1
|
Li S, Shi L, Huang C, Li M, Meng T, Wang H, Zhao X, Xu X, You H, Jia J, Kong Y. Impact of hepatitis B surface antigen quantification on achieving a functional cure in patients with chronic hepatitis B: A systematic review and meta-analysis. Ann Hepatol 2025:101921. [PMID: 40316220 DOI: 10.1016/j.aohep.2025.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025]
Abstract
INTRODUCTION AND OBJECTIVES Baseline hepatitis B surface antigen (HBsAg) levels are associated with the likelihood of achieving HBsAg loss which defines the functional cure. However, optimal HBsAg cut-offs for predicting HBsAg loss have not been systematically investigated." Therefore, in this systematic review and meta-analysis, we evaluated the impact of baseline levels of HBsAg on achieving a functional cure in patients with chronic hepatitis B (CHB). MATERIALS AND METHODS We searched PubMed, Embase, and Cochrane Library up to December 31, 2023, to identify studies comparing combination therapy with nucleos(t)ide analogues (NAs) and conventional/pegylated interferon (IFN) versus monotherapy. We pooled the proportion of HBsAg loss among studies stratified by different 75th percentile of baseline HBsAg levels and other clinical characteristics. RESULTS We included 24 studies with 3446 participants. At the end of treatment, studies recruiting patients with 75th percentile of baseline HBsAg below 500 and 1000 IU/mL had the highest proportions of HBsAg loss in the combination group, reaching 14 % (95 % CI: 9-21 %) and 17 % (95 % CI: 10-24 %), respectively. One-year IFN-NAs combination treatment achieved a higher proportion of HBsAg loss (9 %, 95 % CI: 6-12 %) than six-month IFN-NAs treatment (1 %, 95 % CI: 0-2 %). Patients with normal alanine transaminase (ALT) had higher HBsAg loss (11 %, 95 % CI: 6-17 %) than those with elevated ALT (4 %, 95 % CI: 2-7 %). Meta-regression indicated a positive association between male percentage in studies and HBsAg loss. CONCLUSIONS The optimal baseline HBsAg thresholds would be 500-1000 IU/mL, which represents high-response subpopulation for achieving functional cure with currently available therapy.
Collapse
Affiliation(s)
- Shun Li
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Lichen Shi
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, China.
| | - Cheng Huang
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, China.
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Tongtong Meng
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hao Wang
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xiaoqian Xu
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hong You
- National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jidong Jia
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Liang H, Zheng X, Mao Q, Yang J, Ruan Q, Wu C, Liu Y, Chen S, Zhang L, Zhang M, Zhuang H, Lin L, Chen S. Comparative efficacy and safety of pegylated interferon-alpha monotherapy vs combination therapies with entecavir or tenofovir in chronic hepatitis B patients. Microbiol Spectr 2025; 13:e0269424. [PMID: 40172187 PMCID: PMC12054097 DOI: 10.1128/spectrum.02694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 04/04/2025] Open
Abstract
Current treatments for chronic hepatitis B (CHB) virus involve nucleos(t)ide analogs and pegylated interferon-alpha (PEG-IFNα). This study compares the efficacy and safety of PEG-IFNα monotherapy with its combinations with entecavir (ETV) and tenofovir disoproxil fumarate (TDF) in managing CHB. We included 147 treatment-naïve patients divided into three groups: Group A (PEG-IFNα-2b with ETV), Group B (PEG-IFNα-2b with TDF), and Group C (PEG-IFNα-2b monotherapy). Evaluations occurred every 12 weeks up to 48 weeks. The Kaplan-Meier method showed no significant differences in cumulative HBsAg loss, but HBV DNA clearance rates were higher in the TDF group than in the ETV group (P = 0.01). Higher incidences of elevated alanine aminotransferase (ALT), aspartate aminotransferase, and thrombocytopenia were observed in the TDF group compared to other groups. After propensity score matching, the TDF group had a higher undetectable HBV DNA rate than the IFN group, but no significant differences in HBsAg clearance rates. Both TDF and ETV groups achieved more significant HBsAg reductions from baseline to week 48 than the IFN group (P < 0.05). ETV showed a lower HBeAg clearance rate (30.00% vs 87.50%, P < 0.05) but higher ALT normalization (76.92% vs 45.45%, P < 0.05). In the TDF group, patients with lower baseline HBsAg levels, high ALT levels, and lower aspartate aminotransferase-to-platelet ratio index (APRI) scores were more likely to achieve HBsAg loss. These findings suggest that TDF and ETV are effective for viral suppression, with TDF showing superior HBV DNA clearance but more adverse events. IMPORTANCE This study investigates how different treatments for chronic hepatitis B (CHB), a widespread liver infection, compare in effectiveness and safety. By evaluating the use of pegylated interferon-alpha alone and in combination with two other drugs, entecavir and tenofovir disoproxil fumarate (TDF), researchers found that TDF offers better viral suppression but also comes with more side effects. For patients receiving TDF combined with PEG-IFN therapy, low HBsAg levels, elevated alanine aminotransferase levels, and lower APRI scores were associated with a higher likelihood of achieving HBsAg loss. Consistent with previous findings, this study confirms the benefits of nucleos(t)ide analog plus PEG-IFN therapy for CHB treatment and further explores which patients are more likely to benefit from combination therapy. Furthermore, this study underscores the importance of further monitoring adverse events in patients receiving combination therapy.
Collapse
Affiliation(s)
- Huiqing Liang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Xiaoting Zheng
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Qianguo Mao
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Jiaen Yang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Qingfa Ruan
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Chuncheng Wu
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Yaoyu Liu
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Siyan Chen
- School of Clinical Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Luyun Zhang
- School of Clinical Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Manying Zhang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Hongli Zhuang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Li Lin
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Shaodong Chen
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
3
|
Wu D, Kao JH, Piratvisuth T, Wang X, Kennedy PT, Otsuka M, Ahn SH, Tanaka Y, Wang G, Yuan Z, Li W, Lim YS, Niu J, Lu F, Zhang W, Gao Z, Kaewdech A, Han M, Yan W, Ren H, Hu P, Shu S, Kwo PY, Wang FS, Yuen MF, Ning Q. Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0. Clin Mol Hepatol 2025; 31:S134-S164. [PMID: 39838828 PMCID: PMC11925436 DOI: 10.3350/cmh.2024.0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025] Open
Abstract
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
Collapse
Affiliation(s)
- Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Fields of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenhui Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, Jilin, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paul Yien Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Fu-sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Lv YQ, Guo RH, Liu KY, Li JJ, Ji HF. Predictive factors for clinical cure in the treatment of HBeAg(-) chronic hepatitis B or compensated cirrhosis: a prospective observational study. Front Med (Lausanne) 2025; 11:1483744. [PMID: 39850101 PMCID: PMC11754238 DOI: 10.3389/fmed.2024.1483744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Background Sequential or combined treatment with nucleos(t)ide analogs (NAs) and pegylated interferon alpha-2b (Peg-IFN-α-2b) can improve the clinical cure rate. However, its clinical application is limited due to the adverse reactions associated with IFN. Methods A multi-center prospective observational study was conducted involving 59 NAs-treated chronic hepatitis B (CHB) patients who were treated with a combination therapy of NAs and Peg-IFN-α-2b for 48 weeks. Another 327 NAs-treated patients received NAs monotherapy for 48 weeks. At the end of the treatment, patients were classified into either the clinically cured group or the non-clinically cured group based on clinical efficacy. The study aimed to analyze the clinical cure rate and the predictive factors. Results After propensity score matching (PSM), a total of 104 patients were included in the exposure and the control groups. After 48 weeks of treatment, 13 patients in the exposed group achieved clinical cure, with a cure rate of 25%. In contrast, in the control group was 1.92%. The clinical cure rate was greater in the population with CHB or compensated cirrhosis treated with sequential or combined Peg-IFN-α-2b and NAs than in the control group (p < 0.001). Patients treated with Peg-IFN-α-2b were divided into a clinical cure group and a non-clinical cure group for single-factor regression and multi-factor binary logistic regression. The results showed that baseline qHBsAg [relative ratio (RR) = 0.997, 95%CI: [0.995, 0.999], p = 0.031] and △TBiL (RR = 0.698, 95%CI: [0.555, 0.879], p = 0.002) were independent influencing factors for achieving clinical cure in patients with CHB or compensated cirrhosis. Conclusion A lower baseline qHBsAg and decrease in TBiL at 24 weeks of treatment are independent influencing factors for achieving clinical cure. The lower the baseline qHBsAg and the higher the △TBiL levels after 24 weeks of treatment, the higher the probability of patients achieving clinical cure.
