1
|
Camille H, Pierre G. Glycosylation in neurodevelopment: What oncology teaches? Neurobiol Dis 2025; 211:106945. [PMID: 40348202 DOI: 10.1016/j.nbd.2025.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Neurodevelopment is a highly complex process, sensitive to a multitude of signaling pathways linked to molecular processes involved in neuronal development and function, metabolism, and immune functions. Key pathways include cell-cycle regulation (PI3K/Akt/mTOR, p53/PTEN), JAK-STAT, Notch, SLIT/Robo, epithelial-mesenchymal transition (EMT) and cellular homeostasis processes such as apoptosis, autophagy and hypoxia. Transcription regulation (including histone and epigenetic regulation) and immune regulation (NF-kB, Toll-like receptors (TLRs)) play a crucial role. Glycosylation abnormalities related to these molecular processes have been described in cancer. However, while cancer research and therapies have been revolutionized by the study of glycosylation, mechanistic insights and therapeutic approaches are still struggling to develop in neurodevelopmental pathologies. This study is a blueprint to unravel the key pathological pathways in neurodevelopment by highlighting the benefits of studying the associated regulatory processes of glycosylation, which have led to major advances in cancer research.
Collapse
Affiliation(s)
- Hours Camille
- Service de Neurochirurgie, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| | - Gressens Pierre
- Université Paris Cité, NeuroDiderot, Inserm, 48, Boulevard Sérurier, 75019 Paris, France.
| |
Collapse
|
2
|
Zhang M, Hong Y, Yu W, Zhang Y, Shen Y, Cai Z, Jia R, Pang Z, Huang X, Huang Y, Gao X, Liu Y, Qu Y, Yang Q, Zhang X, Zhu A, Ao H. IL-17 enhanced the susceptibility to fluoxetine resistance in depression via the JAK1-STAT6 signaling pathway. Int Immunopharmacol 2025; 155:114513. [PMID: 40233450 DOI: 10.1016/j.intimp.2025.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
AIMS This study aims to investigate the role of IL-17 in fluoxetine resistance in depression. METHODS The Weighted Gene Coexpression Network Analysis (WGCNA) was utilized to analyze differentially expressed genes between response to antidepressant (GRA) group and the resistance to antidepressant (AR) group. Furthermore, a treatment resistance model of depression was established in Chronic unpredictable mild stress (CUMS) mice administrated with fluoxetine (widely used clinical medication for the treatment of depression) according to sucrose preference rate. Depression-like behaviors in mice were detected in Control group, CUMS group, GRA group, AR group, and SR1001 (Th17 differentiation inhibitor) group. Subsequently, HT22 cells were exposed to IL-17 secreted by Th17 differentiation. Transcriptome sequencing from the Control and IL-17 group was used to screen differential genes. HT22 cells were then transfected with si-JAK1 or si-STAT6. Th17 differentiation, the integrity of the blood-brain barrier (BBB), JAK1-STAT6 signaling pathway related proteins were detected by western blot, immunocytochemistry, flow cytometric analysis, ELISA experiments, immunofluorescence, and PCR. RESULT The WGCNA showed that Th17 differentiation played an important role in the treatment resistance of depression. The results of the following animal experiments showed that fluoxetine resistance resulted in a reduction in total distance and average speed in the Open Field Test (OFT), an increase in immobility time during the Forced Swim Test (FST) and Tail Suspension Test (TST). It also regulated the expression of the SERT protein, Th17 differentiation, IL-17 secretion, and compromised the integrity of BBB, yielding similar outcomes in CUMS mice. However, these results could be reversed by SR1001. Moreover, IL-17 effectively elevated the SERT protein level and activated the JAK1-STAT6 signaling pathway in vivo and in vitro. CONCLUSION The inhibition of Th17 differentiation and the reduction of peripheral IL-17 release could decrease sensitivity to fluoxetine resistance and relieve the depression-like behavior. This process might be associated with the JAK1-STAT6 pathway.
