1
|
Saha P, Hartmann P. Impact of Gut Microbiome on Gut Permeability in Liver and Gut Diseases. Microorganisms 2025; 13:1188. [PMID: 40572077 PMCID: PMC12195470 DOI: 10.3390/microorganisms13061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 06/29/2025] Open
Abstract
Hepatobiliary and gastrointestinal conditions, including chronic liver diseases and inflammatory bowel disease, are associated with significant morbidity and mortality globally. While the pathophysiology and symptoms vary from one disease to another, aberrations of the gut microbiome with deleterious microbial products affecting the intestinal barrier are common in patients suffering from these diseases. In this review, we summarize changes in the gut microbiome associated with various disease states and detail their role in gut barrier disruption and in modulating disease progression. Further, we discuss therapeutic interventions and precision medicine approaches targeting the microbiome, which have shown promise in alleviating these chronic illnesses in mouse models and patients.
Collapse
Affiliation(s)
- Punnag Saha
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
2
|
Münte E, Viebahn G, Khurana A, Fujiki J, Nakamura T, Lang S, Demir M, Schnabl B, Hartmann P. Faecalibacterium prausnitzii Is Associated with Disease Severity in MASLD but Its Supplementation Does Not Improve Diet-Induced Steatohepatitis in Mice. Microorganisms 2025; 13:675. [PMID: 40142567 PMCID: PMC11944644 DOI: 10.3390/microorganisms13030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The gut microbiota plays an important role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we aimed to evaluate the role of the butyrate-producing bacterium Faecalibacterium prausnitzii in MASLD and whether supplementation with butyrate-producing bacteria, in particular Faecalibacterium prausnitzii, can ameliorate diet-induced steatohepatitis in mice. The relative abundance of the genus Faecalibacterium and its most abundant strain Faecalibacterium prausnitzii was determined by 16S rRNA sequencing and quantitative polymerase chain reaction (qPCR), respectively, in 95 participants with MASLD and 19 healthy control subjects. Butyrate and butyrate-producing bacteria (Faecalibacterium prausnitzii and Coprococcus comes) were gavaged to C57BL/6 mice fed a steatohepatitis-inducing diet. The fecal relative abundance of Faecalibacterium and Faecalibacterium prausnitzii was decreased in subjects with MASLD versus healthy controls and lower in individuals with MASLD and stage 3-4 fibrosis versus those with stage 0-2 fibrosis. Sodium-butyrate supplementation improved hepatic steatosis in mice on high-fat diet (HFD). Gavage of various butyrate-producing bacteria including Faecalibacterium prausnitzii and Coprococcus comes isolated from humans did not improve HFD-induced liver disease in mice. Although the abundance of Faecalibacterium prausnitzii is associated with MASLD severity in humans, its gavage to mice does not improve experimental diet-induced liver disease.
Collapse
Affiliation(s)
- Eliane Münte
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Greta Viebahn
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
| | - Amit Khurana
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Hokkaido, Japan
| | - Tomohiro Nakamura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
| | - Sonja Lang
- Department of Gastroenterology and Hepatology, University Hospital Cologne, 50937 Cologne, Germany
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, 13353 Berlin, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| |
Collapse
|
3
|
Zhang L, Du FH, Kun KX, Yan Y. Abscisic acid improves non-alcoholic fatty liver disease in mice through the AMPK/NRF2/KEAP1 signaling axis. Biochem Biophys Res Commun 2025; 747:151291. [PMID: 39793400 DOI: 10.1016/j.bbrc.2025.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, placing a substantial financial strain on public health systems. Currently, no specific pharmacological treatments are recommended in existing guidelines. Abscisic acid (ABA), a natural plant hormone, is recognized for its promising potential in the healthcare field due to its diverse biological activities. Therefore, this study is aimed at exploring the protective mechanism of ABA against NAFLD. In vitro, experiments were conducted using palmitic acid (PA) to establish a fatty liver cell model, whereas in vivo, an NAFLD model was established using a continuous high-fat diet (HFD). It was found that ABA, as a natural activator of NRF2 and AMPK, reduced lipid accumulation in hepatocytes and exerted anti-inflammatory and antioxidant effects by enhancing the nuclear expression of NRF2, thereby alleviating NAFLD in mice. Furthermore, AMPK was activated by ABA through the promotion of its phosphorylation, which subsequently enhanced the p62-dependent autophagic degradation of KEAP1, leading to the release and nuclear translocation of NRF2. In conclusion, it is indicated that ABA reduces lipid accumulation, inflammation, and oxidative stress in hepatocytes via the NRF2 and AMPK pathways, potentially serving as a promising candidate for alleviating NAFLD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China
| | - Fu Hua Du
- Sichuan Science City Hospital, Sichuan, 621022, China
| | - Kai Xiao Kun
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China
| | - Yong Yan
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China.