Collapse
Affiliation(s)
| | | | | | | | - Hui-Fan Ji
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University Changchun, Changchun, Jilin, China
| |
Collapse
|
5
|
Wang J, Zhang Z, Zhu L, Zhang Q, Zhang S, Pan Y, Liu J, Cao F, Fan T, Xiong Y, Yin S, Yan X, Chen Y, Zhu C, Li J, Liu X, Wu C, Huang R. Association of hepatitis B core antibody level and hepatitis B surface antigen clearance in HBeAg-negative patients with chronic hepatitis B. Virulence 2024; 15:2404965. [PMID: 39317345 PMCID: PMC11423664 DOI: 10.1080/21505594.2024.2404965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Predicting hepatitis B surface antigen (HBsAg) clearance is important for chronic hepatitis B (CHB) patients receiving pegylated interferon-alfa (Peg-IFN) therapy. We aimed to determine the predictive value of serum hepatitis B core antibody (anti-HBc) for HBsAg clearance. A total of 189 HBeAg-negative CHB patients who received Peg-IFN based therapy were retrospectively included and classified into two groups: nucleos(t)ide analogues (NAs) add-on Peg-IFN group (add-on group, n = 94) and Peg-IFN combined with NAs or Peg-IFN monotherapy group (combination or monotherapy group, n = 95). After 48 weeks of treatment, 27.5% (52/189) and 15.9% (30/189) of patients achieved HBsAg clearance and seroconversion, respectively. Patients in the combination or monotherapy group tended to achieve relatively higher HBsAg clearance (31.6% vs. 23.4%, p = 0.208) and seroconversion (21.1% vs. 10.6%, p = 0.050) rates than those in the add-on group. In combination or monotherapy group, anti-HBc levels at week 12 were lower in patients with HBsAg clearance (9.0 S/CO vs. 9.9 S/CO, p < 0.001) and seroconversion (8.8 S/CO vs. 9.8 S/CO, p < 0.001) than those without. Anti-HBc level at week 12 was an independent predictor of HBsAg clearance and seroconversion. Patients with lower anti-HBc levels at week 12 showed a more significant decline in HBsAg levels during treatment. Combination of anti-HBc at week 12 and baseline HBsAg could identify over 70% of patients who achieved HBsAg clearance after 48 weeks of treatment. In addition to HBsAg, anti-HBc level could be used as a promising marker for selecting HBeAg-negative CHB patients who are more likely to respond to Peg-IFN-based therapy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiyi Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing Zhang
- Department of Infectious Diseases, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Shaoqiu Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yifan Pan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Cao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Fan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ye Xiong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingxiang Liu
- Department of Clinical Laboratory, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Huang D, Yuan Z, Wu D, Yuan W, Chang J, Chen Y, Ning Q, Yan W. HBV Antigen-Guided Switching Strategy From Nucleos(t)ide Analogue to Interferon: Avoid Virologic Breakthrough and Improve Functional Cure. J Med Virol 2024; 96:e70021. [PMID: 39530181 DOI: 10.1002/jmv.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Little is known for factors associated with virologic breakthrough (VBT) after switching from nucleos(t)ide analogue (NA) to pegylated interferon alpha (Peg-IFN-α) for patients with chronic hepatitis B (CHB). Eighty patients who received 48-week Peg-IFN-ɑ and NA combination therapy followed by Peg-IFN-ɑ monotherapy for additional 48 weeks were included in this study. HBV-related markers including HBV DNA, HBsAg, HBcrAg, HBeAg, cccDNA, and immunological biomarkers were dynamically evaluated. Twelve (15.0%) patients experienced VBT after switching to Peg-IFN-ɑ and exhibited significantly lower rates of HBsAg loss after therapy completion (0% vs. 35.3%, p = 0.014). The patients with HBcrAg≥ 5 log10U/mL and HBsAg≥ 100 IU/mL had the highest risk of VBT and failed to achieve subsequent HBsAg clearance. Intrahepatic cccDNA level was significantly higher in patients with HBcrAg≥ 5 log10U/mL than those with HBcrAg< 5 log10U/mL. Notably, in contrast to patients with HBcrAg< 5 log10U/mL or with HBsAg< 100 IU/mL who had obviously restored HBV-specific CD8+T cell, Tfh or B cell responses before NA cessation, those with HBcrAg≥ 5 log10U/mL or with HBsAg≥ 100 IU/mL exhibited lackluster immunities before NA cessation and notable diminished immune responses thereafter. Monitoring HBcrAg and HBsAg levels, which correlated with poor immune responses during sequential Peg-IFN-ɑ strategy, may help to avoid VBT and improve functional cure of CHB.
Collapse
Affiliation(s)
- Da Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhize Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuying Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Quan D, Wang P, Wu W, Li J. Investigating the role of GTPase in inhibiting HBV replication and enhancing interferon therapy efficacy in chronic hepatitis B patients. Microb Pathog 2024; 194:106821. [PMID: 39084309 DOI: 10.1016/j.micpath.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Interferon-alpha (IFNα) is a common treatment for chronic hepatitis B virus (HBV) infection, but its efficacy varies widely among patients. GTPASE, an interferon-stimulated gene (ISG), has recently been identified as a factor in antiviral immunity, though its role in HBV infection is not fully understood. OBJECTIVE This study investigates the role of GTPASE in enhancing the antiviral effects of IFNα against HBV and elucidates its mechanism of action. METHODS We analyzed the impact of GTPASE overexpression and silencing on HBV replication and clearance in HBV-infected cells. Molecular docking studies assessed the interaction between GTPASE and HBV surface antigens (HBs). Clinical samples from HBV patients undergoing Peg-IFNα treatment were also evaluated for GTPASE expression and its correlation with treatment efficacy. RESULTS Overexpression of GTPASE led to significant inhibition of HBV replication, increased HBeAg seroconversion, and enhanced HBsAg clearance. GTPASE directly bound to HBs proteins, reducing their levels and affecting viral particle formation. Silencing GTPASE reduced these effects, while combined treatment with Peg-IFNα and GTPASE overexpression further improved antiviral outcomes. Mutational analysis revealed that specific sites in GTPASE are crucial for its antiviral activity. CONCLUSIONS GTPASE acts as a positive regulator in IFNα-induced antiviral immunity against HBV. It enhances the therapeutic efficacy of IFNα by targeting HBs and modulating viral replication. GTPASE levels may serve as a predictive biomarker for response to Peg-IFNα therapy, highlighting its potential for improving individualized treatment strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Dongmei Quan
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Pengfei Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine/Medical Management Office, China
| | - Wei Wu
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Jing Li
- Teaching and Research Section of the Internal Medicine of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
8
|
Geta M, Mengistu G, Yizengaw E, Manyzewal T, Hailu A, Woldeamanuel Y. Efficacy and safety of therapeutic vaccines for the treatment of chronic hepatitis B: A systematic review and meta-analysis of randomized controlled trials update. Medicine (Baltimore) 2024; 103:e39344. [PMID: 39213251 PMCID: PMC11365667 DOI: 10.1097/md.0000000000039344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/08/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Most people diagnosed with chronic hepatitis B (CHB) need treatment to help reduce the risk of liver disease and limit disease transmission. Therapeutic vaccine (TV) candidates have been under study for their clinical effects on inducing HBV-specific host immune responses. This review aimed to systematically synthesize updated evidence on the efficacy and safety of TVs in patients with CHB. METHODS This systematic review was performed by searching different databases from January to February 2021. Completed randomized controlled trials that reported TVs' efficacy and/or safety for treating CHB compared with the standard of care (SOC) or placebo were included. Efficacy and safety estimates were reported as the logarithm of the odds ratio and risk differences, respectively. I2 > 50% was considered significant heterogeneity. Significant publication bias was considered when Egger's test P value < .10. The risk of bias was assessed using the Cochrane Risk of Bias tool. The GRADE methodology was used to assess the certainty of the evidence for each outcome. RESULTS Twenty-four articles with 2889 pooled samples were included. TVs made a significant difference in hepatitis B envelope antigen (HBeAg) SC (log OR = 0.76, P = .01) and (log OR = 0.40, P = .03) compared to placebo and combination therapy, respectively. HBeAg SC was significantly affected by TVs at the end of follow up (log OR = 0.49, P = .01), with significant HBsAg mean difference (MD = -0.62, P = .00). At the end of treatment, the TVs had no significant effect on HBV DNA negativity over the SOC (log OR = 0.62, P = .09) or placebo (log OR = -0.07, P = .91). TVs do not significantly affect the risk of serious adverse events (RD 0.02, 95% CI 0.00-0.04). CONCLUSION In patients with CHB, TVs had significant effects on HBeAg SC compared to the SOC or placebo. There was no significant difference between serious adverse events. TVs are promising treatment strategy to overcome CHB.