Collapse
Affiliation(s)
- Mingjia Zhang
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wumin Yu
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, China
| | - Yineng Shen
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziling Cai
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruiting Jia
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zixin Pang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang,China
| | - Xueru Huang
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yike Huang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang,China
| | - Xing Gao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang,China
| | - YueYing Liu
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanguo Qu
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingqing Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang,China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, Zhejiang, China.
| | - Aisong Zhu
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Haiqing Ao
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
4
|
Sun B, Wu M, Ru Y, Meng Y, Zhang X, Wang F, Xia Z, Yang L, Zhai Y, Li G, Hu J, Qi B, Jia P, Liao S, Wang S, Zhao M, Zheng X. A Novel Compound DBZ Alleviates Chronic Inflammatory Pain and Anxiety-Like Behaviors by Targeting the JAK2-STAT3 Signaling Pathway. J Biol Chem 2025:110223. [PMID: 40349773 DOI: 10.1016/j.jbc.2025.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/15/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Chronic pain profoundly disrupts patients' daily lives and places a heavy burden on their families. Tanshinol Borneol Ester (DBZ), a novel synthetic derivative, has demonstrated anti-inflammatory and anti-atherosclerotic effects, yet its impact on the central nervous system (CNS) remains largely unexplored. This study systematically examines the CNS effects of DBZ through a combination of in vivo, in vitro, network pharmacology, and molecular docking approaches. In vivo, we utilized a mouse model of chronic inflammation induced by complete Freund's adjuvant (CFA) to evaluate DBZ's influence on pain, anxiety-like behaviors, and its modulation of inflammatory and oxidative stress markers within the anterior cingulate cortex (ACC). In vitro studies on primary mouse astrocytes assessed DBZ's effects on cell viability and inflammatory marker expression. Network pharmacology was employed to elucidate DBZ's potential molecular targets and pathways, While molecular docking provides valuable docking confirmed its interactions with key components of the JAK2-STAT3 signaling pathway. Our findings demonstrate that DBZ effectively mitigates CFA-induced chronic pain and anxiety-like behaviors. It significantly suppresses astrocytes activation, reduces levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, and diminishes oxidative stress markers such as ROS and MDA, while enhancing SOD levels. Moreover, DBZ modulates excitatory synaptic proteins and the JAK2-STAT3 signaling pathway in the ACC, suggesting its role in neuroprotection. These results position DBZ as a promising candidate for the treatment of chronic pain and anxiety, offering a potential foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Mengyao Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yilin Ru
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yaxi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Xin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Fengyun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, Xi'an Daxing Hospital, Xi'an, 710082, PR, China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China
| | - Yufei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Gufeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Jinming Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Bing Qi
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China.
| |
Collapse
|
5
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
6
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Pan GP, Liu YH, Qi MX, Guo YQ, Shao ZL, Liu HT, Qian YW, Guo S, Yin YL, Li P. Alizarin attenuates oxidative stress-induced mitochondrial damage in vascular dementia rats by promoting TRPM2 ubiquitination and proteasomal degradation via Smurf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156119. [PMID: 39418971 DOI: 10.1016/j.phymed.2024.156119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alizarin (AZ) is a natural anthraquinone with anti-inflammatory and moderate antioxidant properties. PURPOSE In this study, we characterized the role of AZ in a rat model of vascular dementia (VaD) and explored its underlying mechanisms. METHODS VaD was induced by bilateral common carotid artery occlusion. RESULTS We found that AZ attenuated oxidative stress and improved mitochondrial structure and function in VaD rats, which led to the improvement of their learning and memory function. Mechanistically, AZ reduced transient receptor potential melastatin 2 (TRPM2) expression and activation of the Janus-kinase and signal transducer activator of transcription (JAK-STAT) pathway in VaD rats. In particular, the reduction in the expression of TRPM2 channels was the key to the attenuation of the oxidative stress-induced mitochondrial damage, which may be achieved by increasing the expression of the E3 ubiquitin ligase, Smad-ubiquitination regulatory factor 2 (Smurf2); thereby increasing the ubiquitination and degradation levels of TRPM2. CONCLUSION Our results suggest that AZ is an effective candidate drug for ameliorating VaD and provide new insights into the current clinical treatment of VaD.