| |
Collapse
|
4
|
Huang Y, Chen H, Chen J, Wu Q, Zhang W, Li D, Lu Y, Chen Y. Yellow tea polysaccharides protect against non-alcoholic fatty liver disease via regulation of gut microbiota and bile acid metabolism in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155919. [PMID: 39153277 DOI: 10.1016/j.phymed.2024.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major clinical and global public health issue, with no specific pharmacological treatment available. Currently, there is a lack of approved drugs for the clinical treatment of NAFLD. Large-leaf yellow tea polysaccharides (YTP) is a natural biomacromolecule with excellent prebiotic properties and significant therapeutic effects on multiple metabolic diseases. However, the specific mechanisms by which YTP regulates NAFLD remain unclear. PURPOSE This study aims to explore the prebiotic effects of YTP and the potential mechanisms by which it inhibits hepatic cholesterol accumulation in NAFLD mice. METHODS The effects of YTP on lipid accumulation were evaluated in NAFLD mice through obesity trait analysis and bile acids (BAs) metabolism assessment. Additionally, fecal microbiota transplantation (FMT) was performed, and high-throughput sequencing was employed to investigate the mechanisms underlying YTP's regulatory effects on gut microbiota and BA metabolism. RESULTS Our study demonstrated that YTP altered the constitution of colonic BA, particularly increasing the levels of conjugated BA and non-12OH BA, which suppressed ileum FXR receptors and hepatic BA reabsorption, facilitated BA synthesis, and fecal BA excretion. The modifications were characterized by a decrease in the levels of FXR, FGF15, FGFR4, and ASBT proteins, and an increase in the levels of Cyp7a1 and Cyp27a1 proteins. YTP might affect enterohepatic circulation and by the activated the hepatic FXR-SHP pathway. Meanwhile, YTP reshaped the intestinal microbiome structure by decreasing BSH-producing genera and increasing taurine metabolism genera. The correlation analysis implied that Muribaculaceae, Pseudomonas, acterium_coprostanoligenes_group, Clostridiales, Lachnospiraceae_NK4A136_group, Delftia, Dubosiella, and Romboutsia were strongly correlated with specific BA monomers. CONCLUSIONS YTP modulates bile salt hydrolase-related microbial genera to activate alternative bile acid synthesis pathways, thereby inhibiting NAFLD progression. These results suggest that YTP may serve as a potential probiotic formulation, offering a feasible dietary intervention for NAFLD.
Collapse
Affiliation(s)
- Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Jielin Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
| |
Collapse
|
5
|
Nonogaki K, Kaji T. The GLP-1 Receptor Agonist Liraglutide Decreases Primary Bile Acids and Serotonin in the Colon Independently of Feeding in Mice. Int J Mol Sci 2024; 25:7784. [PMID: 39063026 PMCID: PMC11277076 DOI: 10.3390/ijms25147784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide remarkably decreased the expression of apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/β, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Division of Diabetes and Nutrition, RARiS, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Miyagi, Japan;
| | | |
Collapse
|
6
|
Kanmani P, Villena J, Lim SK, Song EJ, Nam YD, Kim H. Immunobiotic Bacteria Attenuate Hepatic Fibrosis through the Modulation of Gut Microbiota and the Activation of Aryl-Hydrocarbon Receptors Pathway in Non-Alcoholic Steatohepatitis Mice. Mol Nutr Food Res 2024; 68:e2400227. [PMID: 39031898 DOI: 10.1002/mnfr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, 4000, Argentina
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
7
|
Jiang Y, Zhao L, Ma J, Yang Y, Zhang B, Xu J, Dhondrup R, Wong TW, Zhang D. Preventive mechanisms of Chinese Tibetan medicine Triphala against nonalcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155229. [PMID: 38006804 DOI: 10.1016/j.phymed.2023.155229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known. PURPOSE The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation. METHODS TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles. RESULTS The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1β, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion. CONCLUSION TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.
