1
|
Völkl M, Burgers LD, Zech TJ, Ciurus S, Dorovska S, Liu H, Zahler S, Fürst R. Homoharringtonine (omacetaxine mepesuccinate) limits the angiogenic capacity of endothelial cells and reorganises filamentous actin. Biomed Pharmacother 2025; 186:118025. [PMID: 40184838 DOI: 10.1016/j.biopha.2025.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Homoharringtonine (HHT), an alkaloid from the plant genus Cephalotaxus, disrupts the first elongation phase of protein synthesis by interacting with the 60S ribosomal subunit, making it effective in treating diseases such as myeloid leukaemia. Semi-synthetically produced as omacetaxine mepesuccinate, HHT has been approved in Europe and in the US for patients resistant to two or more tyrosine kinase inhibitors. Although recent studies assume an anti-angiogenic capacity, the actions of HHT have not yet been characterised in primary endothelial cells, the major cell type driving angiogenesis. Therefore, this study addresses this issue by investigating the anti-angiogenic effect of HHT ex vivo and in vitro. A concentration-dependent decrease in sprouting was observed in a mouse aortic ring assay and in spheroids generated from human umbilical vein endothelial cells (HUVECs). Other angiogenic key features such as migration, proliferation and tube formation were similarly decreased by HHT. Interestingly, we observed an accumulation of F-actin. Inhibition of the ROCK pathway restored the angiogenic effects. A specific inhibition of typical upstream or downstream proteins of the ROCK pathway like Rho, MLC-2 or LIMK only marginally restored the angiogenic capability. Further analyses revealed that the alteration of the actin network might relate to the p38 MAPK/HSP27 axis: A significant prolongation of p38 phosphorylation induced by HHT treatment resulted in a partial restoration of endothelial spheroid sprouting. This study demonstrates the anti-angiogenic capabilities of HHT in endothelial cells and opens a promising further research field for an already approved drug.
Collapse
Affiliation(s)
- Matthias Völkl
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Thomas Josef Zech
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah Ciurus
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Senta Dorovska
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Hong Liu
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Fürst
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
3
|
Suda Y, Taguchi A, Matsumoto T, Okinaka Y, Hayashi S, Tsubosaka M, Kamenaga T, Kuroda Y, Nakano N, Onoi Y, Tachibana S, Wada K, Saito A, Maeda T, Araki S, Motono K, Kuroda R. Bone marrow mononuclear cell transplantation promotes bone healing via gap junction-mediated cell-cell interaction. Stem Cells 2025; 43:sxae090. [PMID: 39847452 DOI: 10.1093/stmcls/sxae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
AIMS Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures. Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method. METHODS Using a murine fracture model, we aimed to elucidate the relationship between gap junction-mediated cell-to-cell interactions and enhanced fracture healing after BM-MNC transplantation. We evaluated the transfer of substances from BM-MNCs to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site and assessed the effects of BM-MNC transplantation on bone healing, angiogenesis, and osteogenesis. RESULTS Bone marrow mononuclear cells transferred substances to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site. Moreover, BM-MNC transplantation promoted bone healing via gap junction-mediated cell-to-cell interactions, accelerating both angiogenesis and osteogenesis. CONCLUSIONS Our findings provide a novel understanding of fracture healing mechanisms and suggest that BM-MNC transplantation enhances bone healing through gap junction-mediated cell-to-cell interactions, contributing to the development of regenerative medicine strategies targeting bone repair.
