1
|
Geng H, Tang J, Li Z, Zhang Y, Ye C, Zhang Y, Li X, Li Y, Wang Y, Wang Y, Lv X, Wang L. 14,15-EET Maintains Mitochondrial Homeostasis to Inhibit Neuronal Pyroptosis After Ischemic Stroke. Stroke 2025. [PMID: 40235438 DOI: 10.1161/strokeaha.124.049143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Neuronal pyroptosis is involved in neuronal cell death and neurological damage after cerebral ischemia-reperfusion. 14,15-Epoxyeicosatrienoic acid (14,15-EET) can reduce neuronal loss induced by cerebral ischemia-reperfusion by regulating mitochondrial biological processes. However, it remains unclear how 14,15-EET regulates mitochondrial homeostasis, inhibits neuronal pyroptosis, and promotes neurological functional recovery after cerebral ischemia-reperfusion. METHODS Mice with middle cerebral artery occlusion and reperfusion were used as an animal model to study the cerebral ischemia-reperfusion disease. The neurological function of mice was performed at 1, 3, and 5 days to test the therapeutic effects of 14,15-EET. Transmission electron microscope imaging and Nissl staining were used to analyze neuronal morphological structure, mitophagy, and neuronal pyroptosis. Western blot and transcriptome were used to detect the levels of mitophagy and neuronal pyroptosis signaling pathway-related molecules. HT22 cells were used in in vitro studies to detect the mechanism by which 14,15-EET reduces neuronal pyroptosis after oxygen-glucose deprivation/reoxygenation treatment. RESULTS 14,15-EET treatment reduced cerebral infarct volumes and improved neurological functional recovery in mice after cerebral ischemia-reperfusion. 14,15-EET treatment maintained the morphological structure of neurons in the ischemic penumbra area as well as the dendritic spine density in mice after cerebral ischemia-reperfusion. The upregulation of NLRP1 (NOD-like receptor thermal protein domain associated protein 1), IL (interleukin)-1β, caspase-1, and GSDMD (gasdermin D) induced by cerebral ischemia-reperfusion was inhibited, and the expression of mitophagy proteins Parkin and LC3B was increased by 14,15-EET treatment. Transcriptome profiling found that 14,15-EET exerts a neuroprotection role in promoting neural function recovery by activating the WNT (wingless-type MMTV integration site family) signaling pathway. We found that 14,15-EET upregulated the WNT pathway proteins such as WNT1, WNT3A, β-catenin, and p-GSK-3β (phosphorylation of glycogen synthase kinase 3β) in vivo and in vitro. The WNT signaling pathway inhibitor XAV-939 reduced the expression of mitophagy protein Parkin and upregulated the expression of caspase-1 and GSDMD in HT22 cells with oxygen-glucose deprivation/reoxygenation and 14,15-EET treatment. CONCLUSIONS 14,15-EET regulates mitochondrial homeostasis to inhibit neuronal pyroptosis, thereby promoting the recovery of neurological function in mice after cerebral ischemia-reperfusion. These results provide new ideas for maintaining mitochondrial homeostasis and inhibiting neuronal pyroptosis after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huixia Geng
- School of Nursing and Health Sciences, Henan University, Kaifeng, China. (H.G.)
| | - Jing Tang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| | - Zhen Li
- School of Physical Education and Sport, Henan Kaifeng College of Science Technology and Communication, China (Z.L.)
| | - Yanshuo Zhang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| | - Congwei Ye
- The School of Life Sciences, Henan University, Kaifeng, China. (C.Y., Yibo Zhang)
| | - Yibo Zhang
- The School of Life Sciences, Henan University, Kaifeng, China. (C.Y., Yibo Zhang)
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, China. (X. Li, Y.L.)
| | - Yunxia Li
- Department of Neurology, The First Affiliated Hospital of Henan University, China. (X. Li, Y.L.)
| | - Yanming Wang
- Center for Clinical Research and Translational Medicine (Yanming Wang)
| | - Yi Wang
- School of Physical Education and Sport, Henan University, Kaifeng, China. (Yi Wang)
| | - Xinrui Lv
- Department of Kaifeng Key Laboratory for Infectious Diseases and Biosafety, The First Affiliated Hospital of Henan University, China. (X. Lv)
| | - Lai Wang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| |
Collapse
|
2
|
Irisarri A, Corral A, Perez-Salvador N, Bellver-Sanchis A, Ribalta-Vilella M, Bentanachs R, Alegret M, Laguna JC, Barroso E, Palomer X, Ortuño-Sahagún D, Vázquez-Carrera M, Pallàs M, Herrero L, Griñán-Ferré C. FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice. Mol Med 2025; 31:73. [PMID: 39984825 PMCID: PMC11843768 DOI: 10.1186/s10020-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigated the effects of fat mass and obesity-associated (FTO) inhibition on cognitive function and metabolic parameters of senescence-accelerated mouse prone 8 (SAMP8) mice fed a high-fat diet (HFD). SAMP8 mice fed an HFD exhibited increased body weight, impaired glucose tolerance, and elevated serum leptin levels. In epididymal white adipose tissue (eWAT), pharmacological treatment with FB23, a well-established FTO inhibitor, increased leptin production and modulated genes involved in lipid metabolism (Cpt1a, Atgl, Hsl, Fas), oxidative stress (OS) (Bip, Edem), and inflammation (Mcp1, Tnfα). Expression of hepatic genes related to lipid metabolism (Cpt1a, Atgl, Mgl, Dgat2, Srebp, Plin2) and OS (catalase, Edem) were modulated by FB23, although hepatic steatosis remained unchanged. Remarkably, FB23 treatment increased m6A RNA methylation in the brain, accompanied by changes in N6-methyladenosine (m6A)-regulatory enzymes and modulation of neuroinflammatory markers (Il6, Mcp1, iNOS). FTO inhibition reduced the activity of matrix metalloproteases (Mmp2, Mmp9) and altered IGF1 signaling (Igf1, Pten). Notably, enhanced leptin signaling was observed through increased expression of immediate early genes (Arc, Fos) and the transcription factor Stat3. Improved synaptic plasticity was evident, as shown by increased levels of neurotrophic factors (Bdnf, Ngf) and restored neurite length and spine density. Consistent with these findings, behavioral tests demonstrated that FB23 treatment effectively rescued cognitive impairments in SAMP8 HFD mice. The novel object recognition test (NORT) and object location test (OLT) revealed that treated mice exhibited enhanced short- and long-term memory and spatial memory compared to the HFD control group. Additionally, the open field test showed a reduction in anxiety-like behavior after treatment with FB23. In conclusion, pharmacological FTO inhibition ameliorated HFD-induced metabolic disturbances and cognitive decline in SAMP8 mice. These results suggest that targeting FTO may be a promising therapeutic approach to counteract obesity-induced cognitive impairment and age-related neurodegeneration.
Collapse
Grants
- PID2021-122116OB-100 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PDC2022-133441-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2020-114953RB-C21 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2022-139016OA-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- CIBERDEM CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
- 2021 SGR 00357 the Government of Catalonia
- CB06/03/0001 CIBEROBN
- 2021SGR00367 Carlos III Health Institute project and the Government of Catalonia
- Producte 0092 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Llavor 005 and 007 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Departament d’Empresa i Coneixement de la Generalitat de Catalunya 2023
Collapse
Affiliation(s)
- Alba Irisarri
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Ana Corral
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Núria Perez-Salvador
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Marta Ribalta-Vilella
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain.
