The blood-brain barrier (BBB) is the main barrier in the body that restricts the entry of potential chemotherapeutic agents into the brain. The chances of treatment failure or low therapeutic effects are some significant drawbacks of conventional treatment methods. However, recent advancements in nanotechnology have generated hope in cancer treatment. Nanotechnology has shown a vital role starting from the early detection, diagnosis, and treatment of cancer. These tiny nanomaterials have great potential to deliver drugs across the BBB. Beyond just drug delivery, nanomaterials can be simulated to generate fluorescence to detect tumors. The current Review discusses in detail the challenges of brain cancer treatment and the application of nanotechnology to overcome those challenges. The success of chemotherapeutic treatment or the surgical removal of tumors requires proper imaging. Nanomaterials can provide imaging and therapeutic benefits for cancer. The application of nanomaterials in the diagnosis and treatment of brain cancer is discussed in detail by reviewing past studies.
Collapse
Affiliation(s)
- Yogita Ale
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
10
|
Valdiglesias V, Alba-González A, Fernández-Bertólez N, Touzani A, Ramos-Pan L, Reis AT, Moreda-Piñeiro J, Yáñez J, Laffon B, Folgueira M. Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos. Int J Mol Sci 2023; 24:12297. [PMID: 37569675 PMCID: PMC10418813 DOI: 10.3390/ijms241512297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects. Despite being among the most studied NPs from a toxicological point of view, much remains unknown about their ecotoxicological effects or how they may affect specific cell types, such as cells of the central nervous system. The main objective of this work was to investigate the effects of ZnO NPs on human glial cells and zebrafish embryo development and to explore the role of the released Zn2+ ions in these effects. The effects on cell viability on human A172 glial cells were assessed with an MTT assay and morphological analysis. The potential acute and developmental toxicity was assessed employing zebrafish (Danio rerio) embryos. To determine the role of Zn2+ ions in the in vitro and in vivo observed effects, we measured their release from ZnO NPs with flame atomic absorption spectrometry. Then, cells and zebrafish embryos were treated with a water-soluble salt (zinc sulfate) at concentrations that equal the number of Zn2+ ions released by the tested concentrations of ZnO NPs. Exposure to ZnO NPs induced morphological alterations and a significant decrease in cell viability depending on the concentration and duration of treatment, even after removing the overestimation due to NP interference. Although there were no signs of acute toxicity in zebrafish embryos, a decrease in hatching was detected after exposure to the highest ZnO NP concentrations tested. The ability of ZnO NPs to release Zn2+ ions into the medium in a concentration-dependent manner was confirmed. Zn2+ ions did not seem entirely responsible for the effects observed in the glial cells, but they were likely responsible for the decrease in zebrafish hatching rate. The results obtained in this work contribute to the knowledge of the toxicological potential of ZnO NPs.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Jorge Moreda-Piñeiro
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario Medio Ambiente (IUMA), Departamento de Química, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
| | - Julián Yáñez
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| |
Collapse
|
11
|
Lambuk L, Suhaimi NAA, Sadikan MZ, Jafri AJA, Ahmad S, Nasir NAA, Uskoković V, Kadir R, Mohamud R. Nanoparticles for the treatment of glaucoma-associated neuroinflammation. EYE AND VISION 2022; 9:26. [PMID: 35778750 PMCID: PMC9250254 DOI: 10.1186/s40662-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Recently, a considerable amount of literature has emerged around the theme of neuroinflammation linked to neurodegeneration. Glaucoma is a neurodegenerative disease characterized by visual impairment. Understanding the complex neuroinflammatory processes underlying retinal ganglion cell loss has the potential to improve conventional therapeutic approaches in glaucoma. Due to the presence of multiple barriers that a systemically administered drug has to cross to reach the intraocular space, ocular drug delivery has always been a challenge. Nowadays, studies are focused on improving the current therapies for glaucoma by utilizing nanoparticles as the modes of drug transport across the ocular anatomical and physiological barriers. This review offers some important insights on the therapeutic advancements made in this direction, focusing on the use of nanoparticles loaded with anti-inflammatory and neuroprotective agents in the treatment of glaucoma. The prospect of these novel therapies is discussed in relation to the current therapies to alleviate inflammation in glaucoma, which are being reviewed as well, along with the detailed molecular and cellular mechanisms governing the onset and the progression of the disease.