Collapse
Affiliation(s)
- Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Department of Regenerative Medicine Research, Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Akira Saito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Shotaro Araki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Department of Regenerative Medicine Research, Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kohei Motono
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
4
|
Gu X, Hu Y, Mungur ID, Gu F, Xiong Y, Cui J, Zhong L, Zhang K, Liu L. Immunotherapy beyond progression following first‑line chemotherapy plus immunotherapy in advanced non‑small cell lung cancer: A retrospective study. Oncol Lett 2025; 29:90. [PMID: 39677413 PMCID: PMC11638921 DOI: 10.3892/ol.2024.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024] Open
Abstract
Immunotherapy has paved the way for new treatment options for advanced non-small cell lung cancer (NSCLC). However, for patients who have progressed following first-line immunotherapy combined with chemotherapy, little is known about the benefits of the continuation of immunotherapy. Thus, the current study aimed to evaluate the efficacy of immunotherapy beyond progression (IBP) in patients with advanced NSCLC. A retrospective review of patients with advanced NSCLC who experienced disease progression after receiving a combination of ICIs and chemotherapy was conducted. Kaplan-Meier survival analysis was used to estimate progression-free survival (PFS) and overall survival (OS) times, and log-rank tests were employed to compare inter-group differences. Cox regression analyses were performed to identify independent factors associated with OS and PFS. In total, 136 patients who had disease progression after prior immunotherapy were included. A comparison of patients who were treated with ICIs after disease progression (IBP group) and those who received other treatments (non-IBP group) demonstrated a higher disease control rate after second-line treatment for the IBP group (89.8 vs. 70.8%, respectively; P=0.005). Kaplan-Meier curve analysis showed statistical differences in PFS2 (interval from the second-line treatment to progression or death for any reason; P=0.012) and OS (P=0.041). Subgroup analyses indicated superior clinical outcomes for the IBP group. Multivariate analyses revealed IBP to be an independent factor associated with improved PFS2 (hazard ratio, 0.613; 95% confidence interval, 0.403-0.933; P=0.022). In conclusion, favorable clinical outcomes for IBP were observed, and IBP remains a viable choice for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Xinyue Gu
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yue Hu
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ishanee Devi Mungur
- Accident and Emergency Department, New Souillac Hospital, Souillac, Savanne 61801, Mauritius
| | - Feifei Gu
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ying Xiong
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jin Cui
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Luhui Zhong
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kai Zhang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li Liu
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
5
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
6
|
Hara T, Ueki H, Okamura Y, Bando Y, Suzuki K, Terakawa T, Chiba K, Hyodo Y, Teishima J, Miyake H. Comparative prognostic value of tumor volume in IOIO and IOTKI treatment for metastatic renal cancer. Urol Oncol 2025; 43:63.e19-63.e27. [PMID: 39523170 DOI: 10.1016/j.urolonc.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES We aimed to investigate the prognostic significance of tumor size in metastatic renal cell carcinoma (mRCC) by comparing the effectiveness of dual immune checkpoint inhibitor (IOIO) and immune checkpoint inhibitor combined with tyrosine kinase inhibitor (IOTKI) therapies. METHODS This retrospective observational study included patients with mRCC diagnosed between October 2014 and February 2024 who received IOIO or IOTKI treatment at Kobe University Hospital and 5 affiliated hospitals. Clinical and imaging data were collected, and target lesions were measured according to RECIST v.1.1 criteria. Time-dependent ROC curve analysis was performed to evaluate the prognostic value of tumor size, nephrectomy status, and IMDC risk criteria for progression-free survival (PFS) and overall survival (OS). RESULTS The study included 180 mRCC patients, consisting of 99 receiving IOIO therapy and 81 receiving IOTKI therapy. Time-dependent AUC analysis showed that tumor size had a higher predictive ability for PFS and OS in the IOIO group than the IOTKI group. In multivariate analysis, tumor size was a significant independent prognostic factor for PFS (HR: 1.010, 95% CI: 1.004-1.016, P < 0.001) in the IOIO group. Moreover, the AUC for tumor size was consistently superior in predicting outcomes compared to nephrectomy status and IMDC risk classification in the IOIO group. Kaplan-Meier curves indicated that tumor size effectively stratified PFS in both nephrectomized and non-nephrectomized cases. CONCLUSION Tumor size significantly impacts the prognosis of mRCC patients treated with IOIO therapy, demonstrating greater predictive ability than nephrectomy status and IMDC risk classification. These findings suggest that tumor volume should be considered a critical factor in treatment decision-making for renal cancer, particularly in patients undergoing IOIO therapy.