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
4
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
5
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Feng S, Gui J, Qin B, Ye J, Zhao Q, Guo A, Sang M, Sun X. Resveratrol Inhibits VDAC1-Mediated Mitochondrial Dysfunction to Mitigate Pathological Progression in Parkinson's Disease Model. Mol Neurobiol 2024:10.1007/s12035-024-04234-0. [PMID: 38819635 DOI: 10.1007/s12035-024-04234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
An increase in α-synuclein (α-syn) levels and mutations in proteins associated with mitochondria contribute to the development of familial Parkinson's disease (PD); however, the involvement of α-syn and mitochondria in idiopathic PD remains incompletely understood. The voltage-dependent anion channel I (VDAC1) protein, which serves as a crucial regulator of mitochondrial function and a gatekeeper, plays a pivotal role in governing cellular destiny through the control of ion and respiratory metabolite flux. The ability of resveratrol (RES), which is a potent phytoalexin with antioxidant and anti-inflammatory properties, to regulate VDAC1 in PD is unknown. The objective of this study was to evaluate the role of VDAC1 in the pathological process of PD and to explore the mechanism by which resveratrol protects dopaminergic neurons by regulating VDAC1 to maintain the mitochondrial permeability transition pore (mPTP) and calcium ion balance. The effects of RES on the motor and cognitive abilities of A53T mice were evaluated by using small animal behavioral tests. Various techniques, including immunofluorescence staining, transmission electron microscopy, enzyme-linked immunoadsorption, quantitative polymerase chain reaction (PCR), and Western blotting, among others, were employed to assess the therapeutic impact of RES on neuropathy associated with PD and its potential in regulating mitochondrial VDAC1. The findings showed that RES significantly improved motor and cognitive dysfunction and restored mitochondrial function, thus reducing oxidative stress levels in A53T mice. A significant positive correlation was observed between the protein expression level of VDAC1 and mitochondrial α-syn expression, as well as disease progression, whereas no such correlation was found in VDAC2 and VDAC3. Administration of RES resulted in a significant decrease in the protein expression of VDAC1 and in the protein expression of α-syn both in vivo and in vitro. In addition, we found that RES prevents excessive opening of the mPTP in dopaminergic neurons. This may prevent the abnormal aggregation of α-syn in mitochondria and the release of mitochondrial apoptosis signals. Furthermore, the activation of VDAC1 reversed the resveratrol-induced decrease in the accumulation of α-syn in the mitochondria. These findings highlight the potential of VDAC1 as a therapeutic target for PD and identify the mechanism by which resveratrol alleviates PD-related pathology by modulating mitochondrial VDAC1.
Collapse
Affiliation(s)
- Shenglan Feng
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Jianjun Gui
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Bingqing Qin
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Junjie Ye
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, Hubei, China
| | - Qiang Zhao
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Ai Guo
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Ming Sang
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| | - Xiaodong Sun
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
7
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
8
|
Cao Y, Sun W, Liu C, Zhou Z, Deng Z, Zhang M, Yan M, Yin X, Zhu X. Resveratrol ameliorates diabetic encephalopathy through PDE4D/PKA/Drp1 signaling. Brain Res Bull 2023; 203:110763. [PMID: 37722608 DOI: 10.1016/j.brainresbull.2023.110763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Diabetic encephalopathy (DE) is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and neurochemical abnormalities. However, no effective approaches are available to prevent its progression and development. PDE4D serves many functions in the pathogenesis of neurodegenerative diseases involving PKA signaling. This study illustrated the role of PDE4D in DE and investigated whether resveratrol protected against DE via inhibiting PDE4D. db/db male mice and hippocampus cell line (HT22) were used to investigate the role of PDE4D and the protective effect of resveratrol on cognitive function under high glucose (HG). PDE4D overexpression or knockdown lentivirus and PKA specific inhibitor H89 were used to further identify the indispensable role of PDE4D/PKA signaling pathway in resveratrol's amelioration effect of neurotoxicity. Resveratrol attenuated cognitive impairment in db/db mice, reduced PDE4D protein, restored the impaired mitochondrial function in db/db mice. The in vitro study also confirmed the neuroprotective effect of resveratrol on neurotoxicity. PDE4D overexpression resulted in cell injury and downregulation of cAMP, PKA and pDrp1(Ser637) under normal condition. In contrast, PDE4D knockdown improved cell injury and elevated cAMP, PKA and pDrp1(Ser637) levels caused in HG-cultured HT22 cells. PDE4D over-expression blunted the improvement effects of resveratrol on PKA, pDrp1(Ser637) and mitochondrial function. Moreover, PKA inhibitor H89 blunted the inhibitory effects of resveratrol on pDrp1(Ser637) and mitochondrial function in HG-treated HT22. These data indicated that resveratrol may improve cognitive impairment in db/db mice by modulating mitochondrial function through the PDE4D dependent pathway.
Collapse
Affiliation(s)
- Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingjie Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
9
|
Anand AA, Khan M, V M, Kar D. The Molecular Basis of Wnt/ β-Catenin Signaling Pathways in Neurodegenerative Diseases. Int J Cell Biol 2023; 2023:9296092. [PMID: 37780577 PMCID: PMC10539095 DOI: 10.1155/2023/9296092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Defective Wnt signaling is found to be associated with various neurodegenerative diseases. In the canonical pathway, the Frizzled receptor (Fzd) and the lipoprotein receptor-related proteins 5/6 (LRP5/LRP6) create a seven-pass transmembrane receptor complex to which the Wnt ligands bind. This interaction causes the tumor suppressor adenomatous polyposis coli gene product (APC), casein kinase 1 (CK1), and GSK-3β (glycogen synthase kinase-3 beta) to be recruited by the scaffold protein Dishevelled (Dvl), which in turn deactivates the β-catenin destruction complex. This inactivation stops the destruction complex from phosphorylating β-catenin. As a result, β-catenin first builds up in the cytoplasm and then migrates into the nucleus, where it binds to the Lef/Tcf transcription factor to activate the transcription of more than 50 Wnt target genes, including those involved in cell growth, survival, differentiation, neurogenesis, and inflammation. The treatments that are currently available for neurodegenerative illnesses are most commonly not curative in nature but are only symptomatic. According to all available research, restoring Wnt/β-catenin signaling in the brains of patients with neurodegenerative disorders, particularly Alzheimer's and Parkinson's disease, would improve the condition of several patients with neurological disorders. The importance of Wnt activators and modulators in patients with such illnesses is to mainly restore rather than overstimulate the Wnt/β-catenin signaling, thereby reestablishing the equilibrium between Wnt-OFF and Wnt-ON states. In this review, we have tried to summarize the significance of the Wnt canonical pathway in the pathophysiology of certain neurodegenerative diseases, such as Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis, and other similar diseases, and as to how can it be restored in these patients.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad 211012, India
| | - Misbah Khan
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Monica V
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Debasish Kar
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| |
Collapse
|
10
|