Collapse
|
12
|
Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83:105418. [PMID: 35724836 DOI: 10.1016/j.tiv.2022.105418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
Nano-based products have shown their daunting presence in several sectors. Among them, Zinc Oxide (ZnO) nanoparticles wangled the reputation of providing "next-generation solutions" and are being utilized in plethora of products. Their widespread application has led to increased exposure of these particles, raising concerns regarding toxicological repercussions to the human health and environment. The diversity, complexity, and heterogeneity in the available literature, along with correlation of befitting attributes, makes it challenging to develop one systematic framework to predict this toxicity. The present study aims at developing predictive modelling framework to tap the prospective features responsible for causing cytotoxicity in-vitro on exposure to ZnO nanoparticles. Rigorous approach was used to mine the information from complete body of evidence published to date. The attributes, features and experimental conditions were systematically extracted to unmask the effect of varied features. 1240 data points from 76 publications were obtained, containing 14 qualitative and quantitative attributes, including physiochemical properties of nanoparticles, cell culture and experimental parameters to perform meta-analysis. For the first time, the efforts were made to investigate the degree of significance of attributes accountable for causing cytotoxicity on exposure to ZnO nanoparticles. We show that in-vitro cytotoxicity is closely related with dose concentration of nanoparticles, followed by exposure time, disease state of the cell line and size of these nanoparticles among other attributes.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India; Wellcome trustTrust/DBT IA Early Career Fellow Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
Singh S, Gautam U, Manvi FV. Protective Impact of Edaravone Against ZnO NPs-induced Oxidative Stress in the Human Neuroblastoma SH-SY5Y Cell Line. Cell Mol Neurobiol 2022; 42:1189-1210. [PMID: 33222098 PMCID: PMC11441218 DOI: 10.1007/s10571-020-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce oxidative stress, inflammation, and apoptosis in neurons. Edaravone applies antioxidant agent and anti-inflammatory impacts in the different cells, as evaluated in both in vitro and in vivo experimental models. This study is designed to explore, how edaravone would avert mitochondrial impairment in human neuronal cells against ZnO NPs-induced toxicity. Accordingly, we analyzed here whether a pretreatment (for 24 h) with edaravone (10-100 μM) would enhance mitochondrial protection in the human neuroblastoma cells SH-SY5Y against ZnO NPs-induced toxicity. We found that edaravone at 25 μM averted the ZnO NPs-induced decrease in the amounts of adenosine triphosphate (ATP), just as on the activity of the complexes I and V. Also, edaravone induced an antioxidant activity by diminishing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Edaravone blocked the ZnO NPs-induced transcription factor nuclear factor-κB (NF-κB) upregulation. The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 μM) smothered the preventive impacts brought about by edaravone with respect to mitochondrial function and inflammation. After this examination, it can be concluded that edaravone caused cytoprotective impacts in an HO-1-dependent manner in SH-SY5Y cells against ZnO NPs-induced toxicity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, Bihar, India.
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India.
| | - Upendr Gautam
- Vinayaka Mission's Research Foundation, Ariyanur, Tamil Nadu, India
| | - F V Manvi
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India
| |
Collapse
|
14
|
Mortality, energy reserves, and oxidative stress responses of three native freshwater mussels to temperature as an indicator of potential impacts of climate change: A laboratory experimental approach. J Therm Biol 2022; 104:103154. [DOI: 10.1016/j.jtherbio.2021.103154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
|
15
|
Karthika C, Appu AP, Akter R, Rahman MH, Tagde P, Ashraf GM, Abdel-Daim MM, Hassan SSU, Abid A, Bungau S. Potential innovation against Alzheimer's disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10950-10965. [PMID: 35000160 DOI: 10.1007/s11356-021-17830-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Alzheimer's disorder (AD) is very difficult to manage and treat. The complexity of the brain, the blood-brain barrier influencing a multitude of parameters/biomarkers, as well as numerous other factors involved often contribute to the decline in the chances of treatment success. Development of the new drug moiety also takes time, being necessary to consider both its toxicity and related issues. As a strategic plan, a combined strategy is being developed and considered to address AD pathology using several approaches. A combination of vitamin E, quercetin, and basil oil in a nano-based formulation is designed to be administered nasally. The antioxidant present in these natural-based products helps to treat and alleviate AD if a synergistic approach is considered. The three active substances mentioned above are well known for the treatment of neurodegenerative disorders. The nanoformulation helps the co-delivery of the drug moiety to the brain through the intranasal route. In this review, a correlation and use of vitamin E, quercetin, and basil oil in a nano-based formulation is described as an effective way to treat AD. The intranasal administration of drugs is a promising approach for the treatment of neurodegenerative and mental disorders, as this route is non-invasive, enhances the bioavailability, allows a drug dose reduction, bypasses the blood-brain barrier, and reduces the systemic undesired effect. The use of natural products is generally considered to be just as safe; therefore, by using this combined approach, the level of toxicity can be minimized.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Nilgiris, Ooty, 643001, Tamil Nadu, India
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, South Korea
| | - Md Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, South Korea.