Collapse
Affiliation(s)
- Takuto Hara
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hideto Ueki
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyoshi Okamura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukari Bando
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kotaro Suzuki
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Terakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Chiba
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Hyodo
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Teishima
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Miyake
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Skurikhin EG, Ermakova NN, Zhukova MA, Pan ES, Zharkikh IL, Pan VY, Kubatiev AA, Morozov SG, Skurikhina VE, Minakova MY, Pershina OV, Dygai AM. Consequences of Reprogrammed CD8 + T-Cell Therapy for Lewis Lung Carcinoma Cells and Neovasculogenesis in C57BL/6 Mice. Bull Exp Biol Med 2024; 178:244-249. [PMID: 39762692 DOI: 10.1007/s10517-025-06315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 01/15/2025]
Abstract
We studied the effect of reprogrammed CD8+ T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells. In addition, cell therapy reduced the number of endothelial cells (CD45-CD309+) and angiogenic cell precursors (CD45-CD117+CD309+), mesenchymal stem cells (CD45-CD31-CD34-CD44+), myeloid (CD45+CD34+CD31-) and non-myeloid (CD45+CD34-CD31-) fibrocytes, and leukocytes (CD45+) in the lungs and increased their number in the blood. Thus, rT cells impaired the recruitment of neovasculogenic cells to the lung. The antitumor effects of rT cells are superior to those of naive CD8+ T cells. The proposed reprogramming method can be useful in developing effective approaches to the therapy of lung cancer, as it allows obtaining cytotoxic rT cells capable of reducing the activity of neovasculogenesis.
Collapse
Affiliation(s)
- E G Skurikhin
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N N Ermakova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M A Zhukova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - E S Pan
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I L Zharkikh
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V Yu Pan
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A A Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S G Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V E Skurikhina
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M Yu Minakova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O V Pershina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A M Dygai
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Wang P, Shao W, Wang Y, Wang B, Lv X, Feng Y. Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines 2024; 12:2577. [PMID: 39595143 PMCID: PMC11591661 DOI: 10.3390/biomedicines12112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a type of osteonecrosis due to the cessation of blood supply, characterized by persistent local pain and collapse of the joint. The etiology of ANFH is multifaceted, and while its precise pathogenesis remains elusive, it is currently widely believed that the femoral head is highly dependent on the vascular system. A large number of studies have shown that vascular injury is the initial factor in the onset of ANFH. In this review, we briefly introduced the process of angiogenesis and the blood supply to the femoral head, with a focus on summarizing the existing research on promoting angiogenesis for the treatment of ANFH. We conclude that providing alternative pathways through angiogenesis to resolve the problem of the obstructed free flow of the blood is an important means of treating ANFH. Moreover, we also looked forward to the mechanism of endothelial metabolism, which has not yet been studied in femoral head necrosis models, providing potential strategies for more effective use of angiogenesis for the treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yuxi Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| |
Collapse
|
9
|
Wei J, Xu K, Lin Y, Liu Q, Zhou C, Zhang P, Ma R, Zhang M, Zhang L, Li X. Economic evaluation of camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma in the United States and China. Int J Clin Pharm 2024; 46:1189-1199. [PMID: 38814514 DOI: 10.1007/s11096-024-01752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Camrelizumab combined with rivoceranib has been proven effective for treating unresectable hepatocellular carcinoma (uHCC). However, their higher prices than sorafenib could impose a substantial economic burden on patients. AIM This study aimed to evaluate the relative cost-effectiveness of the combination of camrelizumab and rivoceranib versus sorafenib as first-line therapy for patients with uHCC from the perspective of the US and Chinese payers. METHOD Using data from the CARES-310 trial, a partitioned survival model (PSM) was developed, considering the perspectives of the US and Chinese payers. The model employed a 15-year time horizon and a biweekly cycle. Direct medical costs and utility data were collected from previous studies and open-access databases. Primary outcomes included quality-adjusted life years (QALYs) and the incremental cost-effectiveness ratio (ICER). Price simulations, sensitivity analyses, and subgroup analyses were conducted. RESULTS The ICER for the US and China was $122,388.62/QALY and $30,410.56/QALY, respectively, falling below the willingness-to-pay (WTP) thresholds of $150,000/QALY for the US and $35,898.87/QALY for China. Price simulations indicated the cost-effectiveness of camrelizumab plus rivoceranib when the price of camrelizumab (200 mg) remained below $6275.19 in the US and $558.09 in China. The primary determinant of cost-effectiveness in both regions was the cost of camrelizumab. CONCLUSION The combination of camrelizumab and rivoceranib is a cost-effective first-line therapy for uHCC in both the US and China. Lowering their prices could significantly influence their cost-effectiveness and accessibility to patients. These findings will guide clinicians in treating uHCC and help decision-makers formulate value-based drug pricing strategies.