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing Res Rev 2023; 90:102029. [PMID: 37549873 DOI: 10.1016/j.arr.2023.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Dementia is prevalent in aged populations and is associated with disability and distress for those affected. Therapeutic benefits of drugs targeting dementia are small. Impaired nutrient sensing pathways have been implicated in the pathogenesis of dementia and may offer a novel treatment target. AIMS This systematic review collated evidence for novel therapeutic compounds that modify nutrient sensing pathways, particularly the sirtuin pathway, in preventing cognitive decline or improving cognition in normal ageing, mild cognitive impairment (MCI), and dementia. METHODS PubMed, Embase and Web of Science databases were searched using key search terms. Articles were screened using Covidence systematic review software. The risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE)'s risk of bias tool for animal studies and Cochrane Risk of Bias tool v 2.0 for human studies. RESULTS Out of 3841 articles, 68 were included describing 38 different novel therapeutic compounds that modulate the nutrient sensing pathway via the sirtuin pathway. In animal models (58 studies), all investigated novel therapeutic compounds showed cognitive benefits. Ten studies were human intervention trials targeting normal ageing (1 study) and dementia populations (9 studies). Direct sirtuin (silent mating type information regulation 2 homolog) 1 (SIRT1) activators Resveratrol and Nicotinamide derivatives improved cognitive outcomes among human subjects with normal cognition and MCI. CONCLUSION Animal studies support that modulation of the sirtuin pathway has the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
Affiliation(s)
- Adrian Matysek
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | | | - Lei Feng
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Zhou G, Ye Q, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Mitochondrial calcium uptake 3 mitigates cerebral amyloid angiopathy-related neuronal death and glial inflammation by reducing mitochondrial dysfunction. Int Immunopharmacol 2023; 117:109614. [PMID: 36878048 DOI: 10.1016/j.intimp.2022.109614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 03/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). Mitochondrial dysfunction-associated cellular events including cell death, inflammation and oxidative stress are implicated in the progression of CAA. Unfortunately, the molecular mechanisms revealing CAA pathogenesis are still obscure, thus requiring further studies. Mitochondrial calcium uptake 3 (MICU3), a regulator of the mitochondrial Ca2+ uniporter (MCU), mediates various biological functions, but its expression and influence on CAA are largely unknown. In the present study, we found that MICU3 expression was gradually declined in cortex and hippocampus of Tg-SwDI transgenic mice. Using stereotaxic operation with AAV9 encoding MICU3, we showed that AAV-MICU3 improved the behavioral performances and cerebral blood flow (CBF) in Tg-SwDI mice, along with markedly reduced Aβ deposition through mediating Aβ metabolism process. Importantly, we found that AAV-MICU3 remarkably improved neuronal death and mitigated glial activation and neuroinflammation in cortex and hippocampus of Tg-SwDI mice. Furthermore, excessive oxidative stress, mitochondrial impairment and dysfunction, decreased ATP and mitochondrial DNA (mtDNA) were detected in Tg-SwDI mice, while being considerably ameliorated upon MICU3 over-expression. More importantly, our in vitro experiments suggested that MICU3-attenuated neuronal death, activation of glial cells and oxidative stress were completely abrogated upon PTEN induced putative kinase 1 (PINK1) knockdown, indicating that PINK1 was required for MICU3 to perform its protective effects against CAA. Mechanistic experiment confirmed an interaction between MICU3 and PINK1. Together, these findings demonstrated that MICU3-PINK1 axis may serve as a key target for CAA treatment mainly through improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China; Department of Rehabilitation Medicine, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Qing Ye
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Yan Xu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Bing He
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lin Wu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Guanghua Zhu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Juan Xie
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lan Yao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Zijian Xiao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China.
| |
Collapse
|
12
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
13
|
Du Q, Xu M, Wu L, Fan R, Hao Y, Liu X, Mao R, Liu R, Li Y. Walnut Oligopeptide Delayed Improved Aging-Related Learning and Memory Impairment in SAMP8 Mice. Nutrients 2022; 14:5059. [PMID: 36501089 PMCID: PMC9738662 DOI: 10.3390/nu14235059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Aging-related learning and memory decline are hallmarks of aging and pose a significant health burden. The effects of walnut oligopeptides (WOPs) on learning and memory were evaluated in this study. Sixty SAMP8 mice were randomly divided into four groups (15 mice/group), including one SAMP8 age-control group and three WOP-treated groups. SAMR1 mice (n = 15) that show a normal senescence rate were used as controls. The SAMP8 and SAMR1 controls were administered ordinary sterilized water, while the WOP-intervention groups were administered 110, 220, and 440 mg/kg·bw of WOPs in water, respectively. The whole intervention period was six months. The remaining 15 SAMP8 (4-month-old) mice were used as the young control group. The results showed that WOPs significantly improved the decline in aging-related learning/memory ability. WOPs significantly increased the expression of BDNF and PSD95 and decreased the level of APP and Aβ1-42 in the brain. The mechanism of action may be related to an increase in the activity of antioxidant enzymes (SOD and GSH-Px), a reduction in the expression of inflammatory factors (TNF-α and IL-1β) in the brain and a reduction in oxidative stress injury (MDA). Furthermore, the expression of AMPK, SIRT-1, and PGC-1α was upregulated and the mitochondrial DNA content was increased in brain. These results indicated that WOPs improved aging-related learning and memory impairment. WOP supplementation may be a potential and effective method for the elderly.
Collapse
Affiliation(s)
- Qian Du
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Lan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yuntao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Zhang C, Fu Q, Shao K, Liu L, Ma X, Zhang F, Zhang X, Meng L, Yan C, Zhao X. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation. Cell Signal 2022; 99:110442. [PMID: 35988807 DOI: 10.1016/j.cellsig.2022.110442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
Recent evidences have linked indole-3-acetic acid (I3A), a gut microbiota-derived metabolite from dietary tryptophan, with the protection against non-alcoholic fatty liver disease (NAFLD). However, the values of I3A on mitochondrial homeostasis in NAFLD have yet to be analyzed. In this study, we verified that I3A alleviated dietary-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis. Importantly, we expanded the understanding of I3A further to enhance mitochondrial oxidative phosphorylation in the liver by RNA-seq. Consistently, I3A restored the deficiency of mitochondrial respiration complex (MRC) capacity in palmitic acid (PA)-induced HepG2 without initiating oxidative stress in vitro. These changes were dependent on peroxisome proliferator-activated receptor γ coactivator 1 (PGC1)-a, a key regulator of mitochondrial biogenesis. Silencing of PGC1a by siRNA and pharmacologic inhibitor SR-18292, blocked the restoration of I3A on mitochondrial oxidative phosphorylation. In addition, pre-treatment of I3A guarded against the deficiency of MRC capacity. In conclusion, our findings uncovered that I3A increased hepatic PGC1a expression, contributing to mitochondrial respiration improvement in NAFLD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Qingsong Fu
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Kai Shao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Limin Liu
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaotian Ma
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Fengyi Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaodong Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Liying Meng
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - ChuanZhu Yan
- Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaoyun Zhao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China.