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, Madhya Pradesh, 462026, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
16
|
Moosavian SA, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorg Chem Appl 2021; 2021:4041415. [PMID: 34659388 PMCID: PMC8519727 DOI: 10.1155/2021/4041415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that can lead to end-stage liver disease needing a liver transplant. Many pharmacological approaches are used to reduce the disease progression in NAFLD. However, current strategies remain ineffective to reverse the progression of NAFLD completely. Employing nanoparticles as a drug delivery system has demonstrated significant potential for improving the bioavailability of drugs in the treatment of NAFLD. Various types of nanoparticles are exploited in this regard for the management of NAFLD. In this review, we cover the current therapeutic approaches to manage NAFLD and provide a review of recent up-to-date advances in the uses of nanoparticles for the treatment of NAFLD.
Collapse
Affiliation(s)
- Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Sruthi S, Nury T, Millot N, Lizard G. Evidence of a non-apoptotic mode of cell death in microglial BV-2 cells exposed to different concentrations of zinc oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12500-12520. [PMID: 33083954 DOI: 10.1007/s11356-020-11100-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) possess huge application potential. However, the toxicity of ZnO NPs is a great cause of concern. Indeed, ZnO NPs have been found to cause neurotoxicity. As microglial dysfunctions have been linked to the neurotoxic potential of NPs, the physico-chemical properties of ZnO NPs were determined and their cytotoxic effects were characterised on murine microglial BV-2 cells. In-house prepared and meticulously characterised ZnO NPs exhibited narrow size distribution with an average size of around 20 nm and a zeta potential at physiological pH around 24 mV. ZnO NPs did not exhibit aggregation in the cell culture medium. When microglial BV-2 cells were exposed for 6 and 24 h to ZnO NPs (5, 10, 20, 40, and 80 μg/mL), several cell damages were observed. Cellular accumulation of NPs in microglial BV-2 cells was associated with cell growth inhibition and cell death induction, measured by the trypan blue exclusion and MTT assays. Mitochondrial dysfunction and lysosomal alteration were associated with increased plasma membrane permeability measured by staining with DiOC6(3), acridine orange, and propidium iodide, respectively. In addition, an accumulation of reactive oxygen species (ROS) was detected after staining with dihydroethidium and dihydrorhodamine 123. No apoptotic features were present: no cells with condensed and/or fragmented nuclei (Hoechst staining) characteristic of apoptotic cells, absence of subG1 cells, absence of caspase-3 cleavage, and PARP fragmentation. With ZnO NPs (80 μg/mL), with the annexin V/propidium iodide (PI) assay, few apoptotic cells (annexin V+/PI- cells) were detected whereas (annexin V+/PI+ cells) evocating necrotic cells were mainly identified. No modification of the cells in the different phases of the cell cycle was found. Altogether, our data show that ZnO NPs induce a non-apoptotic mode of cell death associated with an accumulation of ROS, mitochondrial, and lysosomal dysfunction and plasma membrane damages in microglial BV-2 cells.Graphical abstract.