Collapse
Affiliation(s)
- Mekuanint Geta
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Microbiology, School of Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getachew Mengistu
- Department of Medical Microbiology, School of Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Endalew Yizengaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tsegahun Manyzewal
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimtubeznash Woldeamanuel
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Zhong W, Yan L, Zhu Y, Shi L, He Y, Chen T, Zheng J. A high functional cure rate was induced by pegylated interferon alpha-2b treatment in postpartum hepatitis B e antigen-negative women with chronic hepatitis B virus infection: an exploratory study. Front Cell Infect Microbiol 2024; 14:1426960. [PMID: 39176265 PMCID: PMC11338904 DOI: 10.3389/fcimb.2024.1426960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aims Limited data have been reported on achieving functional cure using pegylated interferon (Peg-IFN) alpha-2b treatment for postpartum hepatitis B e antigen (HBeAg)-negative women with chronic hepatitis B virus (HBV) infection. This study was to assess the effectiveness and safety of Peg-IFN alpha-2b in HBV postpartum women without HBeAg and identify factors linked to the functional cure. Methods A total of 150 HBeAg-negative postpartum women were retrospectively recruited.47 patients received Peg-IFN alpha-2b [Peg-IFN(+) group] and 103 patients did not [Peg-IFN(-) group]. Propensity score matching (PSM) was used to adjust the baseline imbalance between the two groups. The patients were followed for at least 48 weeks. The primary endpoints were hepatitis B surface antigen(HBsAg) loss and HBsAg seroconversion at 48 weeks. Logistic regression analysis was used to assess factors associated with HBsAg loss at 48 weeks. Results At week 48,the HBsAg loss and seroconversion rate in Peg-IFN(+) group were 51.06%(24/47) and 40.43%(19/47), respectively. Even after PSM, Peg-IFN(+) group still showed higher HBsAg loss rate (50.00% vs 7.14%,p<0.001) and higher HBsAg seroconversion rate (38.10% vs 2.38%,p<0.001). Baseline HBsAg levels (Odds Ratio [OR]: 0.051, 95% Confidence Interval [CI]: 0.003-0.273, P=0.010), HBsAg at week 24 (OR:0.214, 95%CI:0.033-0.616, P=0.022), HBsAg decline at week 24 (OR:4.682, 95%CI: 1.624-30.198, P=0.022) and postpartum flare (OR:21.181, 95%CI:1.872-633.801, P=0.030) were significantly associated with HBsAg loss at week 48 after Peg-IFN alpha-2b therapy. Furthermore, the receiver operating characteristic curve (ROC) showed that the use of baseline HBsAg<182 IU/mL, HBsAg at week24 < 4 IU/mL and HBsAg decline at week24>12IU/mL were good predictors of HBsAg loss. No serious adverse events were reported. Conclusion Peg-IFN alpha-2b treatment could achieve a high rate of HBsAg loss and seroconversion in HBeAg-negative postpartum women with reliable safety, particularly for patients experience postpartum flare and have low baseline HBsAg levels.
Collapse
Affiliation(s)
- Wenting Zhong
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lanzhi Yan
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yage Zhu
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Shi
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingli He
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianyan Chen
- Department of Infectious Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Zheng
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Wu L, Li Z, Gao N, Deng H, Zhao Q, Hu Z, Chen J, Lei Z, Zhao J, Lin B, Gao Z. Interferon-α could induce liver steatosis to promote HBsAg loss by increasing triglyceride level. Heliyon 2024; 10:e32730. [PMID: 38975233 PMCID: PMC11226829 DOI: 10.1016/j.heliyon.2024.e32730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Background The correlation between metabolic syndrome (MetS) and hepatitis B surface antigen (HBsAg) loss remains to be further elucidated, particularly in patients receiving pegylated interferon-α (PEG-IFN) treatment. Methods 758 patients with low HBsAg quantification who had received nucleos(t)ide analog (NUC) therapy for at least one year and subsequently switched to or add on PEG-IFN therapy over an unfixed course were enrolled. 412 patients were obtained with baseline data matched. A total of 206 patients achieved HBsAg loss (cured group) within 48 weeks. Demographic and biochemical data associated with MetS were gathered for analysis. HepG2.2.15 cell line was used in vitro experiments to validate the efficacy of interferon-α (IFN-α). Results The proportion of patients with diabetes or hypertension in the uncured group was significantly higher than in the cured group. The levels of fasting blood glucose (FBG) and glycated albumin remained elevated in the uncured group over the 48 weeks. In contrast, the levels of blood lipids and uric acid remained higher in the cured group within 48 weeks. Triglycerides levels and liver steatosis of all patients increased after PEG-IFN therapy. Baseline elevated uric acid levels and hepatic steatosis may be beneficial for HBsAg loss. IFN-α could induce hepatic steatosis and indirectly promote HBsAg loss by increasing triglyceride level through upregulation of acyl-CoA synthetase long-chain family member 1(ACSL1). Conclusions IFN-α could induce liver steatosis to promote HBsAg loss by increasing triglyceride level through upregulation of ACSL1. Comorbid diabetes may be detrimental to obtaining HBsAg loss with PEG-IFN therapy in CHB patients.
Collapse
Affiliation(s)
- Lili Wu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lei
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| |
Collapse
|
11
|
Li YP, Liu CR, He L, Dang SS. Hepatitis B cure: Current situation and prospects. World J Hepatol 2024; 16:900-911. [PMID: 38948438 PMCID: PMC11212658 DOI: 10.4254/wjh.v16.i6.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ling He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
12
|
Li Y, Luo H, Hu X, Gong J, Tan G, Luo H, Wang R, Pang H, Yu R, Qin B. Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection. Pol J Microbiol 2024; 73:217-235. [PMID: 38905278 PMCID: PMC11192456 DOI: 10.33073/pjm-2024-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Interferon-alpha (IFN-α) is a first-line drug for treating chronic hepatitis B (CHB). Guanylate-binding protein 1 (GBP1) is one of the interferon-stimulating factors, which participates in the innate immunity of the host and plays an antiviral and antibacterial role. In this study, we explored how GBP1 is involved in IFN-α antiviral activity against HBV. Before being gathered, HepG2-NTCP and HepG2 2.15 cells were transfected with the wild-type hGBP1 plasmid or si-GBP1, respectively, and followed by stimulation with Peg-IFNα-2b. We systematically explored the role of GBP1 in regulating HBV infection in cell models. Additionally, we also examined GBP1 levels in CHB patients. GBP1 activity increased, and its half-life was prolonged after HBV infection. Overexpression of GBP1 inhibited the production of HBsAg and HBeAg, as well as HBs protein and HBV total RNA levels, whereas silencing of GBP1 inhibited its ability to block viral infections. Interestingly, overexpressing GBP1 co-treatment with Peg-IFNα-2b further increased the antiviral effect of IFN-α, while GBP1 silencing co-treatment with Peg-IFNα-2b partly restored its inhibitory effect on HBV. Mechanistically, GBP1 mediates the anti-HBV response of Peg-IFNα-2b by targeting HBs. Analysis of clinical samples revealed that GBP1 was elevated in CHB patients and increased with Peg-IFNα-2b treatment, while GBP1 showed good stability in the interferon response group. Our study demonstrates that GBP1 inhibits HBV replication and promotes HBsAg clearance. It is possible to achieve antiviral effects through the regulation of IFN-α induced immune responses in response to HBV.