| |
Collapse
|
15
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
16
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
17
|
Ahn SY, Song J, Kim YC, Kim MH, Hyun YM. Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression. Immune Netw 2021; 21:e30. [PMID: 34522443 PMCID: PMC8410987 DOI: 10.4110/in.2021.21.e30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jiwon Song
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Cheon Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Sánchez-Melgar A, Izquierdo-Ramírez PJ, Palomera-Ávalos V, Pallàs M, Albasanz JL, Martín M. High-Fat and Resveratrol Supplemented Diets Modulate Adenosine Receptors in the Cerebral Cortex of C57BL/6J and SAMP8 Mice. Nutrients 2021; 13:nu13093040. [PMID: 34578918 PMCID: PMC8466958 DOI: 10.3390/nu13093040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders are devastating diseases in which aging is a major risk factor. High-fat diet (HFD) seems to contribute to cognition deterioration, but the underlying mechanisms are poorly understood. Moreover, resveratrol (RSV) has been reported to counteract the loss of cognition associated with age. Our study aimed to investigate whether the adenosinergic system and plasma membrane cholesterol are modulated by HFD and RSV in the cerebral cortex of C57BL/6J and SAMP8 mice. Results show that HFD induced increased A1R and A2AR densities in C57BL/6J, whereas this remained unchanged in SAMP8. Higher activity of 5′-Nucleotidase was found as a common effect induced by HFD in both mice strains. Furthermore, the effect of HFD and RSV on A2BR density was different depending on the mouse strain. RSV did not clearly counteract the HFD-induced effects on the adenosinergic system. Besides, no changes in free-cholesterol levels were detected in the plasma membrane of cerebral cortex in both strains. Taken together, our data suggest a different modulation of adenosine receptors depending on the mouse strain, not related to changes in plasma membrane cholesterol content.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Pedro José Izquierdo-Ramírez
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - José Luis Albasanz
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
- Correspondence:
| | - Mairena Martín
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| |
Collapse
|
19
|
Sasaki K, Geribaldi-Doldan N, Szele FG, Isoda H. Grape skin extract modulates neuronal stem cell proliferation and improves spatial learning in senescence-accelerated prone 8 mice. Aging (Albany NY) 2021; 13:18131-18149. [PMID: 34319910 PMCID: PMC8351719 DOI: 10.18632/aging.203373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
In recent years, the number of patients with neurodegenerative illness such as Alzheimer’s disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aβ-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Noelia Geribaldi-Doldan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
20
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
21
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 2021; 44:525-539. [PMID: 33788151 DOI: 10.1007/s13402-021-00598-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain. CONCLUSIONS TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.
Collapse
Affiliation(s)
- Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
23
|
Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer's disease via modulation of proteolytic mechanisms. J Nutr Biochem 2020; 89:108569. [PMID: 33321185 DOI: 10.1016/j.jnutbio.2020.108569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
Cumulative evidence indicates that excessive consumption of calories from saturated fat contributes to the development of Alzheimer's disease (AD). Here, we assess the triggering and progression of AD pathology induced by a high-fat diet (HFD), and the effects of resveratrol, a polyphenol found in common dietary sources with pleiotropic neuroprotective activities. Over 16 weeks, male wild type (WT) and AD transgenic 5XFAD mice were fed a control diet, HFD (60% kcal from fat), or HFD supplemented with 0.1% resveratrol. Resveratrol protected against HFD-induced memory loss in WT mice and prevented memory loss in 5XFAD mice. Resveratrol also reduced the amyloid burden aggravated by HFD in 5XFAD, and protected against HFD-induced tau pathology in both WT and 5XFAD strains. At the mechanistic level, resveratrol inhibited the HFD-increased amyloidogenic processing of the amyloid precursor protein in both strains; it also restored abnormal high levels in the proteolytic activity of the ubiquitin-proteasome system induced by HFD, suggesting the presence of a compensatory mechanism to counteract the accumulation of aberrant proteins. Thus, our data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.
Collapse
|
24
|
Singh P, Sivanandam TM, Konar A, Thakur MK. Role of nutraceuticals in cognition during aging and related disorders. Neurochem Int 2020; 143:104928. [PMID: 33285273 DOI: 10.1016/j.neuint.2020.104928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Cognitive abilities are compromised with advancing age posing a great risk for the development of dementia and other related brain disorders. Genetic susceptibility as well as environmental exposures determine the fate of cognitive aging and its transition to pathological states. Emerging epidemiological and observational studies have revealed the importance of lifestyle factors including dietary patterns and nutritional intake in the maintenance of cognitive health and reducing the risk of neurodegenerative disorders. In this context, nutraceutical interventions have gained considerable attention in preventing age-related cognitive deficits and counteracting pathological processes. Nutraceuticals include dietary plants and derivatives, food supplements and processed foods with nutritional and pharmaceutical values. The present review highlights the importance of nutraceuticals in attenuating cognitive aging and its progression to dementia, with specific emphasis on chemical constituents, neurocognitive properties and mechanism of action.
Collapse
Affiliation(s)
- Padmanabh Singh
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Thamil Mani Sivanandam
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arpita Konar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India.
| | - M K Thakur
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
25
|
Jardim NS, Müller SG, Pase FM, Nogueira CW. Nuclear Factor [Erythroid-derived 2]-like 2 and Mitochondrial Transcription Factor A Contribute to Moderate-intensity Swimming Effectiveness against Memory Impairment in Young Mice Induced by Concomitant Exposure to a High-calorie Diet during the Early Life Period. Neuroscience 2020; 452:311-325. [PMID: 33246070 DOI: 10.1016/j.neuroscience.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Increased energy food consumption during early-life has been associated with memory impairment. Swimming training has been reported to improve memory processes in rodent models. This study aimed to evaluate whether moderate-intensity swimming training counteracts learning and memory impairment in young mice fed a high-calorie diet during the early-life period. The contribution of hippocampal oxidative stress, as well as nuclear factor [erythroid-derived 2]-like 2/Kelch-like ECH-associated protein (NRF2/Keap-1/HO-1) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha/mitochondrial transcription factor A (PCG-1α/mtTFA) signaling, in memory effects was also investigated. Three-week-old male Swiss mice received a high-calorie diet (20% fat; 20% carbohydrate enriched) or a standard diet from 21 to 49 postnatal days. Mice performed a moderate-intensity swimming protocol (5 days/week) and behavioral tests predictive of memory function. Mice fed a high-calorie diet and subjected to the swimming protocol performed better on short- and long-term spatial and object recognition memory tests than those fed a high-calorie diet. The swimming protocol modulated the hippocampal NRF2/Keap-1/HO-1 and mtTFA pathways in mice fed a high-calorie diet. Swimming training positively affected location and long-term memory, fat mass content, as well as NRF2/Keap-1/HO-1 and mtTFA proteins of control-diet-fed mice. In conclusion, a moderate-intensity swimming training evoked an adaptive response in mice fed a high-calorie diet by restoring different types of memory-impaired and hippocampal oxidative stress as well as upregulated the NRF2/Keap-1/HO-1 and mtTFA pathways.
Collapse
Affiliation(s)
- Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Sabrina Grendene Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Flávia Matos Pase
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
26
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
27
|
Huang TY, Yu CP, Hsieh YW, Lin SP, Hou YC. Resveratrol stereoselectively affected (±)warfarin pharmacokinetics and enhanced the anticoagulation effect. Sci Rep 2020; 10:15910. [PMID: 32985569 PMCID: PMC7522226 DOI: 10.1038/s41598-020-72694-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RVT) has various beneficial bioactivities and popularly used as a dietary supplement. RVT showed inhibitions on CYP1A2/2C9/3A4, breast cancer resistance protein (BCRP), and some conjugated metabolites of RVT also inhibited BCRP. (±)Warfarin, an anticoagulant for cardiovascular disease but with narrow therapeutic window, were substrates of CYP1A2/3A4(R-form), 2C9(S-form) and BCRP. We hypothesized that the concurrent use of RVT might affect the metabolism and excretion of warfarin. This study investigated the effect of RVT on the pharmacokinetics and anticoagulation effect of (±)warfarin. Rats were orally given (±)warfarin (0.2 mg/kg) without and with RVT (100 mg/kg) in a parallel design. The results showed that RVT significantly increased the AUC0-t of S-warfarin and international normalized ratio. Mechanism studies showed that both RVT and its serum metabolites (RSM) inhibited BCRP-mediated efflux of R- and S-warfarin. Moreover, RSM activated CYP1A2/3A4, but inhibited CYP2C9. In conclusion, concomitant intake of RVT increased the systemic exposure of warfarin and enhanced the anticoagulation effect mainly via inhibitions on BCRP and CYP2C9.