Collapse
Affiliation(s)
- Yan Jiang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Linlin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jing Ma
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Yongjing Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Jiyu Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | | | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia.
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; College of Eco-Environmental Engineering, Qinghai University, Xining, China.
| |
Collapse
|
8
|
Arvanitakis K, Koufakis T, Kalopitas G, Papadakos SP, Kotsa K, Germanidis G. Management of type 2 diabetes in patients with compensated liver cirrhosis: Short of evidence, plenty of potential. Diabetes Metab Syndr 2024; 18:102935. [PMID: 38163417 DOI: 10.1016/j.dsx.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Treatment of type 2 diabetes (T2D) in patients with compensated cirrhosis is challenging due to hypoglycemic risk, altered pharmacokinetics, and the lack of robust evidence on the risk/benefit ratio of various drugs. Suboptimal glycemic control accelerates the progression of cirrhosis, while the frequent coexistence of nonalcoholic fatty liver disease (NAFLD) with T2D highlights the need for a multifactorial therapeutic approach. METHODS A literature search was performed in Medline, Google Scholar and Scopus databases till July 2023, using relevant keywords to extract studies regarding the management of T2D in patients with compensated cirrhosis. RESULTS Metformin, sodium-glucose co-transporter-2 inhibitors (SGLT2i), and glucagon-like peptide-1 receptor agonists (GLP-1 RA) are promising treatment options for patients with T2D and compensated liver cirrhosis, offering good glycemic control with minimal risk of hypoglycemia, while their pleiotropic actions confer benefits on NAFLD and body weight, and decrease cardiorenal risk. Sulfonylureas cause hypoglycemia, thus should be avoided, while in specific studies, dipeptidyl peptidase-4 inhibitors have been correlated with increased risk of decompensation and variceal bleeding. Despite the benefits of thiazolidinediones in nonalcoholic steatohepatitis, concerns about edema and weight gain limit their use in compensated cirrhosis. Insulin does not exert hepatotoxic effects and can be administered safely in combination with other drugs; however, the risk of hypoglycemia should be considered. CONCLUSIONS The introduction of new hepatoprotective diabetes drugs into clinical practice, including tirzepatide, SGLT2i, and GLP-1 RA, sets the stage for future trials to investigate the ideal therapeutic regimen for people with T2D and compensated cirrhosis.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
9
|
Kugler BA, Cao X, Wenger M, Franczak E, McCoin CS, Von Schulze A, Morris EM, Thyfault JP. Divergence in aerobic capacity influences hepatic and systemic metabolic adaptations to bile acid sequestrant and short-term high-fat/sucrose feeding in rats. Am J Physiol Regul Integr Comp Physiol 2023; 325:R712-R724. [PMID: 37811712 PMCID: PMC11178297 DOI: 10.1152/ajpregu.00133.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
High versus low aerobic capacity significantly impacts the risk for metabolic diseases. Rats selectively bred for high or low intrinsic aerobic capacity differently modify hepatic bile acid metabolism in response to high-fat diets (HFDs). Here we tested if a bile acid sequestrant would alter hepatic and whole body metabolism differently in rats with high and low aerobic capacity fed a 1-wk HFD. Male rats (8 mo of age) that were artificially selected to be high (HCR) and low-capacity runners (LCR) with divergent intrinsic aerobic capacities were transitioned from a low-fat diet (LFD, 10% fat) to an HFD (45% fat) with or without a bile acid sequestrant (BA-Seq, 2% cholestyramine resin) for 7 days while maintained in an indirect calorimetry system. HFD + BA-Seq increased fecal excretion of lipids and bile acids and prevented weight and fat mass gain in both strains. Interestingly, HCR rats had increased adaptability to enhance fecal bile acid and lipid loss, resulting in more significant energy loss than their LCR counterpart. In addition, BA-Seq induced a greater expression of hepatic CYP7A1 gene expression, the rate-limiting enzyme of bile acid synthesis in HCR rats both on HFD and HFD + BA-Seq diets. HCR displayed a more significant reduction of RQ in response to HFD than LCR, but HFD + BA-Seq lowered RQ in both groups compared with HFD alone, demonstrating a pronounced impact on metabolic flexibility. In conclusion, BA-Seq provides uniform metabolic benefits for metabolic flexibility and adiposity, but rats with higher aerobic capacity display adaptability for hepatic bile acid metabolism.NEW & NOTEWORTHY The administration of bile acid sequestrant (BA-Seq) has uniform metabolic benefits in terms of metabolic flexibility and adiposity in rats with high and low aerobic capacity. However, rats with higher aerobic capacity demonstrate greater adaptability in hepatic bile acid metabolism, resulting in increased fecal bile acid and lipid loss, as well as enhanced fecal energy loss.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xin Cao