Collapse
Affiliation(s)
- Sudhakaran Sruthi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47 870, 21 078, Dijon, France
| | - Thomas Nury
- Faculty of Sciences, Laboratory Bio-PeroxIL 'Biochemistry of the peroxisome, inflammation and lipid metabolism', EA7270, Université Bourgogne Franche-Comté/Inserm, 6 Bd Gabriel, 21 000, Dijon, France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47 870, 21 078, Dijon, France.
| | - Gérard Lizard
- Faculty of Sciences, Laboratory Bio-PeroxIL 'Biochemistry of the peroxisome, inflammation and lipid metabolism', EA7270, Université Bourgogne Franche-Comté/Inserm, 6 Bd Gabriel, 21 000, Dijon, France.
| |
Collapse
|
18
|
Lira-Diaz E, Gonzalez-Pedroza MG, Vasquez C, Morales-Luckie RA, Gonzalez-Perez O. Gold nanoparticles produce transient reactive gliosis in the adult brain. Neurosci Res 2021; 170:76-86. [PMID: 33358926 DOI: 10.1016/j.neures.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Gold nanoparticles (GNPs) have unique physical and chemical properties that allow them to function as a drug-delivery system for several tissues: skin, eye, liver, and others. However, information about the biological response of brain tissue against GNPs is limited. Astrocytes and microglia cells are the first line of defense against brain insults and proper indicators of the level of brain damage. This study was aimed to evaluate the astrocytic and microglia response after an intracerebral injection of polyethylene-glycol-coupled GNPs (PEGylated GNPs). We injected spherical PEGylated GNPs (85 × 106 nanoparticles /nl) with a glass micropipette (inner diameter =35 μm) into the striatum of P60 CD1 mice. We evaluated the cellular response of astrocytes and microglia on days 3, 7, 14, 30, and 90 after intracerebral injection. For both astrocytes and microglia cells, our findings indicated that the glial response was transient and mainly circumscribed to the injection site. This evidence suggests that PEGylated GNPs are well-tolerated by the neural tissue. Understanding the effects of GNPs in the adult brain is a crucial step to design proper pharmacological vehicles to deliver long-lasting drugs.
Collapse
Affiliation(s)
- Eduardo Lira-Diaz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, 28040, Mexico; Physiological Science PhD Program. School of Medicine, University of Colima, Colima, 28040, Mexico
| | - Maria G Gonzalez-Pedroza
- Department of Nanomaterials, Sustainable Chemistry Research Center, National Autonomous University of Mexico/Autonomous University of the State of Mexico, Toluca, 50200, Mexico
| | - Clemente Vasquez
- University Center for Biomedical Research, University of Colima, Colima, 28040, Mexico
| | - Raul A Morales-Luckie
- Department of Nanomaterials, Sustainable Chemistry Research Center, National Autonomous University of Mexico/Autonomous University of the State of Mexico, Toluca, 50200, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, 28040, Mexico.
| |
Collapse
|
19
|
Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, Yin P, Li Y, Zhang X, Liu K. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. ENVIRONMENT INTERNATIONAL 2021; 146:106179. [PMID: 33099061 DOI: 10.1016/j.envint.2020.106179] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
With the increasing applications in various fields, the release and accumulation of zinc oxide (ZnO) nanomaterials ultimately lead to unexpected consequences to environment and human health. Therefore, toxicity comparison among ZnO nanomaterials with different shape/size and their adverse effects need better characterization. Here, we utilized zebrafish larvae and human neuroblastoma cells SH-SY5Y to compare the toxic effects of ZnO nanoparticles (ZnO NPs), short ZnO nanorods (s-ZnO NRs), and long ZnO NRs (l-ZnO NRs). We found their developmental- and neuro-toxicity levels were similar, where the smaller sizes showed slightly higher toxicity than the larger sizes. The developmental neurotoxicity of l-ZnO NRs (0.1, 1, 10, 50, and 100 μg/mL) was further investigated since they had the lowest toxicity. Our results indicated that l-ZnO NRs induced developmental neurotoxicity with hallmarks linked to Parkinson's disease (PD)-like symptoms at relatively high doses, including the disruption of locomotor activity as well as neurodevelopmental and PD responsive genes expression, and the induction of dopaminergic neuronal loss and apoptosis in zebrafish brain. l-ZnO NRs activated reactive oxygen species production, whose excessive accumulation triggered mitochondrial damage and mitochondrial apoptosis, eventually leading to PD-like symptoms. Collectively, the developmental- and neuro-toxicity of ZnO nanomaterials was identified, in which l-ZnO NRs harbors a remarkably potential risk for the onset and development of PD at relatively high doses, stressing the discretion of safe range in view of nano-ZnO exposure to ecosystem and human beings.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China.
| |
Collapse
|
20
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
21
|
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer.