Collapse
Affiliation(s)
- Tse-Yin Huang
- Ph.D. Program for Biotech Pharmaceutical Industry, School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Chung-Ping Yu
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC
| | - Yow-Wen Hsieh
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC
| | - Shiuan-Pey Lin
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC. .,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC.
| |
Collapse
|
28
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
29
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|
30
|
Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M. Resveratrol Differently Modulates Group I Metabotropic Glutamate Receptors Depending on Age in SAMP8 Mice. ACS Chem Neurosci 2020; 11:1770-1780. [PMID: 32437602 DOI: 10.1021/acschemneuro.0c00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutamate homeostasis is critical for neurotransmission as this excitatory neurotransmitter has a relevant role in cognition functions through ionotropic and metabotropic glutamate receptors in the central nervous system. During the last years, the role of the group I metabotropic glutamate receptors (mGluRs) in neurodegenerative diseases such as Alzheimer's disease has been intensely investigated. Resveratrol (RSV) is a natural polyphenolic compound that is thought to have neuroprotective properties for human health. However, little is known about the action of this compound on mGluR signaling. Therefore, the aim of this study was to investigate the possible modulation of group I mGluRs in SAMP8 mice five and seven months of age supplemented with RSV in the diet. Data reported herein show that RSV plays a different modulatory action on group I mGluRs: mGluR5 is downregulated as age increases, independently of RSV presence, and mGluR1 is upregulated or downregulated by RSV treatment depending on age (i.e., depending on mGluR5 levels). In addition, a neuroprotective role can be inferred for RSV as lower glutamate levels, higher synapsin levels, and unchanged caspase-3 activity were detected after RSV treatment. In conclusion, our findings indicate that RSV treatment modifies the group I mGluR-mediated glutamatergic system in SAMP8 mice, which could contribute to the beneficial effects of this natural polyphenol.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Mercé Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona 08024, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| |
Collapse
|
31
|
Noda S, Sato S, Fukuda T, Tada N, Hattori N. Aging-related motor function and dopaminergic neuronal loss in C57BL/6 mice. Mol Brain 2020; 13:46. [PMID: 32293495 PMCID: PMC7092461 DOI: 10.1186/s13041-020-00585-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Aging-related dopaminergic neuronal loss and its motor phenotypes are well known. Excessive loss of dopaminergic neurons leads to Parkinson's disease (PD), the most common neurodegenerative disorder characterized by the loss of nigrostriatal dopamine-producing neurons. In mice, however, aging-related dopaminergic neuronal loss and its consequences for motor function are poorly understood. We observed the phenotype of wild-type C57BL/6 mice over an extended period of time. C57BL/6 mice exhibited age-dependent locomotor impairments, including hindlimb defects and the number of dopaminergic neurons decreased in aged mice, contributing to locomotor dysfunction. We observed a reduction in striatal dopamine levels in aged mice using high-performance liquid chromatography (HPLC). Thus, dopamine levels are affected by the loss of dopaminergic neurons. Furthermore, fragmented mitochondria were observed in dopaminergic neurons of aged mice but not in those of young mice. Aging-related dopaminergic neuronal loss and accumulation of damaged mitochondria may underlie the pathophysiology of aging.
Collapse
Affiliation(s)
- Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University, School of Medicine, Tokyo, 105-8461, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
32
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
33
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
34
|
Garcia-Just A, Miró L, Pérez-Bosque A, Amat C, Polo J, Pallàs M, Griñán-Ferré C, Moretó M. Dietary Spray-Dried Porcine Plasma Prevents Cognitive Decline in Senescent Mice and Reduces Neuroinflammation and Oxidative Stress. J Nutr 2020; 150:303-311. [PMID: 31562503 DOI: 10.1093/jn/nxz239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aging is characterized by chronic, low-grade inflammation that correlates with cognitive decline. Dietary supplementation with spray-dried porcine plasma (SDP) reduces immune activation in rodent models of inflammation and aging. OBJECTIVE We investigated whether the anti-inflammatory properties of SDP could ameliorate age-related cognitive deterioration and preserve brain homeostasis in an aging mouse model of senescence. METHODS Male senescence-accelerated prone 8 (SAMP8) mice were used. In Experiment 1, cognitive performance (n = 10-14 mice/group) was analyzed by the novel object recognition test in 2-mo-old mice (2M group) and in mice fed a control diet or a diet supplemented with 8% SDP for 2 (4M-CTL and 4M-SDP groups) and 4 mo (6M-CTL and 6M-SDP groups). In Experiment 2, the permeability of the blood-brain barrier and junctional proteins in brain tissue was assessed, as well as synaptic density, oxidative stress markers, and inflammatory genes and proteins in mice from the 2M, 6M-CTL, and 6M-SDP groups ( n = 5-11). Statistical analyses included one-factor ANOVA followed by Fisher's posthoc test. RESULTS 6M-SDP mice had better cognitive performance than 6M-CTL mice in both short-term (P = 0.024) and long-term (P = 0.017) memory tests. In brain tissue, 6M-SDP mice showed reduced brain capillary permeability (P = 0.034) and increased ZO1 and E-cadherin expression (both P <0.04) compared with 6M-CTL mice. SDP also prevented the NFκB activation observed in 6M-CTL mice (P = 0.002) and reduced Il6 expression and hydrogen peroxide concentration (both P <0.03) observed in 6M-CTL mice. SDP also increased the concentration of IL10 (P = 0.027), an anti-inflammatory cytokine correlated with memory preservation. CONCLUSIONS In senescent SAMP8 mice, dietary supplementation with SDP attenuated cognitive decline and prevented changes in brain markers of neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Alba Garcia-Just
- Department of Biochemistry and Physiology (Physiology Section), Faculty of Pharmacy and Food Sciences, and Institute for Nutrition and Food Safety, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology (Physiology Section), Faculty of Pharmacy and Food Sciences, and Institute for Nutrition and Food Safety, Universitat de Barcelona, Barcelona, Spain.,APC-Europe SLU, Granollers, Spain
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology (Physiology Section), Faculty of Pharmacy and Food Sciences, and Institute for Nutrition and Food Safety, Universitat de Barcelona, Barcelona, Spain
| | - Concepció Amat
- Department of Biochemistry and Physiology (Physiology Section), Faculty of Pharmacy and Food Sciences, and Institute for Nutrition and Food Safety, Universitat de Barcelona, Barcelona, Spain
| | | | - Mercè Pallàs
- Department of Pharmacology, Toxicology, and Medicinal Chemistry (Pharmacology Section), Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, CIBERNED, Universitat de Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology, and Medicinal Chemistry (Pharmacology Section), Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, CIBERNED, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Moretó
- Department of Biochemistry and Physiology (Physiology Section), Faculty of Pharmacy and Food Sciences, and Institute for Nutrition and Food Safety, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Abstract
Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin gene (HTT). While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life, suggesting that aging may play an active role in pathogenesis. Cellular aging is defined as the slow decline in stress resistance and accumulation of damage over time. While different cells and tissues can age at different rates, 9 hallmarks of aging have emerged to better define the cellular aging process. Strikingly, many of the hallmarks of aging are also hallmarks of HD pathology. Models of HD and HD patients possess markers of accelerated aging, and processes that decline during aging also decline at a more rapid rate in HD, further implicating the role of aging in HD pathogenesis. Furthermore, accelerating aging in HD mouse and patient-derived neurons unmasks HD-specific phenotypes, suggesting an active role for the aging process in the onset and progression of HD. Here, we review the overlap between the hallmarks of aging and HD and discuss how aging may contribute to pathogenesis in HD.