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Madi Wenger
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Edziu Franczak
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Alex Von Schulze
- Stowers Research Institute, Kansas City, Missouri, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| |
Collapse
|
10
|
Zhang X, Hartmann P. How to calculate sample size in animal and human studies. Front Med (Lausanne) 2023; 10:1215927. [PMID: 37663663 PMCID: PMC10469945 DOI: 10.3389/fmed.2023.1215927] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
One of the most important statistical analyses when designing animal and human studies is the calculation of the required sample size. In this review, we define central terms in the context of sample size determination, including mean, standard deviation, statistical hypothesis testing, type I/II error, power, direction of effect, effect size, expected attrition, corrected sample size, and allocation ratio. We also provide practical examples of sample size calculations for animal and human studies based on pilot studies, larger studies similar to the proposed study-or if no previous studies are available-estimated magnitudes of the effect size per Cohen and Sawilowsky.
Collapse
Affiliation(s)
- Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States
| | - Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
12
|
Stanciu MC, Nichifor M, Teacă CA. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023; 9:500. [PMID: 37367171 DOI: 10.3390/gels9060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer-bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marieta Nichifor
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
14
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
16
|
Guo J, Shi CX, Zhang QQ, Deng W, Zhang LY, Chen Q, Zhang DM, Gong ZJ. Interventions for non-alcoholic liver disease: a gut microbial metabolites perspective. Therap Adv Gastroenterol 2022; 15:17562848221138676. [PMID: 36506748 PMCID: PMC9730013 DOI: 10.1177/17562848221138676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
17
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
18
|
Hartmann P, Schnabl B. Inexpensive, Accurate, and Stable Method to Quantitate Blood Alanine Aminotransferase (ALT) Levels. Methods Protoc 2022; 5:81. [PMID: 36287053 PMCID: PMC9610295 DOI: 10.3390/mps5050081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Alanine aminotransferase (ALT) levels are frequently determined in serum and plasma samples and are a primary measure to quantitate hepatocellular injury in rodents, humans, and other organisms. An accurate, reliable, and scalable assay is hence of central importance. Here, we describe a methodology that fulfills those requirements, and demonstrates an excellent performance similar to a commercial ALT kit, with a long stable performance over several subsequent runs. Further, anticoagulation of blood samples with ethylenediaminetetraacetic acid (EDTA) or heparin results in similar ALT concentrations with this assay, whereas no anticoagulation significantly increases ALT levels. Mild hemolysis does not significantly increase ALT levels; however, moderate to severe hemolysis does lead to higher ALT levels. The assay provides stable results over a wide range of associated triglyceride concentrations that can be expected in serum and plasma samples from rodents and humans with dyslipidemia. It also performs well in diluted samples with a reduction of ALT levels corresponding to the factor used to dilute the samples. The described ALT reagent is also very affordable, costing less than 1/80 of comparable commercial kits. Based on the characteristics above, this methodology is suitable for a broad spectrum of applications in mice and possibly humans, where ALT concentrations need to be determined.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0984, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123-5030, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0063, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0063, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161-0002, USA
| |
Collapse
|
19
|
Modulation of the Bile Acid Enterohepatic Cycle by Intestinal Microbiota Alleviates Alcohol Liver Disease. Cells 2022; 11:cells11060968. [PMID: 35326419 PMCID: PMC8946080 DOI: 10.3390/cells11060968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion.
Collapse
|