Collapse
|
22
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
23
|
Chen L, Yu X, Ding H, Zhao Y, Hu C, Feng J. Comparing the Influence of High Doses of Different Zinc Salts on Oxidative Stress and Energy Depletion in IPEC-J2 Cells. Biol Trace Elem Res 2020; 196:481-493. [PMID: 31732928 DOI: 10.1007/s12011-019-01948-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
The current study aimed to investigate the influence of four supplemental zinc salts (chelated: Zn glycine; non-chelated: Zn sulfate, Zn citrate, Zn gluconate) among different zinc concentrations (30-300 μM) on cell proliferation, oxidative stress, and energy depletion in intestinal porcine jejunum epithelial cells (IPEC-J2). Different zinc salts affected cell viability in a time- and dose-dependent manner, which was mainly dependent on the uptake of intracellular Zn2+. Intracellular Zn2+ of Zn sulfate has taken up almost twice as high as Zn glycine when cells were loaded with 100-200 μM zinc. After loading cells with 300 μM zinc, Zn glycine and Zn sulfate had a similar trend in accumulation of Zn2+. When the intracellular Zn2+ overloads, cells will gradually be damaged and subsequently die bearing biochemical features of necrosis or late apoptosis. Meanwhile, obviously, increased levels of intracellular ROS, mitochondrial ROS, MDA, and NO and decreased levels of GSH were observed. Excessive intracellular Zn2+ significantly decreased mitochondria membrane potential accompanied by an obvious loss of ATP and NAD+ levels. Overall, exposure to high doses of zinc salts caused cell damage, which was mainly dependent on the uptake of Zn2+. Zinc overload induced oxidative stress and energy depletion in IPEC-J2 cells, and the cell damage with non-chelated zinc addition was more serious than Zn glycine.
Collapse
Affiliation(s)
- Lingjun Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Chang X, Li J, Niu S, Xue Y, Tang M. Neurotoxicity of metal‐containing nanoparticles and implications in glial cells. J Appl Toxicol 2020; 41:65-81. [DOI: 10.1002/jat.4037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
25
|
Louis F, Rocher B, Barjhoux I, Bultelle F, Dedourge-Geffard O, Gaillet V, Bonnard I, Delahaut L, Pain-Devin S, Geffard A, Paris-Palacios S, David E. Seasonal monitoring of cellular energy metabolism in a sentinel species, Dreissena polymorpha (bivalve): Effect of global change? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138450. [PMID: 32298890 DOI: 10.1016/j.scitotenv.2020.138450] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms such as bivalves are particularly sensitive to seasonal fluctuations associated with climate changes. Energy metabolism management is also closely related to environmental fluctuations. Changes in both biotic and abiotic conditions, such as the reproduction status and temperature respectively, may affect the organism energy status. A bivalve sentinel species, Dreissena polymorpha was sampled along its one-year reproduction cycle in situ (2018-2019) to study natural modulations on several markers of energy metabolism regarding seasonal variations in situ. A panel of different processes involved in energy metabolism was monitored through different functions such as energy balance regulation, mitochondrial density, and aerobic/anaerobic metabolism. The typical schema expected was observed in a major part of measured responses. However, the monitored population of D. polymorpha showed signs of metabolism disturbances caused by an external stressor from April 2019. Targeting a major part of energy metabolism functions, a global analysis of responses suggested a putative impact on the mitochondrial respiratory chain due to potential pollution. This study highlighted also the particular relevance of in situ monitoring to investigate the impacts of environmental change on sentinel species.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France.
| | - Béatrice Rocher
- Université du Havre, INERIS, SEBIO UMR I-02, Le Havre, France
| | - Iris Barjhoux
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | | | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| |
Collapse
|
26
|
Wu D, Ma Y, Cao Y, Zhang T. Mitochondrial toxicity of nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134994. [PMID: 31715400 DOI: 10.1016/j.scitotenv.2019.134994] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanomaterials have been widely applied in electronics, food, biomedicine and other fields, resulting in increased human exposure and consequent research focus on their biological and toxic effects. Mitochondria, the main target organelle for nanomaterials (NM), play a critical role in their toxic activities. Several studies to date have shown that nanomaterials cause alterations in mitochondrial morphology, mitochondrial membrane potential, opening of the mitochondrial permeability transition pore (MPTP) and mitochondrial respiratory function, and promote cytochrome C release. An earlier mitochondrial toxicity study of NMs additionally reported induction of mitochondrial dynamic changes. Here, we have reviewed the mitochondrial toxicity of NMs and provided a scientific basis for the contribution of mitochondria to the toxicological effects of different NMs along with approaches to reduce mitochondrial and, consequently, overall toxicity of NMs.