Collapse
Affiliation(s)
- Guo-Pin Pan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Hua Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xu Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhen-Lei Shao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui-Ting Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicien, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
8
|
Hosseini R, Emadian S, Dogani M, Ghazanfari T, Askari N. Chronic stress modulates the expression level of leptin and leptin receptors in the hypothalamus of male rats with a history of maternal stress. Brain Behav Immun Health 2024; 42:100895. [PMID: 39559273 PMCID: PMC11570818 DOI: 10.1016/j.bbih.2024.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
The activity of different neurotransmitter pathways in the hypothalamus controls the stress response. Meanwhile, leptin is known as an effective mediator in the stress response, and its serum and brain levels change when exposed to stressful factors. In this study, the effect of chronic social instability stress (INS) and chronic unpredictable stress (CUS) on anxiety-like behavioral responses and the level of expression of leptin and its receptor in the brain of male Wistar rats that were under maternal stress (MS) were investigated. Grouping: control (n = 7), MS (n = 7), INS (n = 7), CUS (n = 7), MS + INS (n = 7), MS + CUS (n = 7). Forced swimming, elevated plus-maze, and open field tests were used to check anxiety-like behaviors. Next, the mRNA expression of leptin and its receptor in the hypothalamus was measured by Real-Time PCR. According to the results, adult rats with maternal stress showed an increase in their anxiety-like behaviors faced with the stress of chronic social instability and chronic unpredictable stress (compared to the groups that only received adult stresses). Also, the hypothalamic expression of leptin decreased, but we saw an increase in the expression of hypothalamic leptin receptors in INS, CUS, and MS groups and a decrease in MS + INS and MS + CUS groups. Results of this research suggest that leptin plays a role as an effective mediator in the occurrence of central and behavioral changes caused by maternal stress. In other words, it can be effective in changing resilience in the face of adult stress.
Collapse
Affiliation(s)
- Roya Hosseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Sara Emadian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Touba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| |
Collapse
|
9
|
Moon J, Cho KH, Jhun J, Choi J, Na HS, Lee JS, Lee SY, Min JK, Shetty A, Park SH, Kim SJ, Cho ML. Small heterodimer partner-interacting leucine zipper protein suppresses pain and cartilage destruction in an osteoarthritis model by modulating the AMPK/STAT3 signaling pathway. Arthritis Res Ther 2024; 26:199. [PMID: 39533324 PMCID: PMC11555939 DOI: 10.1186/s13075-024-03417-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of joint cartilage and adjacent bone. Joint injury, being overweight, differences in leg length, high levels of joint stress, abnormal joint or limb development, and inherited factors have been implicated in the etiology of OA. In addition to physical damage to the joint, a role for inflammatory processes has been identified as well. Small heterodimer partner-interacting leucine zipper protein (SMILE) regulates transcription and many cellular functions. Among the proteins activated by SMILE is the peroxisome proliferator-activated receptor (PPAR) γ, which mediates the activities of CD4 + T helper cells, including Th1, Th2, and Th17, as well as Treg cells. PPAR-γ binds to STAT3 to inhibit its transcription, thereby suppressing the expression of the NF-κB pathway, and in turn, the expression of the inflammatory cytokines interferon (IFN), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which are sub-signals of STAT3 and NF-κB. METHODS OA was induced in control C57BL/6 mice and in C57BL/6-derived SMILE-overexpressing transgenic (SMILE Tg) mice. The protein expression levels in the joint and spleen tissues were analyzed by immunohistochemistry and immunofluorescence images. In addition, flow cytometry was performed for detecting changes of the changes of immune cells. RESULTS Less cartilage damage and significantly reduced levels of OA biomarkers (MMP13, TIMP3 and MCP-1) were observed in SMILE Tg mice. Immunohistochemistry performed to identify the signaling pathway involved in the link between SMILE expression and OA revealed decreased levels of IL-1β, IL-6, TNF-α, and phosphorylated AMPK in synovial tissues as well as a significant decrease in phosphorylated STAT3 in both cartilage and synovium. Changes in systemic immune cells were investigated via flow cytometry to analyze splenocytes isolated from control and SMILE Tg mice. SMILE Tg mice had elevated proportions of CD4 + IL-4 + cells (Th2) and CD4 + CD25 + Foxp3 + cells (Treg) and a notable decrease in CD4 + IL-17 + cells (Th17). CONCLUSION Our results show that overexpressed SMILE attenuates the symptoms of OA, by increasing AMPK signaling and decreasing STAT3, thus reducing the levels of inflammatory immune cells.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JooYeon Jhun