Collapse
Affiliation(s)
- Emily Machiela
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Amber L. Southwell
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| |
Collapse
|
36
|
Sánchez-Melgar A, Albasanz JL, Martín M. Polyphenols and Neuroprotection: The Role of Adenosine Receptors. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Sánchez-Melgar
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
37
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J Cell Physiol 2019; 235:4135-4145. [PMID: 31637721 DOI: 10.1002/jcp.29327] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Wingless-type MMTV integration site (Wnt) signaling pathway is considered as an important pathway regulating a variety of biological processes such as tissue formation and homeostasis, cell proliferation, cell migration, cell differentiation, and embryogenesis. Impairment in the Wnt signaling pathway is associated with pathological conditions, particularly cancer. So, modulation of this pathway can be considered as a promising strategy and several drugs have been developed in line with this strategy. Resveratrol (Res) is a naturally occurring nutraceutical compound exclusively found in different fruits and nuts such as grape, peanut, and pistachio. This compound has favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, cardioprotective, and antidiabetic. At the present review, we demonstrate how Res modulates Wnt signaling pathway to exert its pharmacological effects.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
38
|
Puigoriol-Illamola D, Leiva R, Vázquez-Carrera M, Vázquez S, Griñán-Ferré C, Pallàs M. 11β-HSD1 Inhibition Rescues SAMP8 Cognitive Impairment Induced by Metabolic Stress. Mol Neurobiol 2019; 57:551-565. [PMID: 31399953 DOI: 10.1007/s12035-019-01708-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Ageing and obesity have been shown to increase the risk of cognitive decline and Alzheimer's disease (AD). Besides, elevated glucocorticoid (GCs) levels cause metabolic stress and have been associated with the neurodegenerative process. Direct pieces of evidence link the reduction of GCs caused by the inhibition of 11β-HSD type 1 (11β-HSD1) with cognitive improvement. In the present study, we investigated the beneficial effects of 11β-HSD1 inhibitor (i) RL-118 after high-fat diet (HFD) treatment in the senescence-accelerated mouse prone 8 (SAMP8). We found an improvement in glucose intolerance induced by HFD in mice treated with RL-118, a significant reduction in 11β-HSD1 and glucocorticoid receptor (GR) protein levels. Furthermore, specific modifications in the FGF21 activation after treatment with 11β-HSD1i, RL-118, which induced changes in SIRT1/PGC1α/AMPKα pathway, were found. Oxidative stress (OS) and reactive oxygen species (ROS), as well as inflammatory markers and microglial activation, were significantly diminished in HFD mice treated with 11β-HSD1i. Remarkably, treatment with 11β-HSD1i altered PERK pathway in both diet groups, increasing autophagy only in HFD mice group. After RL-118 treatment, a decrease in glycogen synthase kinase 3 (GSK3β) activation, Tau hyperphosphorylation, BACE1 protein levels and the product β-CTF were found. Increases in the non-amyloidogenic secretase ADAM10 protein levels and the product sAPPα were found in both treated mice, regardless of the diet. Consequently, beneficial effects on social behaviour and cognitive performance were found in treated mice. Thus, our results support the therapeutic strategy of selective 11β-HSD1i for the treatment of age-related cognitive decline and AD.
Collapse
Affiliation(s)
- Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Manel Vázquez-Carrera
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain. .,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain.
| |
Collapse
|
39
|
Friel H. Biopharmaceutical Monotargeting versus 'Universal Targeting' of Late-Onset Alzheimer's Disease Using Mixtures of Pleiotropic Natural Compounds. J Alzheimers Dis Rep 2019; 3:219-232. [PMID: 31435619 PMCID: PMC6700529 DOI: 10.3233/adr-190127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A five-year close reading of the scientific literature on late-onset Alzheimer’s disease (AD) has prompted the invention of a novel therapeutic method that biomechanistically targets the targetable disease-process targets of AD with one or another mixture of non-toxic pleiotropic natural compounds. The featured mixture herein is comprised of curcumin, resveratrol, and EGCG. The mixture’s targets include central pathological elements of AD (including amyloid, tau, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, and aberrant neuroinflammation), modifiable risk factors, comorbidities, and epigenetic elements. The featured mixture and other such mixtures are suitable for long-term use, and may be applied to any stage of AD, including primary and secondary prevention. Such mixtures also would be amenable for use as pre-treatment, co-treatment, and post-treatment applications with certain biopharmaceutical agents. The targeting focus here is the major credible hypotheses of AD. The focus of future such articles will include other AD-related targets, modifiable risk factors and comorbidities, APOE4, epigenetic factors, bioavailability, dose response, and implications for clinical testing. The “universal targeting” method described herein—that is, “targeting the targetable targets” of AD using certain mixtures of natural compounds—is reprogrammable and thus is applicable to other chronic neurological conditions, including Parkinson’s disease, vascular dementia, ischemic-stroke prevention and recovery, and sports-related head injuries and sequelae leading to chronic traumatic encephalopathy.
Collapse
|
40
|
Toledo C, Andrade DC, Díaz HS, Inestrosa NC, Del Rio R. Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Mol Neurobiol 2019; 56:8035-8051. [PMID: 31165973 DOI: 10.1007/s12035-019-01655-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) is a major public health issue affecting more than 26 million people worldwide. HF is the most common cardiovascular disease in elder population; and it is associated with neurocognitive function decline, which represent underlying brain pathology diminishing learning and memory faculties. Both HF and neurocognitive impairment are associated with recurrent hospitalization episodes and increased mortality rate in older people, but particularly when they occur simultaneously. Overall, the published studies seem to confirm that HF patients display functional impairments relating to attention, memory, concentration, learning, and executive functioning compared with age-matched controls. However, little is known about the molecular mechanisms underpinning neurocognitive decline in HF. The present review round step recent evidence related to the possible molecular mechanism involved in the establishment of neurocognitive disorders during HF. We will make a special focus on cerebral ischemia, neuroinflammation and oxidative stress, Wnt signaling, and mitochondrial DNA alterations as possible mechanisms associated with cognitive decline in HF. Also, we provide an integrative mechanism linking pathophysiological hallmarks of altered cardiorespiratory control and the development of cognitive dysfunction in HF patients. Graphical Abstract Main molecular mechanisms involved in the establishment of cognitive impairment during heart failure. Heart failure is characterized by chronic activation of brain areas responsible for increasing cardiac sympathetic load. In addition, HF patients also show neurocognitive impairment, suggesting that the overall mechanisms that underpin cardiac sympathoexcitation may be related to the development of cognitive disorders in HF. In low cardiac output, HF cerebral infarction due to cardiac mural emboli and cerebral ischemia due to chronic or intermittent cerebral hypoperfusion has been described as a major mechanism related to the development of CI. In addition, while acute norepinephrine (NE) release may be relevant to induce neural plasticity in the hippocampus, chronic or tonic release of NE may exert the opposite effects due to desensitization of the adrenergic signaling pathway due to receptor internalization. Enhanced chemoreflex drive is a major source of sympathoexcitation in HF, and this phenomenon elevates brain ROS levels and induces neuroinflammation through breathing instability. Importantly, both oxidative stress and neuroinflammation can induce mitochondrial dysfunction and vice versa. Then, this ROS inflammatory pathway may propagate within the brain and potentially contribute to the development of cognitive impairment in HF through the activation/inhibition of key molecular pathways involved in neurocognitive decline such as the Wnt signaling pathway.