Collapse
Affiliation(s)
- Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
27
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Zinc oxide nanoparticles are well-known metal oxide nanoparticles having numbers of applications in the field of cosmetology, medicine, and chemistry. However, the number of reports has indicated its toxicity also such as hepatotoxicity, pulmonary toxicity, neurotoxicity, and immunotoxicity. Thus, in this article, we have analyzed the potential risks and benefits of zinc oxide nanoparticles. The data related to risks and benefits of zinc oxide nanoparticles have been extracted from PubMed (from January 2007 to August 2019). A total of 3,892 studies have been published during this period regarding zinc oxide nanoparticles. On the basis of inclusion and exclusion criteria, 277 studies have been included for the analysis of risks and benefits. Emerging reports have indicated both risks and benefits of zinc oxide nanoparticles in concentration- and time-dependent manner under in vitro and in vivo conditions through different mechanism of action. In conclusion, zinc oxide nanoparticles could play a beneficial role in the treatment of various diseases but safety of these particles at particular effective concentration should be thoroughly evaluated.
Collapse
Affiliation(s)
- S Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
29
|
Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB. Zinc Oxide Nanoparticles Induce Autophagy and Apoptosis via Oxidative Injury and Pro-Inflammatory Cytokines in Primary Astrocyte Cultures. NANOMATERIALS 2019; 9:nano9071043. [PMID: 31330912 PMCID: PMC6669602 DOI: 10.3390/nano9071043] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
The present study examined the potential toxic concentrations of zinc oxide nanoparticles (ZnO NPs) and associated autophagy and apoptosis-related injuries in primary neocortical astrocyte cultures. Concentrations of ZnO NPs ≥3 μg/mL induced significant toxicity in the astrocytes. At 24 h after exposure to the ZnO NPs, transmission electron microscopy revealed swelling of the endoplasmic reticulum (ER) and increased numbers of autophagolysosomes in the cultured astrocytes, and increased levels of LC3 (microtubule-associated protein 1 light chain 3)-mediated autophagy were identified by flow cytometry. Apoptosis induced by ZnO NP exposure was confirmed by the elevation of caspase-3/7 activity and 4′,6′-diamidino-2-phenylindole (DAPI) staining. Significant (p < 0.05) changes in the levels of glutathione peroxidase, superoxide dismutase, tumor necrosis factor (TNF-α), and interleukin-6 were observed by enzyme-linked immunoassay (ELISA) assay following the exposure of astrocyte cultures to ZnO NPs. Phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) dual activation was induced by ZnO NPs in a dose-dependent manner. Additionally, the Akt (protein kinase B) inhibitor BML257 and the mTOR (mammalian target of rapamycin) inhibitor rapamycin contributed to the survival of astrocytes. Inhibitors of cyclooxygenase-2 and lipoxygenase attenuated ZnO NP-induced toxicity. Calcium-modulating compounds, antioxidants, and zinc/iron chelators also decreased ZnO NP-induced toxicity. Together, these results suggest that ZnO NP-induced autophagy and apoptosis may be associated with oxidative stress and the inflammatory process in primary astrocyte cultures.
Collapse
Affiliation(s)
- Woo-Ju Song
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Myung-Seon Jeong
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Min Choi
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
| | - Myung-Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
30
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
31
|
Dogra S, Kar AK, Girdhar K, Daniel PV, Chatterjee S, Choubey A, Ghosh S, Patnaik S, Ghosh D, Mondal P. Zinc oxide nanoparticles attenuate hepatic steatosis development in high-fat-diet fed mice through activated AMPK signaling axis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:210-222. [PMID: 30708053 DOI: 10.1016/j.nano.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Abstract
Insulin resistance is thought to be a common link between obesity and Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD has now reached epidemic status worldwide and identification of molecules or pathways as newer therapeutic strategies either to prevent or overcome insulin resistance seems critical. Dysregulated hepatic lipogenesis (DNL) is a hallmark of NAFLD in humans and rodents. Therefore, reducing DNL accretion may be critical in the development of therapeutics of NAFLD. In our in vivo model (high-fat-diet fed [HFD] obese mice) we found Zinc oxide nanoparticles (ZnO NPs) significantly decreased HFD-induced hepatic steatosis and peripheral insulin resistance. This protective mechanism of ZnO NPs was signaled through hepatic SIRT1-LKB1-AMPK which restricted SREBP-1c within the cytosol limiting its transcriptional ability and thereby ameliorating HFD mediated DNL. These observations indicate that ZnO NP can serve as a therapeutic strategy to improve the physiological homeostasis during obesity and its associated metabolic abnormalities.