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JeongWon Choi
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hyun-Sik Na
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong Su Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seung Yoon Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon si, Gyeonggi-do, Korea
| | - Anan Shetty
- Institute of Medical Sciences, Canterbury Christ Church University, Medway Campus, Chatham, Kent, UK
| | - Sung-Hwan Park
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo‑daero, Seocho‑gu, Seoul, 06591, Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 271, Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
10
|
Alnakhli AM, Saleh A, Kabel AM, Estfanous RS, Borg HM, Alsufyani KM, Sabry NM, Gomaa FAM, Abd Elmaaboud MA. Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1802. [PMID: 39596986 PMCID: PMC11596946 DOI: 10.3390/medicina60111802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Autism is a developmental disability characterized by impairment of motor functions and social communication together with the development of repetitive or stereotyped behaviors. Neither the exact etiology or the curative treatment of autism are yet completely explored. The goals of this study were to evaluate the possible effects of perindopril on a rat model of autism and to elucidate the possible molecular mechanisms that may contribute to these effects. Materials and Methods: In a rat model of sodium valproate (VPA)-induced autism, the effect of postnatal administration of different doses of perindopril on growth and motor development, social and repetitive behaviors, sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling in the hippocampal tissues were investigated. The histopathological and electron microscopic changes elicited by administration of the different treatments were also investigated. Results: Perindopril dose-dependently combatted the effects of prenatal exposure to VPA on growth and maturation, motor development, and social and repetitive behaviors. In addition, the different doses of perindopril ameliorated the effects of prenatal exposure to VPA on sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling. These effects had a mitigating impact on VPA-induced histopathological and electron microscopic changes in the hippocampal tissues. Conclusions: Perindopril may emerge as a promising agent for amelioration of the pathologic changes of autism spectrum disorders.
Collapse
Affiliation(s)
- Anwar M. Alnakhli
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.M.A.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.M.A.); (A.S.)
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Remon S. Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Hany M. Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | | | - Nesreen M. Sabry
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Fatma Alzahraa M. Gomaa
- Pharamcognosy and Medicinal Herbs Department, Faculty of Pharmacy, Al-Baha University, AlBaha 65779, Saudi Arabia;
| | | |
Collapse
|
11
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
12
|
Xiong C, Zhang M, Yang H, Wei X, Zhao C, Zhang J. Modelling cell type-specific lncRNA regulatory network in autism with Cycle. BMC Bioinformatics 2024; 25:307. [PMID: 39333906 PMCID: PMC11430139 DOI: 10.1186/s12859-024-05933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a class of complex neurodevelopment disorders with high genetic heterogeneity. Long non-coding RNAs (lncRNAs) are vital regulators that perform specific functions within diverse cell types and play pivotal roles in neurological diseases including ASD. Therefore, exploring lncRNA regulation would contribute to deciphering ASD molecular mechanisms. Existing computational methods utilize bulk transcriptomics data to identify lncRNA regulation in all of samples, which could reveal the commonalities of lncRNA regulation in ASD, but ignore the specificity of lncRNA regulation across various cell types. RESULTS Here, we present Cycle (Cell type-specific lncRNA regulatory network) to construct the landscape of cell type-specific lncRNA regulation in ASD. We have found that each ASD cell type is unique in lncRNA regulation, and more than one-third and all cell type-specific lncRNA regulatory networks are characterized as scale-free and small-world, respectively. Across 17 ASD cell types, we have discovered 19 rewired and 11 stable modules, along with eight rewired and three stable hubs within the constructed cell type-specific lncRNA regulatory networks. Enrichment analysis reveals that the discovered rewired and stable modules and hubs are closely related to ASD. Furthermore, more similar ASD cell types tend to be connected with higher strength in the constructed cell similarity network. Finally, the comparison results demonstrate that Cycle is a potential method for uncovering cell type-specific lncRNA regulation. CONCLUSION Overall, these results illustrate that Cycle is a promising method to model the landscape of cell type-specific lncRNA regulation, and provides insights into understanding the heterogeneity of lncRNA regulation between various ASD cell types.