Collapse
Affiliation(s)
- Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Gong
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Yu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
You H, Wang F, Li T, Xu X, Sun Y, Nan Y, Wang G, Hou J, Duan Z, Wei L, Jia J, Zhuang H. Guidelines for the Prevention and Treatment of Chronic Hepatitis B (version 2022). J Clin Transl Hepatol 2023; 11:1425-1442. [PMID: 37719965 PMCID: PMC10500285 DOI: 10.14218/jcth.2023.00320] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
To facilitate the achieving of the goal of "eliminating viral hepatitis as a major public health threat by 2030" set by the World Health Organization, the Chinese Society of Hepatology together with the Chinese Society of Infectious Diseases (both are branches of the Chinese Medical Association) organized a panel of experts and updated the guidelines for prevention and treatment of chronic hepatitis B in China (version 2022). With the support of available evidence, this revision of the guidelines focuses on active prevention, large scale testing, and expansion of therapeutic indication of chronic hepatitis B with the aim of reducing the hepatitis B related disease burden.
Collapse
Affiliation(s)
- Hong You
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fusheng Wang
- The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Taisheng Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyuan Xu
- Peking University First Hospital, Beijing, China
| | - Yameng Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuemin Nan
- Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | - Jinlin Hou
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongping Duan
- Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Lai Wei
- Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jidong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Zhuang
- Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
He Y, Lin W, Li H, Gu F, Zhong H, Lan Y, Li Y, Guo P, Hu F, Cai W, Tang X, Li L. Incidence and factors associated with hepatitis B surface antigen seroclearance in patients co-infected with HBV/HIV during antiretroviral therapy in Guangdong, China. Chin Med J (Engl) 2023; 136:2686-2693. [PMID: 37881959 PMCID: PMC10684156 DOI: 10.1097/cm9.0000000000002886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) clearance is vital for a functional cure of hepatitis B virus (HBV) infection. However, the incidence and predictors of HBsAg seroclearance in patients co-infected with HBV and human immunodeficiency virus (HIV) remain largely unknown in Guangdong, China. METHODS Between 2009 and 2019, patients co-infected with HBV/HIV undergoing antiretroviral therapy (ART) in Guangzhou Eighth People's Hospital affiliated to Guangzhou Medical University were retrospectively reviewed with the endpoint on December 31, 2020. The incidence and risk factors for HBsAg seroclearance were evaluated using Kaplan-Meier and multivariate Cox regression analyses. RESULTS A total of 1550 HBV/HIV co-infected patients were included in the study, with the median age of 42 years and 86.0% (1333/1550) males. Further, 98.3% (1524/1550) received ART containing tenofovir disoproxil fumarate (TDF) plus lamivudine (3TC). HBV DNA was examined in 1283 cases at the last follow-up. Over the median 4.7 years of follow-up, 8.1% (126/1550) patients achieved HBsAg seroclearance, among whom 50.8% (64/126) obtained hepatitis B surface antibody, 28.1% (137/488) acquired hepatitis B e antigen seroconversion, and 95.9% (1231/1283) undetectable HBV DNA. Compared with patients who maintained HBsAg positive, cases achieving HBsAg seroclearance showed no differences in age, gender, CD4 + T cell count, alanine aminotransferase (ALT) level, or fibrosis status; however, they presented lower HBV DNA levels, lower HBsAg levels, and higher rates of HBV genotype B at the baseline. Multivariate analysis showed that baseline HBsAg <1500 cutoff index (COI) (adjusted hazard ratio [aHR], 2.74, 95% confidence interval [95% CI]: 1.48-5.09), ALT elevation >2 × upper limit of normal during the first six months after receiving ART (aHR, 2.96, 95% CI: 1.53-5.77), and HBV genotype B (aHR, 3.73, 95% CI: 1.46-9.59) were independent predictors for HBsAg seroclearance (all P <0.01). CONCLUSIONS Long-term TDF-containing ART has high anti-HBV efficacy including relatively high overall HBsAg seroclearance in HBV/HIV co-infected patients. Lower baseline HBsAg levels, HBV genotype B, and elevated ALT levels during the first six months of ART are potential predictors of HBsAg seroclearance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
15
|
Li YP, Liu CR, Hao M, Lu R, Dang SS. Clinical cure of hepatitis B: Delight and anticipation. Shijie Huaren Xiaohua Zazhi 2023; 31:837-845. [DOI: 10.11569/wcjd.v31.i20.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Miao Hao
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rui Lu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
16
|
Yang M, Vanderwert E, Kimchi ET, Staveley-O’Carroll KF, Li G. The Important Roles of Natural Killer Cells in Liver Fibrosis. Biomedicines 2023; 11:1391. [PMID: 37239062 PMCID: PMC10216436 DOI: 10.3390/biomedicines11051391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Ethan Vanderwert
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Wang WX, Jia R, Jin XY, Li X, Zhou SN, Zhang XN, Zhou CB, Wang FS, Fu J. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol 2023; 14:1121778. [PMID: 36756119 PMCID: PMC9899895 DOI: 10.3389/fimmu.2023.1121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this study was to explore the profile of cytokine changes during the combination therapy with pegylated interferon alpha (PEG-IFN-α) and its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic hepatitis B patients. Methods Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500 IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled. Eighteen patients continued to take NAs monotherapy (the NAs group), and 58 patients received combination therapy with NAs and PEG-IFN-α (the Add-on group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment were detected. Results At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg loss. During 48 weeks of combined treatment, there was a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet CCL3 showed a continuously increasing trend. Mild and early increases in IL1B, CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease >1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor responses to Add-on therapy at week 48. Conclusions The serum cytokine change profile is closely related to the response to the combination therapy with PEG-IFN-α and NAs, and may help to reveal the mechanism of functional cure and discover new immunological predictors and new therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese PLA, Taiyuan, China
| | - Xue-Yuan Jin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoyan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
18
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
19
|
Qi W, Wang Y, Huang G, Wang K. Interleukin-2 promotes pegylated interferon alpha for hepatitis B surface antigen loss: A retrospective pragmatic clinical study at the Fourth Affiliated Hospital of Zhejiang University Medical College. Health Sci Rep 2022; 5:e932. [PMID: 36381411 PMCID: PMC9662690 DOI: 10.1002/hsr2.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims Interleukin-2 (IL-2) can be used as an adjuvant therapy when pegylated interferon alpha (Peg-IFN-α) does not effectively promote hepatitis B surface antigen (HBsAg) loss, but the relevant timing, kinetic patterns, and prognostic associations of this intervention are unclear. Methods A total of 115 patients with chronic hepatitis B (CHB) treated at our institution between October 2018 and March 2021 were included in this retrospective analysis. They were divided into two kinetic patterns by using K-medoids cluster analysis. Profile and prognostic associations were statistically analyzed between the two patterns. Results After baseline standardization, before the intervention, the relative HBsAg level showed a continuously increasing trend, but after the intervention, it showed a continuously decreasing trend. Based on the relative change in the HBsAg level, two kinetic patterns, namely, a fluctuation platform pattern and a stepwise growth pattern, were identified by using K-medoids cluster analysis for all 115 patients before IL-2 intervention. Profile analysis showed that there were statistically significant differences between the two patterns before IL-2 intervention (p < 0.05), but their profiles showed the same trend after 2 weeks of IL-2 intervention. Prognostic association analysis showed that CD8+ T cells, alanine transaminase (ALT), age, natural killer (NK) cells, neutrophils, and course of treatment before IL-2 intervention were the six main indicators affecting the relative decrease in the HBsAg level. Conclusion For CHB patients who have received continuous Peg-IFN-α treatment, IL-2 intervention should be given as early as possible when the HBsAg level has not decreased for four consecutive weeks or a fluctuation platform pattern is observed. After the intervention, a downward relative change in the HBsAg level can be maintained over 4 weeks. CD8+ T cells, ALT, NK cells, and neutrophils are baseline indicators closely related to the prognosis of this intervention.