Collapse
Affiliation(s)
- C Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de investigación en fisiología del ejercicio, Universidad Mayor, Santiago, Chile
| | - H S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - R Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
41
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
42
|
Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci 2019; 20:ijms20102451. [PMID: 31108962 PMCID: PMC6566187 DOI: 10.3390/ijms20102451] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
In aging and neurodegenerative diseases, loss of distinct type of neurons characterizes disease-specific pathological and clinical features, and mitochondria play a pivotal role in neuronal survival and death. Mitochondria are now considered as the organelle to modulate cellular signal pathways and functions, not only to produce energy and reactive oxygen species. Oxidative stress, deficit of neurotrophic factors, and multiple other factors impair mitochondrial function and induce cell death. Multi-functional plant polyphenols, major groups of phytochemicals, are proposed as one of most promising mitochondria-targeting medicine to preserve the activity and structure of mitochondria and neurons. Polyphenols can scavenge reactive oxygen and nitrogen species and activate redox-responsible transcription factors to regulate expression of genes, coding antioxidants, anti-apoptotic Bcl-2 protein family, and pro-survival neurotrophic factors. In mitochondria, polyphenols can directly regulate the mitochondrial apoptosis system either in preventing or promoting way. Polyphenols also modulate mitochondrial biogenesis, dynamics (fission and fusion), and autophagic degradation to keep the quality and number. This review presents the role of polyphenols in regulation of mitochondrial redox state, death signal system, and homeostasis. The dualistic redox properties of polyphenols are associated with controversial regulation of mitochondrial apoptosis system involved in the neuroprotective and anti-carcinogenic functions. Mitochondria-targeted phytochemical derivatives were synthesized based on the phenolic structure to develop a novel series of neuroprotective and anticancer compounds, which promote the bioavailability and effectiveness. Phytochemicals have shown the multiple beneficial effects in mitochondria, but further investigation is required for the clinical application.
Collapse
|
43
|
Sánchez-Melgar A, Albasanz JL, Guixà-González R, Saleh N, Selent J, Martín M. The antioxidant resveratrol acts as a non-selective adenosine receptor agonist. Free Radic Biol Med 2019; 135:261-273. [PMID: 30898665 DOI: 10.1016/j.freeradbiomed.2019.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol (RSV) is a natural polyphenolic antioxidant with a proven protective role in several human diseases involving oxidative stress, although the molecular mechanism underlying this effect remains unclear. The present work tried to elucidate the molecular mechanism of RSV's role on signal transduction modulation. Our biochemical analysis, including radioligand binding, real time PCR, western blotting and adenylyl cyclase activity, and computational studies provide insights into the RSV binding pathway, kinetics and the most favored binding pose involving adenosine receptors, mainly A2A subtype. In this study, we show that RSV target adenosine receptors (AdoRs), affecting gene expression, receptor levels, and the downstream adenylyl cyclase (AC)/PKA pathway. Our data demonstrate that RSV activates AdoRs. Moreover, RSV activate A2A receptors by directly binding to the classical orthosteric binding site. Intriguingly, RSV-induced receptor activation can stimulate or inhibit AC activity depending on concentration and exposure time. Such subtle and multifaceted regulation of the AdoRs/AC/PKA pathway might contribute to the protective role of RSV. Our findings suggest that RSV molecular action is mediated, at least in part, by activation of adenosine receptors and create the opportunity to interrogate the therapeutic use of RSV in pathological conditions involving AdoRs, such as Alzheimer.
Collapse
Affiliation(s)
- A Sánchez-Melgar
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain; Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - J L Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain; Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain; Facultad de Medicina de Ciudad Real, Camino Moledores s/n, 13071, Ciudad Real, Spain.
| | - R Guixà-González
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - N Saleh
- Section for Biomolecular Sciences, Biology Department, Biocenter, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - J Selent
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) & Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - M Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain; Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain; Facultad de Medicina de Ciudad Real, Camino Moledores s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
44
|
Izquierdo V, Palomera-Ávalos V, López-Ruiz S, Canudas AM, Pallàs M, Griñán-Ferré C. Maternal Resveratrol Supplementation Prevents Cognitive Decline in Senescent Mice Offspring. Int J Mol Sci 2019; 20:ijms20051134. [PMID: 30845644 PMCID: PMC6429303 DOI: 10.3390/ijms20051134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer’s Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate the beneficial effects of maternal resveratrol supplementation in the direct exposed F1 generation and the transgenerational F2 generation. The offspring was generated from females Senescence Accelerated Mouse-Prone (SAMP8) fed a resveratrol-enriched diet for two months prior to mating. Object novel recognition and Morris Water Maze (MWM) demonstrated improvements in cognition in the 6-month-old F1 and F2 generations from resveratrol fed mothers. A significant increase in global DNA methylation with a decrease in hydroxymethylation in F1 and F2 were found. Accordingly, Dnmt3a/b and Tet2 gene expression changed. Methylation levels of Nrf2 and NF-kβ genes promoters raised in offspring, inducing changes in target genes expression, as well as hydrogen peroxide levels. Offspring that resulted from a resveratrol fed mother showed increase AMPKα activation, mTOR inhibition, and an increase in Pgc-1α gene expression and Beclin-1 protein levels. Endoplasmic reticulum stress sensors were found changed both in F1 and F2 generations. Overall, our results demonstrated that maternal resveratrol supplementation could prevent cognitive impairment in the SAMP8 mice offspring through epigenetic changes and cell signaling pathways.
Collapse
Affiliation(s)
- Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, km 15.5 Guadalajara-Nogales highway, C.P. 45110 Zapopan, Jalisco, Mexico.
| | - Sergio López-Ruiz
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Anna-Maria Canudas
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| |
Collapse
|
45
|
Zhao Z, Yao M, Wei L, Ge S. Obesity caused by a high-fat diet regulates the Sirt1/PGC-1α/FNDC5/BDNF pathway to exacerbate isoflurane-induced postoperative cognitive dysfunction in older mice. Nutr Neurosci 2019; 23:971-982. [PMID: 30794116 DOI: 10.1080/1028415x.2019.1581460] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: To investigate the effects of obesity caused by high-fat diet (HFD) on postoperative cognitive dysfunction (POCD) and expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus of older mice. Methods: Fifty-six 15-month-old male C57BL/6 mice were randomly divided into eight groups - ad libitum control (ALC), ad libitum surgery (ALS), ad libitum surgery with PBS (ALS + PBS), ad libitum surgery with resveratrol (ALS + Res), HFD control (HFC), HFD surgery (HFS), HFD surgery with PBS (HFS + PBS), HFD surgery with resveratrol (HFS + Res). Surgery group mice were exposed to isoflurane before tibial fracture internal fixation. Open field tests and fear conditioning were performed to test motor ability and memory. The levels of expression of Sirt1, PGC-1α, FNDC5, and BDNF were detected using western blot and immunofluorescence. Results: The results of the open field tests indicated there were no between-group differences in motor ability and anxiety. The results of the fear conditioning indicated that the memory of the HFC group and HFS group mice were significantly worse compared with the ALC group and ALS group mice, respectively. There were parallel decreases in expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampi of the HFC and HFS group mice. Resveratrol treatment attenuated the memory loss by increasing hippocampal Sirt1 expression. Expression of the PGC-1α/FNDC5/ BDNF pathway in the CA1 area of the hippocampus was upregulated after resveratrol treatment. Conclusion: An HFD exacerbates POCD in older mice. This change was related to HFD inhibition of expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus. Resveratrol pretreatment reversed the memory loss via upregulation of this pathway.