Collapse
Affiliation(s)
- Jingxuan Wei
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Xu
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yingtao Lin
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Drug Clinical Trial Institution, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Qiang Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chongchong Zhou
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Research Management, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pei Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Ma
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mengdie Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingli Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Li
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Health Policy, School of Health Policy and Management, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Kelly C, Buscarini E, Manfredi G, Gregory S, Heneghan MA. Hepatic manifestations of hereditary haemorrhagic telangiectasia. Liver Int 2024; 44:2220-2234. [PMID: 38847503 DOI: 10.1111/liv.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 08/30/2024]
Abstract
Hereditary haemorrhagic telangiectasia is a genetic condition of abnormal blood vessel formation resulting from an imbalance of pro- and anti-angiogenic products of the transforming growth factor β/bone morphogenetic protein signalling pathway which contributes to vascular remodelling and maintenance. Hepatic vascular malformations are common although less frequently symptomatic, but may result in high-output cardiac failure, portal hypertension and biliary ischaemia. Whilst the understanding of the genetic and cell signalling pathways that are the hallmark of hereditary haemorrhagic telangiectasia have been clarified, there remain challenges in therapy for these patients. Only patients with symptomatic hepatic vascular malformations require treatment, with most (63%) responding to first-line medical therapy. For non-responders, bevacizumab is effective in reducing cardiac output in those with heart failure secondary to hepatic vascular malformations as well as other manifestations of the disease. Although liver transplantation is the only curative option, optimal timing is critical. Novel anti-angiogenetic drugs and those that target aberrant cell signalling pathway are being explored.
Collapse
Affiliation(s)
- Claire Kelly
- Institute of Liver Studies, Kings College Hospital, London, UK
| | | | - Guido Manfredi
- VASCERN HHT Reference Centre, ASST Maggiore Hospital, Crema, Italy
| | | | | |
Collapse
|
11
|
Ma T, Wang Y, Ma J, Cui H, Feng X, Ma X. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review. J Orthop Surg Res 2024; 19:265. [PMID: 38671500 PMCID: PMC11046814 DOI: 10.1186/s13018-024-04748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Hormonal necrosis of the femoral head is caused by long-term use of glucocorticoids and other causes of abnormal bone metabolism, lipid metabolism imbalance and blood microcirculation disorders in the femoral head, resulting in bone trabecular fracture, bone tissue necrosis collapse, and hip dysfunction. It is the most common type of non-traumatic necrosis of the femoral head, and its pathogenesis is complex, while impaired blood circulation is considered to be the key to its occurrence. There are a large number of microvessels in the femoral head, among which H-type vessels play a decisive role in the "angiogenesis and osteogenesis coupling", and thus have an important impact on the occurrence and development of femoral head necrosis. Glucocorticoids can cause blood flow injury of the femoral head mainly through coagulation dysfunction, endothelial dysfunction and impaired angiogenesis. Glucocorticoids may inhibit the formation of H-type vessels by reducing the expression of HIF-1α, PDGF-BB, VGEF and other factors, thus causing damage to the "angiogenesis-osteogenesis coupling" and reducing the ability of necrosis reconstruction and repair of the femoral head. Leads to the occurrence of hormonal femoral head necrosis. Therefore, this paper reviewed the progress in the study of the mechanism of hormone-induced femoral head necrosis based on microvascular blood flow at home and abroad, hoping to provide new ideas for the study of the mechanism of femoral head necrosis and provide references for clinical treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Tiancheng Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China.
- Tianjin Orthopedic Institute, Tianjin, 300050, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China.
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xiaotian Feng
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| |
Collapse
|
12
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
14
|
Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Dev Biol 2024; 155:3-11. [PMID: 37286406 DOI: 10.1016/j.semcdb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.
Collapse
Affiliation(s)
- James Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Sylvia Lauks
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Harvard Medical School, Boston, MA, USA; Beth Israel, Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Gan P, Wu H, Zhu Y, Shu Y, Wei Y. A new look at angiogenesis inhibition of geniposide in experimental arthritis by blocking angiopoietin-2 exocytosis. Phytother Res 2024; 38:1245-1261. [PMID: 38185885 DOI: 10.1002/ptr.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cβ3 (PLCβ3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCβ3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.