Collapse
Affiliation(s)
- Chenchen Xiong
- School of Engineering, Dali University, Dali, Yunnan, China
- Beijing CapitalBio Pharma Technology Co.,Ltd., Beijing, China
| | | | - Haolin Yang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan, China.
| |
Collapse
|
13
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
14
|
Kumar S, Mehan S, Khan Z, Das Gupta G, Narula AS. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Mol Neurobiol 2024; 61:5161-5193. [PMID: 38170440 DOI: 10.1007/s12035-023-03902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
15
|
Prajapati A, Mehan S, Khan Z, Chhabra S, Das Gupta G. Purmorphamine, a Smo-Shh/Gli Activator, Promotes Sonic Hedgehog-Mediated Neurogenesis and Restores Behavioural and Neurochemical Deficits in Experimental Model of Multiple Sclerosis. Neurochem Res 2024; 49:1556-1576. [PMID: 38160216 DOI: 10.1007/s11064-023-04082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| |
Collapse
|
16
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
17
|
Frederico Gava F, Jaconi De Carli R, Stork S, Gainski Danielski L, Bonfante S, Joaquim L, Lino Lobo Metzker K, Mathias K, Santos D, Darós G, Goulart M, Mariano de Bitencourt R, Somariva Prophiro J, Ludvig Gonçalves C, Generoso J, Barichello T, Petronilho F. Cannabidiol effect on long-term brain alterations in septic rats: Involvement of PPARγ activation. Brain Res 2024; 1828:148771. [PMID: 38242525 DOI: 10.1016/j.brainres.2024.148771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Sepsis is a life-threatening condition induced by a deregulated host response to infection. Post-sepsis injury includes long-term cognitive impairment, whose neurobiological mechanisms and effective treatment remain unknown. The present study was designed to determine the potential effects of cannabidiol (CBD) in a sepsis-associated encephalopathy (SAE) model and explore if peroxisome proliferator activated receptor gamma (PPARγ) is the putative mechanism underpinning the beneficial effects. SAE was induced in Wistar rats by cecal ligation and puncture (CLP) or sham (control). CLP rats received vehicle, CBD (10 mg/kg), PPARγ inhibitor (GW9662 - 1 mg/kg), or GW9662 (1 mg/kg) + CBD (10 mg/kg) intraperitoneally for ten days. During this period, the survival rate was recorded, and at the end of 10 days, a memory test was performed, and the prefrontal cortex and hippocampus were removed to verify brain-derived neurotrophic factor (BDNF), cytokines (IL-1β, IL-6 and IL-10), myeloperoxidase activity, nitrite nitrate concentration, and lipid and protein carbonylation and catalase activity. Septic rats presented cognitive decline and an increase in mortality following CLP. Only CBD alone improved the cognitive impairment, which was accompanied by restoration of BDNF, reduced neuroinflammation, and oxidative stress, mainly in the hippocampus. This study shows that CLP induces an increase in brain damage and CBD has neuroprotective effects on memory impairment and neurotrophins, as well as against neuroinflammation and oxidative stress, and is mediated by PPARγ activation.