Collapse
Affiliation(s)
- Wencai Qi
- School of Mathematics and StatisticsSouthwest UniversityChongqingPeople's Republic of China
| | - Yuming Wang
- Institute for Infectious Diseases, Southwest HospitalArmy Medical UniversityChongqingPeople's Republic of China
- Public Health Hospital of Southwest UniversityChongqingPeople's Republic of China
| | - Guangyu Huang
- Department of Infectious DiseasesThe Fourth Affiliated Hospital Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
| | - Kaifa Wang
- School of Mathematics and StatisticsSouthwest UniversityChongqingPeople's Republic of China
| |
Collapse
|
20
|
Yang X, Zhang K, Xu Q, Shu X, Mo Z, Xie D, Gao Z, Deng H. Interferon add-on therapy increased clinical cure significantly for interferon-experienced chronic hepatitis B patients with low HBsAg. Front Immunol 2022; 13:997608. [PMID: 36148219 PMCID: PMC9485616 DOI: 10.3389/fimmu.2022.997608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Currently, interferon add-on therapy brings hope for clinical cure of chronic hepatitis B patients with low HBsAg. However, in clinical practice patients with poor responses to their first interferon therapy were often switched to nucleos(t)ide analog therapy and then labeled as unsuitable patients for interferon therapy. Even if their HBsAg levels dropped to a low level, they were reluctant or not recommended to take interferon again, which caused them to miss out on interferon add-on therapy and clinical cure. Therefore, it is urgent to elucidate the effectiveness of interferon add-on therapy to get clinical cure for these interferon-experienced patients with low HBsAg. The purpose of this study was to investigate whether interferon-experienced patients could achieve the same HBsAg clearance and HBsAg seroconversion rates as interferon-naive patients. Also, the associated factor of HBsAg clearance and seroconversion were aimed to be clarified. 292 patients, including 85 interferon-experienced patients, were enrolled with HBsAg< 1500 IU/ml, HBeAg negative and HBV-DNA negative. And then, peg-interferon α-2b add-on therapy was performed. The results showed that the week 48 HBsAg clearance and seroconversion rates of all patients were 29.8% and 22.0%. There was no statistically significant difference between interferon-experienced and interferon-naive patients in week 48 HBsAg clearance and seroconversion rates, suggesting satisfactory clinical cure of the interferon add-on therapy for interferon-experienced patients. The age, baseline HBsAg, and week 12 HBsAg were negative correlated factors for week 48 HBsAg clearance and seroconversion. Furthermore, the age, baseline HBsAg and week 12 HBsAg for predicting the week 48 HBsAg clearance were cut off at 40.5 years, at 152.0 IU/ml and at 34.99 IU/ml, and for predicting seroconversion were cut off at 40.5 years, at 181.9 IU/ml and at 34.99 IU/ml, correspondingly. Significantly, interferon-experienced patients with low HBsAg were suggested with interferon add-on therapy to achieve clinical cure as soon as possible. This research provided evidences and cut-offs for the interferon add-on therapy against chronic hepatitis B.
Collapse
Affiliation(s)
- Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qihuan Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhishuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongying Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhiliang Gao, ; Hong Deng,
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhiliang Gao, ; Hong Deng,
| |
Collapse
|
21
|
Chu JH, Huang Y, Xie DY, Deng H, Wei J, Guan YJ, Li GJ, Zeng YL, Yang JH, Chen XY, Shang J, Li JB, Gao N, Gao ZL. Real-world study on HBsAg loss of combination therapy in HBeAg-negative chronic hepatitis B patients. J Viral Hepat 2022; 29:765-776. [PMID: 35718996 DOI: 10.1111/jvh.13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 12/22/2022]
Abstract
Combination therapy with pegylated interferon (PEG-IFN) and nucleos(t)ide analogues (NAs) can enhance hepatitis B surface antigen (HBsAg) clearance. However, the specific treatment strategy and the patients who would benefit the most are unclear. Therefore, we assessed the HBsAg loss rate of add-on PEG-IFN and explored the factors associated with HBsAg loss in chronic hepatitis B (CHB) patients. This was a real-world cohort study of adults with CHB. Hepatitis B e antigen (HBeAg)-negative NAs-treated patients with baseline HBsAg ≤1500 IU/ml and HBV DNA < the lower limit of detection, or 100 IU/ml, received 48 weeks of add-on PEG-IFN. The primary outcome of the study was the rate of HBsAg loss at 48 weeks of combination treatment. Using multivariable logistic regression analysis, we determined factors associated with HBsAg loss. HBsAg loss in 2579 patients (mean age: 41.2 years; 80.9% male) was 36.7% (947 patients) at 48 weeks. HBsAg loss was highest in patients from south-central and southwestern China (40.0%). Factors independently associated with HBsAg loss included: increasing age (odds ratio = 0.961); being male (0.543); baseline HBsAg level (0.216); HBsAg decrease at 12 weeks (between 0.5 and 1.0 log10 IU/ml [2.405] and >1.0 log10 IU/ml [7.370]); alanine aminotransferase (ALT) increase at 12 weeks (1.365); haemoglobin (HGB) decrease at 12 weeks (1.558). There was no difference in the primary outcomes associated with the combination regimen. In conclusion, HBsAg loss by combination therapy was higher in patients from southern China than those from the north. An increased chance of HBsAg loss was associated with baseline characteristics and dynamic changes in clinical indicators.
Collapse
Affiliation(s)
- Jun-Hao Chu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dong-Ying Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guandong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guandong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jia Wei
- Department of Gastroenterology, the Second People's Hospital Yunnan Province, Kunming, Yunnan, China
| | - Yu-Juan Guan
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou, Guangdong, China
| | - Guo-Jun Li
- Department of Hepatology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Yi-Lan Zeng
- Department of Hepatology, Chengdu Public Health Clinical Medical Center, Chengdu, Sichuan, China
| | - Jia-Hong Yang
- Department of Infectious Diseases, Deyang People's Hospital, Deyang, Sichuan, China
| | - Xin-Yue Chen
- Department of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia-Bin Li
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Na Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guandong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Wang WX, Jia R, Gao YY, Liu JY, Luan JQ, Qiao F, Liu LM, Zhang XN, Wang FS, Fu J. Quantitative anti-HBc combined with quantitative HBsAg can predict HBsAg clearance in sequential combination therapy with PEG-IFN-α in NA-suppressed chronic hepatitis B patients. Front Immunol 2022; 13:894410. [PMID: 35958609 PMCID: PMC9360425 DOI: 10.3389/fimmu.2022.894410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aimsPrecise predictors are lacking for hepatitis B surface antigen (HBsAg) clearance under the combination therapy of nucleos(t)ide analogs (NA) and pegylated interferon-alpha (PEG-IFN-α) in patients with chronic hepatitis B (CHB). This study aimed to determine the quantitative anti-hepatitis B core antibody (qAnti-HBc) and quantitative hepatitis B core-related antigen (qHBcrAg) as predictors for HBsAg clearance in NA-suppressed patients with CHB receiving PEG-IFN-α add-on therapy.MethodsSeventy-four CHB patients who achieved HBV DNA suppression (HBV DNA < 20 IU/ml) and quantitative HBsAg (qHBsAg) < 1,500 IU/ml after ≥1 year of NA treatment were enrolled. Fifteen patients continued on NA monotherapy, while 59 patients received PEG-IFN-α add-on therapy. Serum qAnti-HBc and qHBcrAg levels were detected every 12 or 24 weeks for add-on and NA-alone groups, respectively.ResultsSerum qAnti-HBc but not qHBcrAg levels at baseline were negatively correlated with the duration of prior NA therapy. After 48-week treatment, both qAnti-HBc and qHBcrAg levels declined further, and 17/59 (28.81%) and 0/15 (0%) achieved HBsAg clearance in add-on and NA groups, respectively. In the add-on group, the rate of HBsAg clearance was significantly higher in patients with baseline qAnti-HBc < 0.1 IU/ml (52.63%). Logistic regression analysis identified baseline qAnti-HBc but not qHBcrAg, which was an independent predictor for HBsAg loss. Receiver operating characteristic curve analysis showed that the combination of qAnti-HBc and qHBsAg had a better predictive value for HBsAg clearance.ConclusionsA combination of qHBsAg and baseline qAnti-HBc levels may be a better prediction strategy for HBsAg clearance in NA-suppressed CHB patients receiving PEG-IFN-α add-on therapy.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Rui Jia
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ying-Ying Gao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jia-Ye Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun-Qing Luan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fei Qiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Min Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- *Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- *Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
23
|