Collapse
Affiliation(s)
- Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
16
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
17
|
Tao J, Yin Z, Li X, Zhang Y, Zhang K, Yang Y, Fang S, Wang S. Correlation between IVIM parameters and microvessel architecture: direct comparison of MRI images and pathological slices in an orthotopic murine model of rhabdomyosarcoma. Eur Radiol 2023; 33:8576-8584. [PMID: 37368112 DOI: 10.1007/s00330-023-09835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE This study aimed to explore the correlation between intravoxel incoherent motion (IVIM) parameters and microvessel architecture (microvessel density (MVD), vasculogenic mimicry (VM), and pericyte coverage index (PCI)) in an orthotopic murine model of rhabdomyosarcoma. METHODS The murine model was established by injecting rhabdomyosarcoma-derived (RD) cells into the muscle. Nude mice underwent routine magnetic resonance imaging (MRI) and IVIM examinations with ten b values (0, 50, 100, 150, 200, 400, 600, 800, 1000, and 2000 s/mm2). D, D*, and f values were calculated with the ADW4.7 workstation. MRI images and pathological slices were directly compared to ensure that radiology parameters accurately reflect pathology. MVD, VM, PCI, and cellularity were obtained by histological analysis. The correlations were assessed between IVIM parameters (D, D*, f, and fD* values) and pathological markers (MVD, VM, PCI, and cellularity). RESULTS The average of D, D*, f, and fD* values were 0.55 ± 0.07 × 10-3 mm2/s, 5.25 ± 0.73 × 10-3 mm2/s, 13.39 ± 7.68%, and 0.73 ± 0.49 × 10-3 mm2/s, respectively. The average of MVD, VM, PCI, and cellularity were 41.91 ± 10.98, 1.16 ± 0.83, 0.49 ± 0.18, and 39.15 ± 9.00%. D*, f, and fD* values showed a positive correlation with MVD separately, while the D value did not correlate with MVD. D value negatively correlated to VM moderately, and other parameters did not associate with VM. D* and fD* values were positively correlated with PCI, but no correlation was observed between other parameters and PCI. CONCLUSIONS IVIM may evaluate the tumor microvessel architecture. D*, f, and fD* may reflect the endothelial lining blood vessel; D could indirectly reflect the VM; D* and fD* could reflect PCI(the normal degree of the tumor blood vessel). CLINICAL RELEVANCE STATEMENT An intravoxel incoherent motion may be useful in assessing rhabdomyosarcoma microvessel structure to predict the target and effectiveness of anti-angiogenic therapy. KEY POINTS • IVIM may be used to evaluate the tumor microvessel architecture in the mouse rhabdomyosarcoma model. • The MRI-pathology control method achieves correspondence between MRI slices and pathology slices, which ensures the consistency of the ROI of MRI and the pathology observation region.
Collapse
Affiliation(s)
- Juan Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, China
| | - Zhenzhen Yin
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Yu Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Kai Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yanyu Yang
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shaobo Fang
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China.
| |
Collapse
|
18
|
Ji S, Wu W, Jiang Q. Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression. Int J Mol Sci 2023; 24:16893. [PMID: 38069225 PMCID: PMC10707594 DOI: 10.3390/ijms242316893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide. The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating evidence underscores the indispensable contribution of endothelial cells to prostate cancer development. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis, metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the tumor microenvironment and represent potential therapeutic targets for managing prostate cancer. In this review, we provide an overview of the crucial functions of endothelial cells in angiogenesis, metastasis, and drug resistance, and their prospective therapeutic applications in combating this disease.