Collapse
Affiliation(s)
- Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Raquel Jaconi De Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Sandra Bonfante
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Khiany Mathias
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - David Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Guilherme Darós
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
18
|
Lin Y, Hu L, Li X, Ma J, Li Q, Yuan X, Zhang Y. The beneficial and toxic effects of selenium on zebrafish. A systematic review of the literature. Toxicol Res (Camb) 2024; 13:tfae062. [PMID: 38645626 PMCID: PMC11031411 DOI: 10.1093/toxres/tfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Selenium is an important and essential trace element in organisms, but its effects on organisms are also a "double-edged sword". Selenium deficiency or excess can endanger the health of humans and animals. In order to thoroughly understand the nutritional value and toxicity hazards of selenium, researchers have conducted many studies on the model animal zebrafish. However, there is a lack of induction and summary of relevant research on which selenium acts on zebrafish. This paper provides a review of the reported studies. Firstly, this article summarizes the benefits of selenium on zebrafish from three aspects: Promoting growth, Enhancing immune function and anti-tumor ability, Antagonizing some pollutants, such as mercury. Then, three aspects of selenium toxicity to zebrafish are introduced: nervous system and behavior, reproductive system and growth, and damage to some organs. This article also describes how different forms of selenium compounds have different effects on zebrafish health. Finally, prospects for future research directions are presented.
Collapse
Affiliation(s)
- Yuanshan Lin
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liyun Hu
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xinhang Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jie Ma
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qipeng Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaofan Yuan
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuan Zhang
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Ge Y, Wu J, Zhang L, Huang N, Luo Y. A New Strategy for the Regulation of Neuroinflammation: Exosomes Derived from Mesenchymal Stem Cells. Cell Mol Neurobiol 2024; 44:24. [PMID: 38372822 PMCID: PMC10876823 DOI: 10.1007/s10571-024-01460-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Neuroinflammation is an important pathogenesis of neurological diseases and causes a series of physiopathological changes, such as abnormal activation of glial cells, neuronal degeneration and death, and disruption of the blood‒brain barrier. Therefore, modulating inflammation may be an important therapeutic tool for treating neurological diseases. Mesenchymal stem cells (MSCs), as pluripotent stem cells, have great therapeutic potential for neurological diseases due to their regenerative ability, immunity, and ability to regulate inflammation. However, recent studies have shown that MSC-derived exosomes (MSC-Exos) play a major role in this process and play a key role in neuroprotection by regulating neuroglia. This review summarizes the recent progress made in regulating neuroinflammation by focusing on the mechanisms by which MSC-Exos are involved in the regulation of glial cells through signaling pathways such as the TLR, NF-κB, MAPK, STAT, and NLRP3 pathways to provide some references for subsequent research and therapy.
Collapse
Affiliation(s)
- Ying Ge
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jingjing Wu
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Li Zhang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Chen T, Jiang H, He Y, Shen Y, Fang J, Huang Z, Shen Y, Chen X. Histopathological, physiological, and multi-omics insights into the hepatotoxicity mechanism of nanopolystyrene and/or diclofenac in Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122894. [PMID: 37944890 DOI: 10.1016/j.envpol.2023.122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoji He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajie Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zequn Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
22
|
Chao C, Li Y, Li Q, Wu G. Inhibitory effect and mechanism of Rosiglitazone on M1 type polarization of central microglia in intracerebral hemorrhage mice based on JNK/STAT3 signaling pathway. Brain Behav 2023; 13:e3275. [PMID: 37837628 PMCID: PMC10726784 DOI: 10.1002/brb3.3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) seriously threatens the health of people. In addition, microglia M1 polarization was confirmed to be involved in the progression of ICH. Rosiglitazone was able to be used as an antidiabetic agent, which could activate PPAR-γ, and PPAR-γ was reported to inhibit inflammation in microglia. However, the detailed function of Rosiglitazone in ICH remains unclear. METHODS In vivo and in vitro experiments were used to test the function of Rosiglitazone in ICH. In addition, RT-qPCR and western blot were performed to evaluate the mRNA and protein level of PPAR-γ, respectively. Immunofluorescence staining was performed to detect the levels of CD206 and CD86, and ELISA was used to measure the levels of pro-inflammatory cytokines. RESULTS PPAR-γ was downregulated in ICH mice, whereas p-JNK and p-STAT3 were upregulated. Thrombin notably downregulated the level of PPAR-γ in BV2 cells, whereas Rosiglitazone partially reversed this phenomenon. In addition, Rosiglitazone markedly reversed thrombin-induced microglia M1 polarization. Consistently, thrombin-induced inflammatory response in BV2 cells was abolished in the presence of Rosiglitazone. SP600125 (JNK/STAT3 inhibitor) greatly reversed thrombin-induced M1 polarization in microglia, and GW9662 abolished the effect of SP600125. Meanwhile, Rosiglitazone could inactivate JNK/STAT3 pathway through the upregulation of PPAR-γ. Furthermore, Rosiglitazone notably alleviated the symptom of ICH in vivo through inhibiting the apoptosis and mediating PPAR-γ/JNK/STAT3 axis. CONCLUSION Rosiglitazone could attenuate the inflammation in ICH through inhibiting microglia M1 polarization. Thus, our research would shed now lights on exploring new therapeutic strategies against ICH.