Zhang CY, Liu S, Yang M. Regulatory T cells and their associated factors in hepatocellular carcinoma development and therapy. World J Gastroenterol 2022; 28:3346-3358. [PMID: 36158267 PMCID: PMC9346458 DOI: 10.3748/wjg.v28.i27.3346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide with primary type hepatocellular carcinoma (HCC). Factors, including carcinogens, infection of hepatitis viruses, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), can induce HCC initiation and promote HCC progression. The prevalence of NAFLD accompanying the increased incidence of obesity and type 2 diabetes becomes the most increasing factor causing HCC worldwide. However, the benefit of current therapeutic options is still limited. Intrahepatic immunity plays critically important roles in HCC initiation, development, and progression. Regulatory T cells (Tregs) and their associated factors such as metabolites and secreting cytokines mediate the immune tolerance of the tumor microenvironment in HCC. Therefore, targeting Tregs and blocking their mediated factors may prevent HCC progression. This review summarizes the functions of Tregs in HCC-inducing factors including alcoholic and NAFLD, liver fibrosis, cirrhosis, and viral infections. Overall, a better understanding of the role of Tregs in the development and progression of HCC provides treatment strategies for liver cancer treatment.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
24
|
You J, Wu W, Lu M, Xie Y, Miao R, Gu M, Xi D, Yan W, Wu D, Wang X, Chen T, Ning Q, Han M. Hepatic exosomes with declined MiR-27b-3p trigger RIG-I/TBK1 signal pathway in macrophages. Liver Int 2022; 42:1676-1691. [PMID: 35460174 DOI: 10.1111/liv.15281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Evidence suggests that interferon alpha (IFNα) plays an essential role in decreasing the HBsAg quantification and elevating the rate of clinical cure in chronic hepatitis B (CHB). However, the mechanisms underlying the effects of the exosomes on the expression of host genes in IFNα treatment remain unclear. METHODS CHB patients with IFNα treatment were divided into responders and non-responders according to the degree of HBsAg decline. Through microRNA sequencing and a series of molecular biology methods, the key microRNAs in serum exosomes associated with clinical antiviral response of Peg-IFNα treatment in nucleotide analogue-treated CHB patients were investigated. The roles of exosomal miRNAs on the IFNα signal pathway were explored in macrophages. RESULTS MicroRNA sequencing and RT-qPCR assays confirmed six distinctly declined miRNAs in serum exosomes of responders at week 12 compared with levels at baseline. Exosomes with declined miR27b-3p in the serum of Peg-IFNα-treated responders activated phosphorylation of interferon regulatory factor 3/7 (IRF3/7) in IFNα synthesis pathway in macrophages. However, miR27b-3p overexpression in HepAD38 cells suppressed IFNα synthesis in macrophages, resulting in insufficient ability to eliminate HBV, whereas the inhibitory effect could be blocked by inhibitors of exosomes release. Luciferase assay showed miR-27b-3p directly suppressed retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1) expressions, and these effects could be abrogated in mutation experiments. CONCLUSIONS In IFNα treatment, exosomes with declined miR-27b-3p triggered activation of RIG-I/TBK1 signalling in macrophages against HBV. Serum exosomal miR-27-3p might represent a potential biomarker for patients with CHB.
Collapse
Affiliation(s)
- Jie You
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Wenyu Wu
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Mengxin Lu
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Yanghao Xie
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Rui Miao
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Misi Gu
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Dong Xi
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Wuhan, China
| |
Collapse
|
25
|
Huang D, Wu D, Wang P, Wang Y, Yuan W, Hu D, Hu J, Wang Y, Tao R, Xiao F, Zhang X, Wang X, Han M, Luo X, Yan W, Ning Q. End-of-treatment HBcrAg and HBsAb levels identify durable functional cure after Peg-IFN-based therapy in patients with CHB. J Hepatol 2022; 77:42-54. [PMID: 35149125 DOI: 10.1016/j.jhep.2022.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Functional cure can be sustained in a proportion of patients with chronic hepatitis B (CHB) who lose hepatitis B surface antigen (HBsAg) after pegylated interferon alpha (Peg-IFN-ɑ)-based treatment. In this study, we aimed to identify biomarkers associated with a durable functional cure and to dissect potential immunological mechanisms. METHODS Of 257 nucleos(t)ide analogue-suppressed patients with CHB in the ANCHOR study, 80 patients randomly assigned to 96-week Peg-IFN-α-based therapy with 24-week off-treatment follow-up were included in this parallel study. Virologic and immunological biomarkers were examined dynamically. A response was defined as HBsAg loss or hepatitis B surface antibody (HBsAb) appearance at the end of treatment (EOT). Sustained response (SR) or durable functional cure was defined as sustained HBsAg loss with or without the appearance of HBsAb at the end of follow-up (EOF). RESULTS Thirty-six (45.0%) out of 80 patients achieved a response at EOT; 58.3% (21/36) of responders maintained SR at EOF. Quantitative hepatitis B core-related antigen (qHBcrAg) and HBsAb at EOT were associated with SR, with AUROCs of 0.697 (0.512-0.882, p = 0.047) and 0.744 (0.573-0.915, p = 0.013), respectively. A combination of HBcrAg <4 log10U/ml and HBsAb >2 log10IU/L at EOT had a positive predictive value of 100% for SR with an AUROC of 0.822 (0.684-0.961, p = 0.001). These patients showed maintained proportions of HBV envelope-specific CD8+T and B cells, a markedly increased proportion of T follicular helper cells after Peg-IFN-ɑ discontinuation, and significantly higher proportions of HBV polymerase-specific CD8+T and CD86+CD19+B cells at EOF. CONCLUSIONS Lower HBcrAg and higher HBsAb levels at EOT were associated with sustained cellular and humoral immune responses. They can be used to identify patients likely to achieve durable functional cure post Peg-IFN-based therapy. GOV IDENTIFIER NCT02327416 LAY SUMMARY: Functional cure can be sustained in a proportion of patients with chronic hepatitis B after pegylated interferon alpha-based treatment. However, predicting who will achieve durable functional cure remains challenging. Herein, we show that low levels of hepatitis B core-related antigen and higher levels of hepatitis B surface antibodies at the end of treatment are linked to immunological responses and are associated with durable functional cure.
Collapse
Affiliation(s)
- Da Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongli Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Hu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Xiao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Bushen Jianpi Formula Combined with Entecavir for the Treatment of HBeAg-Negative Chronic Hepatitis B: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6097221. [PMID: 35368769 PMCID: PMC8975667 DOI: 10.1155/2022/6097221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Background Bushen Jianpi formula (BSJPF, also known as Lingmao formula) is a traditional Chinese medicine for chronic hepatitis B (CHB). The previous study has suggested that the treatment combination of BSJPF and entecavir (ETV) can achieve a significant loss of hepatitis B e antigen (HBeAg) and a significant decrease in serum level of hepatitis B virus (HBV) DNA in HBeAg-positive CHB patients with mildly elevated alanine aminotransferase. Objective This study aimed to evaluate the efficacy and safety of BSJPF combined with ETV for treating HBeAg-negative CHB patients. Methods A total of 640 patients were assigned randomly to the treatment group (receiving BSJPF combined with ETV for 96 weeks) or the control group (receiving a placebo combined with ETV for 96 weeks) in a 1 : 1 ratio. The primary endpoints are the rate of loss of hepatitis B surface antigen (HBsAg). The secondary outcomes included the rate of decrease in the HBsAg concentration to ≥1 lg·IU/mL, the HBV DNA suppression, the decline of the level of covalently closed circular DNA (cccDNA) in the liver, histological improvements, and the rate of ALT normalization. Results The rate of HBsAg loss in the treatment group was significantly higher than that of the control group (5.5% versus 1.8%, P=0.031). There were 11.1% of patients in the treatment group who recorded a reduction in HBsAg ≥1 lg·IU/mL, which is better than 5.9% of patients in the control group (P=0.043). There was no significant difference between the two groups with regard to the rate of HBV DNA clearance, the reduction in intrahepatic cccDNA, and the rate of ALT normalization (P > 0.05). The rate of liver fibrosis improvement in the treatment group was better than that of the control group (35.5% versus 11.8%, P=0.031), but there was no difference in necroinflammatory improvement (P > 0.05). The adverse events (AEs) were similar between the two groups, except for the abnormal kidney function, with 2.2% in the control group and 0.0% in the treatment group (P=0.028). Conclusion The combination of BSJPF and ETV can increase the rate of HBsAg loss and the rate of histological fibrosis improvement without serious adverse events in CHB patients. Trial Registration. This trial is registered with ChiCTR-IOR-16009880 on November 16, 2016—retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=16836.