Collapse
Affiliation(s)
| | | | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; (S.J.); (W.W.)
| |
Collapse
|
19
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Singh M, Singh B, Sharma K, Kumar N, Mastana S, Singh P. A Molecular Troika of Angiogenesis, Coagulopathy and Endothelial Dysfunction in the Pathology of Avascular Necrosis of Femoral Head: A Comprehensive Review. Cells 2023; 12:2278. [PMID: 37759498 PMCID: PMC10528276 DOI: 10.3390/cells12182278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a painful disorder characterized by the cessation of blood supply to the femoral head, leading to its death and subsequent joint collapse. Influenced by several risk factors, including corticosteroid use, excessive alcohol intake, hypercholesterolemia, smoking and some inflammatory disorders, along with cancer, its clinical consequences are thrombus formation due to underlying inflammation and endothelial dysfunction, which collaborates with coagulopathy and impaired angiogenesis. Nonetheless, angiogenesis resolves the obstructed free flow of the blood by providing alternative routes. Clinical manifestations of early stage of ANFH mimic cysts or lesions in subchondral bone, vasculitis and transient osteoporosis of the hip, rendering it difficult to diagnose, complex to understand and complicated to cure. To date, the treatment methods for ANFH are controversial as no foolproof curative strategy is available, and these depend upon different severity levels of the ANFH. From an in-depth understanding of the pathological determinants of ANFH, it is clear that impaired angiogenesis, coagulopathy and endothelial dysfunction contribute significantly. The present review has set two aims, firstly to examine the role and relevance of this molecular triad (impaired angiogenesis, coagulopathy and endothelial dysfunction) in ANFH pathology and secondly to propose some putative therapeutic strategies, delineating the fact that, for the better management of ANFH, a combined strategy to curtail this molecular triangle must be composed rather than focusing on individual contributions.
Collapse
Affiliation(s)
- Monica Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Baani Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Kirti Sharma
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Nitin Kumar
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Puneetpal Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| |
Collapse
|
21
|
Sun C, Wang Q, Hou L, Zhang R, Chen Y, Niu L. A contrast-enhanced ultrasound-based nomogram for the prediction of therapeutic efficiency of anti-PD-1 plus anti-VEGF agents in advanced hepatocellular carcinoma patients. Front Immunol 2023; 14:1229560. [PMID: 37575236 PMCID: PMC10413126 DOI: 10.3389/fimmu.2023.1229560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background There is no study focusing on noninvasive predictors for the efficacy of sintilimab (anti-PD-1) plus IBI305 (a bevacizumab biosimilar) treatment in advanced hepatocellular carcinoma (HCC). Method A total of 33 patients with advanced HCC were prospectively enrolled and received sintilimab plus IBI305 treatment from November 2018 to October 2019. Baseline characteristics including clinical data, laboratory data, and tumor features based on pretreatment CT/MR were collected. Meanwhile, pretreatment contrast-enhanced ultrasound (CEUS) for target tumor was performed and quantitative parameters were derived from time-intensity curves (TICs). A nomogram was developed based on the variables identified by the univariable and multivariable logistic regression analysis. The discrimination, calibration, and clinical utility of the nomogram were evaluated. Results Tumor embolus and grad ratio were significant variables related to the efficacy of sintilimab plus IBI305 strategy. The nomogram based on these two variables achieved an excellent predictive performance with an area under curve (AUC) of 0.909 (95% CI, 0.813-1). A bootstrapping for 500 repetitions was performed to validate this model and the AUC of the bootstrap model was 0.91 (95% CI, 0.8-0.98). The calibration curve and decision curve analysis (DCA) showed that the nomogram had a good consistency and clinical utility. Conclusions This study has established and validated a nomogram by incorporating the quantitative parameters of pretreatment CEUS and baseline clinical characteristics to predict the anti-PD-1 plus anti-VEGF treatment efficacy in advanced HCC patients.