Collapse
Affiliation(s)
- Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - Aditya K Kar
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Khyati Girdhar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - Swarup Chatterjee
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India
| | - Satyakam Patnaik
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Debabrata Ghosh
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, H.P, India.
| |
Collapse
|
32
|
Potential role of mitochondrial damage and S9 mixture including metabolic enzymes in ZnO nanoparticles-induced oxidative stress and genotoxicity in Chinese hamster lung (CHL/IU) cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:25-34. [DOI: 10.1016/j.mrgentox.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
|
33
|
Effect of Maternal Exposure to Zinc Oxide Nanoparticles on Reflexive Motor Behaviors in Mice Offspring. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9752-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Attia H, Nounou H, Shalaby M. Zinc Oxide Nanoparticles Induced Oxidative DNA Damage, Inflammation and Apoptosis in Rat's Brain after Oral Exposure. TOXICS 2018; 6:E29. [PMID: 29861430 PMCID: PMC6027438 DOI: 10.3390/toxics6020029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/19/2022]
Abstract
Growing evidences demonstrated that zinc oxide nanoparticles (ZnONPs) could reach the brain after oral ingestion; however, the "neurotoxicity of" ZnONPs after oral exposure has not been fully investigated. This study aimed to explore the "neurotoxicity of" ZnONPs (.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Howaida Nounou
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria 21111, Egypt.
| | - Manal Shalaby
- Department of Medical Biotechnology, Institute of Genetic Engineering City of Scientific Research and biotechnological applications, Borg El Arab, Alexandria 21111, Egypt.
| |
Collapse
|
35
|
Singh A, Chokriwal A, Sharma MM, Jain D, Saxena J, Stephen BJ. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders. ACS Chem Neurosci 2017; 8:1645-1655. [PMID: 28719178 DOI: 10.1021/acschemneuro.7b00144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Ankit Chokriwal
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Madan Mohan Sharma
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Devendra Jain
- Department
of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India
| | - Juhi Saxena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Jaipur-302017, Rajasthan, India
| | - Bjorn John Stephen
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| |
Collapse
|
36
|
Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 2017; 4:245-259. [PMID: 28959646 PMCID: PMC5615097 DOI: 10.1016/j.toxrep.2017.05.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
Sunscreen application is the main strategy used to prevent the maladies inflicted by ultraviolet (UV) radiation. Despite the continuously increasing frequency of sunscreen use worldwide, the prevalence of certain sun exposure-related pathologies, mainly malignant melanoma, is also on the rise. In the past century, a variety of protective agents against UV exposure have been developed. Physical filters scatter and reflect UV rays and chemical filters absorb those rays. Alongside the evidence for increasing levels of these agents in the environment, which leads to indirect exposure of wildlife and humans, recent studies suggest a toxicological nature for some of these agents. Reviews on the role of these agents in developmental and endocrine impairments (both pathology and related mechanisms) are based on both animal and human studies, yet information regarding the potential neurotoxicity of these agents is scant. In this review, data regarding the neurotoxicity of several organic filters: octyl methoxycinnamate, benzophenone-3 and −4, 4-methylbenzylidene camphor, 3-benzylidene camphor and octocrylene, and two allowed inorganic filters: zinc oxide and titanium dioxide, is presented and discussed. Taken together, this review advocates revisiting the current safety and regulation of specific sunscreens and investing in alternative UV protection technologies.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adi Pinkas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
37
|
Wei L, Wang J, Chen A, Liu J, Feng X, Shao L. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int J Nanomedicine 2017; 12:1891-1903. [PMID: 28331313 PMCID: PMC5352242 DOI: 10.2147/ijn.s129375] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.
Collapse
Affiliation(s)
- Limin Wei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianfeng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Aijie Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoli Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|