Collapse
|
27
|
Wang G, Duan Z. Guidelines for Prevention and Treatment of Chronic Hepatitis B. J Clin Transl Hepatol 2021; 9:769-791. [PMID: 34722192 PMCID: PMC8516840 DOI: 10.14218/jcth.2021.00209] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
To achieve the goal of the World Health Organization to eliminate viral hepatitis as a major public health threat by 2030, the Chinese Society of Infectious Diseases and the Chinese Society of Hepatology convened an expert panel in 2019 to update the guidelines for the prevention and treatment of chronic hepatitis B (CHB). The current guidelines cover recent advances in basic, clinical, and preventive studies of CHB infection and consider the actual situation in China. These guidelines are intended to provide support for the prevention, diagnosis, and treatment of CHB.
Collapse
Affiliation(s)
- Guiqiang Wang
- Center for Liver Diseases, Department of Infectious Diseases, Peking University First Hospital; Department of Infectious and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Zhongping Duan
- Center for Difficult and Complicated Liver Diseases and Artificial Liver, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Liu QM, He YY, Liu LL, Wang LK. Exosomal lncRNA HOTTIP Mediates Antiviral Effect of Tenofovir Alafenamide (TAF) on HBV Infection. J Inflamm Res 2021; 14:5489-5500. [PMID: 34720597 PMCID: PMC8550561 DOI: 10.2147/jir.s315716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Chronic hepatitis B (CHB) virus (HBV) infection has emerged as a global health burden affecting nearly 292 million people. Tenofovir alafenamide (TAF) is an effective treatment for CHB patients. However, the detailed mechanism underlying the antiviral activity of TAF remains unclear. METHODS In this study, we investigated the antiviral effect of exosomes derived from the serum of CHB patients treated with TAF (Exo-serum) and TAF-treated macrophages (MP) (Exo-MP(TAF)). RESULTS RNAseq analysis was also performed to determine the associated long non-coding RNAs (lncRNAs). The results demonstrated that both Exo-serum and Exo-MP(TAF) could be taken up by HepAD38 cells and exhibited potent antiviral activities, as manifested by significantly downregulating the levels of hepatitis B surface antigen, hepatitis B e antigen, HBV DNA, and covalently closed circular DNA. The antiviral effect of Exo-serum was more potent than those of TAF treatment alone. RNAseq analysis revealed that lncRNA HOTTIP was upregulated significantly in Exo-serum. Further, lncRNA HOTTIP knockdown reversed the antiviral effect of Exo-MP(TAF) on HepAD38 cells, whereas lncRNA HOTTIP knockdown exerted the opposite roles. DISCUSSION Taken together, these results suggest that exosomal lncRNA HOTTIP is essential for the antiviral activity of TAF and provide a novel understanding of the exosome-mediated mechanism underlying HBV infection.
Collapse
Affiliation(s)
- Qing-Min Liu
- Intensive Care Unit, Linyi People’s Hospital, Linyi, Shandong Province, People’s Republic of China
| | - Yi-Yu He
- Department of Cardiovascular Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Li-Li Liu
- Department of Pathology, Linyi People’s Hospital, Linyi, Shandong Province, People’s Republic of China
| | - Li-Kun Wang
- Infection Control Center, Linyi People’s Hospital, Linyi, Shandong Province, People’s Republic of China
| |
Collapse
|
29
|
APASL guidance on stopping nucleos(t)ide analogues in chronic hepatitis B patients. Hepatol Int 2021; 15:833-851. [PMID: 34297329 DOI: 10.1007/s12072-021-10223-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is currently incurable. Long-term treatment with potent and safe nucleos(t)ide analogs (NAs) can reduce hepatocellular carcinoma (HCC) and cirrhosis-related complications through profound viral suppression. However, indefinite therapy raises several crucial issues with pros and cons. Because seroclearance of hepatitis B surface (HBsAg) as functional cure is not easily achievable, a finite therapy including sequential 48-week pegylated interferon therapy may provide an opportunity to facilitate HBsAg seroclearance by the rejuvenation of exhausted immune cells. However, the cost of stopping NA is the high incidence of virological relapse and surge of alanine aminotransferase (ALT) levels, which may increase the risk of adverse outcomes (e.g., decompensation, fibrosis progression, HCC, or liver-related mortality). So far, the APASL criteria to stop NA treatment is undetectable HBV DNA levels with normalization of ALT; however, this criterion for cessation of treatment is associated with various incidence rates of virological/clinical relapse and more than 40% of NA-stoppers eventually receive retreatment. A very intensive follow-up strategy and identification of low-risk patients for virological/clinical relapse by different biomarkers are the keys to stop the NA treatment safely. Recent studies suggested that decreasing HBsAg level at the end-of-treatment to < 100-200 IU/mL seems to be a useful marker for deciding when to discontinue NAs therapy. In addition, several viral and host factors have been reviewed for their potential roles in predicting clinical relapse. Finally, the APASL guidance has proposed rules to stop NA and the subsequent follow-up strategy to achieve a better prognosis after stopping NA. In general, for both HBeAg-positive and HBeAg-negative patients who have stopped treatment, these measurements should be done every 1-3 months at the minimum until 12 months.
Collapse
|
30
|
Shah NJ, Aloysius MM, Sharma NR, Pallav K. Advances in treatment and prevention of hepatitis B. World J Gastrointest Pharmacol Ther 2021. [DOI: 10.4292/wjg.v12.i4.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Shah NJ, Aloysius MM, Sharma NR, Pallav K. Advances in treatment and prevention of hepatitis B. World J Gastrointest Pharmacol Ther 2021; 12:56-78. [PMID: 34316384 PMCID: PMC8290928 DOI: 10.4292/wjgpt.v12.i4.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) continues to contribute to worldwide morbidity and mortality significantly. Scientists, clinicians, pharmaceutical companies, and health organizations have dedicated substantial Intellectual and monetary resources to finding a cure, increasing immunization rates, and reducing the global burden of CHB. National and international health-related organizations including the center for disease control, the national institute of health, the American Association for the study of liver disease (AASLD), The European association for the study of the Liver (EASL), The Asia Pacific association for the study of the Liver (APASL) and the world health organization release periodic recommendations for disease prevention and treatment. Our review of the most recent guidelines by EASL, AASLD, APASL, and Taiwan Association for the Study of the Liver revealed that an overwhelming majority of cited studies were published before 2018. We reviewed Hepatitis B-related literature published 2018 onwards to identify recent developments and current barriers that will likely direct future efforts towards eradicating hepatitis B. The breakthrough in our understanding of the hepatitis B virus life cycle and resulting drug development is encouraging with significant room for further progress. Data from high-risk populations, most vulnerable to the devastating effects of hepatitis B infection and reactivation remain sparse. Utilization of systems approach, optimization of experimental models, identification and validation of next-generation biomarkers, and precise modulation of the human immune response will be critical for future innovation. Within the foreseeable future, new treatments will likely complement conventional therapies rather than replace them. Most Importantly, pragmatic management of CHB related population health challenges must be prioritized to produce real-world results.