Collapse
Affiliation(s)
- Chao Sun
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Hou
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Chen
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Narmi MT, Shoja HM, Haiaty S, Mahdipour M, Rahbarghazi R. Melatonin blunted the angiogenic activity in 3D colon cancer tumoroids by the reduction of endocan. Cancer Cell Int 2023; 23:118. [PMID: 37337165 DOI: 10.1186/s12935-023-02951-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Complexity and heterogeneity of the tumor niche are closely associated with the failure of therapeutic protocols. Unfortunately, most data have been obtained from conventional 2D culture systems which are not completely comparable to in vivo microenvironments. Reconstructed 3D cultures composed of multiple cells are valid cell-based tumor models to recapitulate in vivo-like interaction between the cancer cells and stromal cells and the oncostatic properties of therapeutics. Here, we aimed to assess the tumoricidal properties of melatonin on close-to-real colon cancer tumoroids in in vitro conditions. METHODS Using the hanging drop method, colon cancer tumoroids composed of three cell lines, including adenocarcinoma HT-29 cells, fibroblasts (HFFF2), and endothelial cells (HUVECs) at a ratio of 2: 1: 1, respectively were developed using 2.5% methylcellulose. Tumoroids were exposed to different concentrations of melatonin, from 0.005 to 0.8 mM and 4 to 10 mM, for 48 h. The survival rate was measured by MTT and LDH leakage assays. Protein levels of endocan and VEGF were assessed using western blotting. Using histological examination (H & E) staining, the integrity of cells within the tumoroid parenchyma was monitored. RESULTS Despite the reduction of viability rate in lower doses, the structure of tumoroids remained unchanged. In contrast, treatment of tumoroids with higher doses of melatonin, 4 and 10 mM, led to disaggregation of cells and reduction of tumoroid diameter compared to the non-treated control tumoroids (p < 0.05). By increasing melatonin concentration from 4 to 10 mM, the number of necrotic cells increased. Data showed the significant suppression of endocan in melatonin-treated tumoroids related to the non-treated controls (p < 0.05). According to our data, melatonin in higher doses did not alter protein levels of VEGF (p > 0.05). CONCLUSIONS Melatonin can exert its tumoricidal properties on colon cancer tumoroids via the reduction of tumor cell viability and inhibition of the specific pro-angiogenesis factor.
Collapse
Affiliation(s)
- Maryam Taghavi Narmi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mohajjel Shoja
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC, Aguilar-Cordero MJ. MicroRNA Dysregulation in Early Breast Cancer Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24098270. [PMID: 37175974 PMCID: PMC10179484 DOI: 10.3390/ijms24098270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer continues to be the leading cause of death in women worldwide. Mammography, which is the current gold standard technique used to diagnose it, presents strong limitations in early ages where breast cancer is much more aggressive and fatal. MiRNAs present in numerous body fluids might represent a new line of research in breast cancer biomarkers, especially oncomiRNAs, known to play an important role in the suppression and development of neoplasms. The aim of this systematic review and meta-analysis was to evaluate dysregulated miRNA biomarkers and their diagnostic accuracy in breast cancer. Two independent researchers reviewed the included studies according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. A protocol for this review was registered in PROSPERO with the registration number "CRD42021256338". Observational case-control-based studies analyzing concentrations of microRNAs which have been published within the last 10 years were selected, and the concentrations of miRNAs in women with breast cancer and healthy controls were analyzed. Random-effects meta-analyses of miR-155 were performed on the studies which provided enough data to calculate diagnostic odds ratios. We determined that 34 microRNAs were substantially dysregulated and could be considered biomarkers of breast cancer. Individually, miR-155 provided better diagnostic results than mammography on average. However, when several miRNAs are used to screen, forming a panel, sensitivity and specificity rates improve, and they can be associated with classic biomarkers such us CA-125 or CEA. Based on the results of our meta-analysis, miR-155 might be a promising diagnostic biomarker for this patient population.
Collapse
Affiliation(s)
- Alejandro Garrido-Palacios
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Rojas Carvajal
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Núñez-Negrillo
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| | - Jonathan Cortés-Martín
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Juan Carlos Sánchez-García
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - María José Aguilar-Cordero
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| |
Collapse
|
24
|
Loron G, Pansiot J, Olivier P, Charriaut-Marlangue C, Baud O. Inhaled Nitric Oxide Promotes Angiogenesis in the Rodent Developing Brain. Int J Mol Sci 2023; 24:ijms24065871. [PMID: 36982947 PMCID: PMC10054632 DOI: 10.3390/ijms24065871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Inhaled nitric oxide (iNO) is a therapy used in neonates with pulmonary hypertension. Some evidence of its neuroprotective properties has been reported in both mature and immature brains subjected to injury. NO is a key mediator of the VEGF pathway, and angiogenesis may be involved in the reduced vulnerability to injury of white matter and the cortex conferred by iNO. Here, we report the effect of iNO on angiogenesis in the developing brain and its potential effectors. We found that iNO promotes angiogenesis in the developing white matter and cortex during a critical window in P14 rat pups. This shift in the developmental program of brain angiogenesis was not related to a regulation of NO synthases by exogenous NO exposure, nor the VEGF pathway or other angiogenic factors. The effects of iNO on brain angiogenesis were found to be mimicked by circulating nitrate/nitrite, suggesting that these carriers may play a role in transporting NO to the brain. Finally, our data show that the soluble guanylate cyclase/cGMP signaling pathway is likely to be involved in the pro-angiogenetic effect of iNO through thrombospondin-1, a glycoprotein of the extracellular matrix, inhibiting soluble guanylate cyclase through CD42 and CD36. In conclusion, this study provides new insights into the biological basis of the effect of iNO in the developing brain.