Collapse
Affiliation(s)
- Chenglei Chao
- The Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceP. R. China
- Department of Critical Care MedicineChangzhou Fourth People's HospitalChangzhouJiangsu ProvinceP. R. China
| | - Yinghui Li
- Department of EmergencyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhou ProvinceP. R. China
| | - Quan Li
- Department of EmergencyJinLing HospitalMedical School of Nanjing UniversityNanjingJiangsu ProvinceP. R. China
| | - Guofeng Wu
- The Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceP. R. China
- Department of EmergencyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhou ProvinceP. R. China
| |
Collapse
|
23
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
24
|
Wang S, Cai Y, Bu R, Wang Y, Lin Q, Chen Y, Wu C. PPARγ Regulates Macrophage Polarization by Inhibiting the JAK/STAT Pathway and Attenuates Myocardial Ischemia/Reperfusion Injury In Vivo. Cell Biochem Biophys 2023:10.1007/s12013-023-01137-0. [PMID: 37129843 DOI: 10.1007/s12013-023-01137-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the role of PPARγ and underlying mechanisms in myocardial ischemia/reperfusion injury (IRI). IRI was surgically induced in mice and neonatal rat cardiomyocytes (NRCM) were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Quantitative genetic analysis and western blotting were performed to assess mRNA and protein levels, respectively, of PPARγ, as well as of different inflammatory, fibrosis, and apoptosis markers in cells and tissues. PPARγ was overexpressed in the heart of mice and NRCMs by viral transfection. Apoptosis and fibrosis were detected by TUNEL and Masson's trichrome staining, respectively. Enzyme-linked immunosorbent assay was performed to detect M1 and M2 macrophage-related inflammatory factors present in mouse sera. PPARγ overexpression significantly inhibited OGD/R- and IRI-induced cardiomyocyte apoptosis and fibrosis in vitro and in vivo. Moreover, PPARγ overexpression inhibited IRI-induced secretion of M1-related proinflammatory factors, whereas it supported the secretion of M2-related anti-inflammatory factors. Notably, these events were found to be mediated by the JAK/STAT pathway. In conclusion, PPARγ regulates macrophage polarization upon IRI via the JAK/STAT pathway, which will in turn prevent myocardial apoptosis and fibrosis. Hence, PPARγ may represent a valuable target for myocardial IRI treatment.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Yinlian Cai
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Rongsheng Bu
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Yaoguo Wang
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Qingfan Lin
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou City, 362000, Fujian, China
| | - Youfang Chen
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou City, 362000, Fujian, China
| | - Chunchun Wu
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China.
| |
Collapse
|
25
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
26
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
27
|
Yang J, Shi X, Wang Y, Ma M, Liu H, Wang J, Xu Z. Multi-Target Neuroprotection of Thiazolidinediones on Alzheimer's Disease via Neuroinflammation and Ferroptosis. J Alzheimers Dis 2023; 96:927-945. [PMID: 37927258 PMCID: PMC10741341 DOI: 10.3233/jad-230593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37:1909-1929. [PMID: 35687217 DOI: 10.1007/s11011-022-01026-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|