Collapse
Affiliation(s)
- Niraj James Shah
- Department of Internal Medicine, Digestive Disease, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mark M Aloysius
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA 18505, United States
| | - Neil Rohit Sharma
- Department of Internal Medicine, Interventional Oncology and Surgical Endoscopy, Parkview Regional Medical Center, Parkview Cancer Institute, Fort Wayne, IN 46845, United States
| | - Kumar Pallav
- Department of Internal Medicine, Interventional Oncology and Surgical Endoscopy, Parkview Regional Medical Center, Parkview Cancer Institute, Fort Wayne, IN 46845, United States
| |
Collapse
|
32
|
Yuan W, Huang D, Wu D, Chen Y, Ma K, Han M, Luo X, Yan W, Ning Q. Peg IFN-ɑ Treatment Enhanced the Inhibitory Effect of NK Cells on the Differentiation and Proliferation of CD4 +CD25 + Tregs via IFN-γ in Chronic Hepatitis B. J Infect Dis 2021; 224:1878-1889. [PMID: 33870432 DOI: 10.1093/infdis/jiab216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
The immunomodulatory role of natural killer (NK) cells has been recognized recently, but its effects on CD4 +CD25 + regulatory T cells (Tregs) during chronic hepatitis B (CHB) infection and treatment remain unclear. A total of 116 nucleos(t)ide analogue (NA)-treated CHB patients were included. An inverse correlation between the peripheral frequencies of NK cells and Tregs was found in NA suppressed patients following Peg IFN-ɑ-based treatment. Further, NK cells suppressed the proliferation and differentiation of Tregs through secreting IFN-γ was evidenced in the circulation of NA-treated CHB patients as well as in the liver of HBV-carrier mouse model. Additionally, the inhibition could be enhanced by Peg IFN-ɑ treatment, which was correlated to more vigorous HBV-specific T cell responses and marked reduction in HBsAg. Our study reveals a novel immunomodulatory mechanism of NK cells and provides a theoretical basis for Peg IFN-ɑ as an immunotherapy agent in treating patients with CHB.
Collapse
Affiliation(s)
- Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuying Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Wu W, Wu D, Yan W, Wang Y, You J, Wan X, Xi D, Luo X, Han M, Ning Q. Interferon-Induced Macrophage-Derived Exosomes Mediate Antiviral Activity Against Hepatitis B Virus Through miR-574-5p. J Infect Dis 2021; 223:686-698. [PMID: 32663850 DOI: 10.1093/infdis/jiaa399] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interferon alfa (IFN-α) has been proved effective in treating chronic hepatitis B (CHB), owing to its ability to suppress hepatitis B surface antigen and hepatitis B virus (HBV) covalently closed circular DNA. However, the underlying mechanisms are unclear. METHODS We investigated the antiviral activities of exosomes from responders and nonresponders to pegylated IFN-α (PegIFN-α) as well as the supernatants of IFN-α-treated macrophages derived from THP-1 (the human leukemia monocyte cell line). Then the expression profiles of exosomal microRNAs (miRNAs) were analyzed using miRNA sequencing. The luciferase reporter assay was used to locate the binding position of HBV genomic sequence targeted by the identified miRNA. RESULTS Exosomes from PegIFN-α-treated patients, particularly responders, as well as the supernatants of IFN-α-treated macrophages exhibited anti-HBV activities, as manifested by the suppression of hepatitis B surface antigen, hepatitis B e antigen, HBV DNA, and covalently closed circular DNA levels in HBV-related cell lines. PegIFN-α treatment up-regulated exosomal hsa-miR-193a-5p, hsa-miR-25-5p, and hsa-miR-574-5p, which could partially inhibit HBV replication and transcription, and hsa-miR-574-5p reduced pregenomic RNA and polymerase messenger RNA levels by binding to the 2750-2757 position of the HBV genomic sequence. CONCLUSIONS Exosomes can transfer IFN-α-related miRNAs from macrophages to HBV-infected hepatocytes, and they exhibit antiviral activities against HBV replication and expression.
Collapse
Affiliation(s)
- Wenyu Wu
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongli Wang
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie You
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wan
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mathematical models are useful tools to describe the dynamics of infection and predict the role of possible drug combinations. In this paper, we present an analysis of a hepatitis B virus (HBV) model including cytotoxic T lymphocytes (CTL) and antibody responses, under distributed feedback control, expressed as an integral form to predict the effect of a combination treatment with interleukin-2 (IL-2). The method presented in this paper is based on the symmetry properties of Cauchy matrices C(t,s), which allow us to construct and analyze the stability of corresponding integro-differential systems.
Collapse
|
35
|
Huang YW, Hsu CW, Lu SN, Yu ML, Su CW, Su WW, Chien RN, Hsu CS, Hsu SJ, Lai HC, Qin A, Tseng KC, Chen PJ. Ropeginterferon alfa-2b every 2 weeks as a novel pegylated interferon for patients with chronic hepatitis B. Hepatol Int 2020; 14:997-1008. [PMID: 33099752 PMCID: PMC7803873 DOI: 10.1007/s12072-020-10098-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ropeginterferon alfa-2b is a novel mono-pegylated interferon that has only one major form as opposed to 8-14 isomers of other on-market pegylated interferon, allowing injection every two or more weeks with higher tolerability. It received European Medicines Agency and Taiwan marketing authorization in 2019 and 2020, for treatment of polycythemia vera. This phase I/II study aimed to have preliminary evaluation of safety and efficacy in chronic hepatitis B. METHODS Thirty-one HBeAg-positive and 31 HBeAg-negative were stratified by HBeAg status and randomized at 1:1:1 ratio to q2w ropeginterferon alfa-2b 350 μg (group 1), q2w 450 μg (group 2) or q1w PEG-IFN alfa-2a 180 μg (group 3). Each patient received 48-week treatment (TW48) and 24-week post-treatment follow-up (FW24). RESULTS The baseline demographics were comparable among the three groups, except for mean HBeAg in HBeAg-positive patients (2.90, 2.23, 2.99 log10 S/CO, respectively). Cumulative HBeAg seroconversion rate at follow-up period was 27.3% (3/11), 36.4% (4/11), and 11.1% (1/9) with time to HBeAg seroconversion starting from TW24, TW16, and TW48 in group 1, 2, and 3, respectively. The rate of HBV DNA < 2000 IU/mL and HBsAg levels < 1500 IU/mL at FW24 were comparable in all groups. Ropeginterferon alfa-2b (group 1 & 2) had numerically lower incidence of rash (9.5% and 4.5%) as compared to PEG-IFN alfa-2a (36.8%). Ropeginterferon alfa-2b 350 μg (group 1) had more ALT elevation (38.1%), however the rate was comparable in group 2 (9.1%) and group 3 (10.5%). CONCLUSION In this preliminary study, ropeginterferon alfa-2b, although in only half the number of injections, is as safe and effective as pegylated interferon alfa-2a for chronic hepatitis B.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Liver Center, Cathay General Hospital Medical Center, Taipei, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Wei Hsu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Section, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Wen Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Rong-Nan Chien
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Sheng Hsu
- Liver Diseases Research Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Shih-Jer Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd., Taipei, Taiwan.
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Wang Y, Wang M, Zhang G, Ou X, Ma H, You H, Jia J. Control of Chronic Hepatitis B in China: Perspective of Diagnosis and Treatment. China CDC Wkly 2020; 2:596-600. [PMID: 34594716 PMCID: PMC8428426 DOI: 10.46234/ccdcw2020.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yu Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Min Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Guanhua Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
37
|
Ma Z, Zhang E, Gao S, Xiong Y, Lu M. Toward a Functional Cure for Hepatitis B: The Rationale and Challenges for Therapeutic Targeting of the B Cell Immune Response. Front Immunol 2019; 10:2308. [PMID: 31608073 PMCID: PMC6769125 DOI: 10.3389/fimmu.2019.02308] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
The central role of the cellular immune response in the control and clearance of the hepatitis B virus (HBV) infection has been well-established. The contribution of humoral immunity, including B cell and antibody responses against HBV, has been investigated for a long time but has attracted increasing attention again in recent years. The anti-HBs antibody was first recognized as a marker of protective immunity after the acute resolution of the HBV infection (or vaccination) and is now defined as a biomarker for the functional cure of chronic hepatitis B (CHB). In this way, therapies targeting HBV-specific B cells and the induction of an anti-HBs antibody response are essential elements of a rational strategy to terminate chronic HBV infection. However, a high load of HBsAg in the blood, which has been proposed to induce antigen-specific immune tolerance, represents a major obstacle to curing CHB. Long-term antiviral treatment by nucleoside analogs, by targeting viral translation by siRNA, by inhibiting HBsAg release via nucleic acid polymers, or by neutralizing HBsAg via specific antibodies could potentially reduce the HBsAg load in CHB patients. A combined strategy including a reduction of the HBsAg load via the above treatments and the therapeutic targeting of B cells by vaccination may induce the appearance of anti-HBs antibodies and lead to a functional cure of CHB.
Collapse
Affiliation(s)
- Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ejuan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shicheng Gao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|