Collapse
Affiliation(s)
- Zhimeng Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Minmin Yao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lan Wei
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Pseudoginsenoside-F11 alleviates cognitive deficits and Alzheimer’s disease-type pathologies in SAMP8 mice. Pharmacol Res 2019; 139:512-523. [DOI: 10.1016/j.phrs.2018.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
47
|
Pezzuto JM. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol Ther (Seoul) 2019; 27:1-14. [PMID: 30332889 PMCID: PMC6319551 DOI: 10.4062/biomolther.2018.176] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Resveratrol was first isolated in 1939 by Takaoka from Veratrum grandiflorum O. Loes. Following this discovery, sporadic descriptive reports appeared in the literature. However, spurred by our seminal paper published nearly 60 years later, resveratrol became a household word and the subject of extensive investigation. Now, in addition to appearing in over 20,000 research papers, resveratrol has inspired monographs, conferences, symposia, patents, chemical derivatives, etc. In addition, dietary supplements are marketed under various tradenames. Once resveratrol was brought to the limelight, early research tended to focus on pharmacological activities related to the cardiovascular system, inflammation, and cancer but, over the years, the horizon greatly expanded. Around 130 human clinical trials have been (or are being) conducted with varying results. This may be due to factors such as disparate doses (ca. 5 to 5,000 mg/day) and variable experimental settings. Further, molecular targets are numerous and a dominant mechanism is elusive or nonexistent. In this context, the compound is overtly promiscuous. Nonetheless, since the safety profile is pristine, and use as a dietary supplement is prevalent, these features are not viewed as detrimental. Given the ongoing history of resveratrol, it is reasonable to advocate for additional development and further clinical investigation. Topical preparations seem especially promising, as do conditions that can respond to anti-inflammatory action and/or direct exposure, such as colon cancer prevention. Although the ultimate fate of resveratrol remains an open question, thus far, the compound has inspired innovative scientific concepts and enhanced public awareness of preventative health care.
Collapse
Affiliation(s)
- John M Pezzuto
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| |
Collapse
|
48
|
Chia Seed Does Not Improve Cognitive Impairment in SAMP8 Mice Fed with High Fat Diet. Nutrients 2018; 10:nu10081084. [PMID: 30110883 PMCID: PMC6115970 DOI: 10.3390/nu10081084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Chia seed is an ancient seed with the richest plant source of α-linolenic acid, which has been demonstrated to improve metabolic syndrome associated risk factors. Under high fat diet (HFD) condition, the senescence-accelerated mouse-prone 8 (SAMP8) mice demonstrated worsen Alzheimer’s disease (AD) related pathology compared to low fat diet fed SAMP8 mice. Objective: To explore whether chia seed supplementation might improve cognitive impairment under aging and metabolic stress via high fat diet (HFD) fed SAMP8 mice as a model. Design: SAMP8 mice and senescence-accelerated mouse-resistant 1 (SAMR1) were randomized into 4 groups, i.e., SAMR1 low fat diet group (SAMR1-LFD), SAMP8-HFD and SAMP8-HFD group supplemented with 10% chia seed (SAMP8-HFD+Chia). At the end of the intervention, cognitive function was measured via Morris water maze (MWM) test. Hippocampus and parietal cortex were dissected for further analysis to measure key markers involved AD pathology including Aβ, tau and neuro-inflammation. Results: During navigation trials of MWM test, mice in SAMP8-LFD group demonstrated impaired learning ability compared to SAMR1-LFD group, and chia seed had no effect on learning and memory ability for HFD fed SAMP8 mice. As for Alzheimer’s disease (AD) related pathology, chia seed not only increased α-secretase such as ADAM10 and insulin degrading enzyme (IDE), but also increased β-secretase including beta-secretase 1 (BACE1) and cathepsin B, with an overall effects of elevation in the hippocampal Aβ42 level; chia seed slightly reduced p-Tauser404 in the hippocampus; while an elevation in neuro-inflammation with the activation of glial fibrillary acidic protein (GFAP) and Ibα-1 were observed post chia seed supplementation. Conclusions: Chia seed supplementation did not improve cognitive impairment via MWM in HFD fed SAMP8 mice. This might be associated with that chia seed increased key enzymes involved both in non-amyloidogenic and amyloidogenic pathways, and neuro-inflammation. Future studies are necessary to confirm our present study.
Collapse
|
49
|
Ebrahimi KB, Cano M, Rhee J, Datta S, Wang L, Handa JT. Oxidative Stress Induces an Interactive Decline in Wnt and Nrf2 Signaling in Degenerating Retinal Pigment Epithelium. Antioxid Redox Signal 2018; 29:389-407. [PMID: 29186981 PMCID: PMC6025703 DOI: 10.1089/ars.2017.7084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Cells have evolved a highly sophisticated web of cytoprotective systems to neutralize unwanted oxidative stress, but are challenged by unique modern day stresses such as cigarette smoking and ingestion of a high-fat diet (HFD). Age-related disease, such as age-related macular degeneration (AMD), the most common cause of blindness among the elderly in Western societies, develops in part, when oxidative stress overwhelms cytoprotective systems to injure tissue. Since most studies focus on the protection by a single protective system, the aim of this study was to investigate the impact of more than one cytoprotective system against oxidative stress. RESULTS Wingless (Wnt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), two fundamental signaling systems that are vital to cell survival, decline after mice are exposed to chronic cigarette smoke and HFD, two established AMD risk factors, in a bidirectional feedback loop through phosphorylated glycogen synthase kinase 3 beta. Decreased Wnt and Nrf2 signaling leads to retinal pigment epithelial dysfunction and apoptosis, and a phenotype that is strikingly similar to geographic atrophy (GA), an advanced form of AMD with no effective treatment. INNOVATION This study is the first to show that chronic oxidative stress from common modern day environmental exposures reduces two fundamental and vital cytoprotective networks in a bidirectional feedback loop, and their decline leads to advanced disease phenotype. CONCLUSION Our data offer new insights into how combined modern oxidative stresses of cigarette smoking and HFD contribute to GA through an interactive decline in Wnt and Nrf2 signaling. Antioxid. Redox Signal. 29, 389-407.
Collapse
Affiliation(s)
- Katayoon B Ebrahimi
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marisol Cano
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John Rhee
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sayantan Datta
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Wang
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Resveratrol Modulates and Reverses the Age-Related Effect on Adenosine-Mediated Signalling in SAMP8 Mice. Mol Neurobiol 2018; 56:2881-2895. [DOI: 10.1007/s12035-018-1281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
|