Collapse
Affiliation(s)
- Gauthier Loron
- Service de Médecine Néonatale et de Réanimation Pédiatrique, Université de Reims Champagne-Ardenne, CReSTIC, CHU Reims, 51100 Reims, France
| | - Julien Pansiot
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
| | - Paul Olivier
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
| | | | - Olivier Baud
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
25
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
26
|
Shafiee S, Jagtap J, Zayats M, Epperlein J, Banerjee A, Geurts A, Flister M, Zhuk S, Joshi A. Dynamic NIR Fluorescence Imaging and Machine Learning Framework for Stratifying High vs. Low Notch-Dll4 Expressing Host Microenvironment in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15051460. [PMID: 36900252 PMCID: PMC10000786 DOI: 10.3390/cancers15051460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Delta like canonical notch ligand 4 (Dll4) expression levels in tumors are known to affect the efficacy of cancer therapies. This study aimed to develop a model to predict Dll4 expression levels in tumors using dynamic enhanced near-infrared (NIR) imaging with indocyanine green (ICG). Two rat-based consomic xenograft (CXM) strains of breast cancer with different Dll4 expression levels and eight congenic xenograft strains were studied. Principal component analysis (PCA) was used to visualize and segment tumors, and modified PCA techniques identified and analyzed tumor and normal regions of interest (ROIs). The average NIR intensity for each ROI was calculated from pixel brightness at each time interval, yielding easily interpretable features including the slope of initial ICG uptake, time to peak perfusion, and rate of ICG intensity change after reaching half-maximum intensity. Machine learning algorithms were applied to select discriminative features for classification, and model performance was evaluated with a confusion matrix, receiver operating characteristic curve, and area under the curve. The selected machine learning methods accurately identified host Dll4 expression alterations with sensitivity and specificity above 90%. This may enable stratification of patients for Dll4 targeted therapies. NIR imaging with ICG can noninvasively assess Dll4 expression levels in tumors and aid in effective decision making for cancer therapy.
Collapse
Affiliation(s)
- Shayan Shafiee
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sergiy Zhuk
- IBM Research Europe, D15 HN66 Dublin, Ireland
| | - Amit Joshi
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
27
|
Combination toripalimab and bevacizumab for an elderly urothelial carcinoma patient with brain metastasis who failed rapidly after radiotherapy: a case report and literature review. Anticancer Drugs 2023; 34:317-324. [PMID: 36730918 PMCID: PMC9815806 DOI: 10.1097/cad.0000000000001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain metastasis is a rare refractory event in patients with urothelial carcinoma. Platinum-based chemotherapy is the recommended first-line standard therapy for all metastasis urothelial carcinoma patients eligible for cisplatin or carboplatin. Patients ineligible for platinum may receive immunotherapy. No clear evidence exists that UC with brain metastasis is sensitive to immunotherapy, and the optimal treatment for patients with BM is uncertain. We evaluated the safety and efficacy of combined immunotherapy and antivascular therapy in an elderly patient with urothelial carcinoma with brain metastasis, and summarize the currently available evidence. First, she underwent a left nephrectomy and left ureterectomy and recovered well postoperatively. The postoperative pathologic findings were consistent with urothelial carcinoma. Approximately 2 years later, the patient developed impaired limb movement on the right side and underwent MRI, which revealed lesions in the left frontal lobe and suggested brain metastasis. The brain metastasis responded to local radiotherapy but progressed again in a short time. Then, the patient was administered toripalimab at 240 mg combined with bevacizumab at 300 mg every 3 weeks. After 1cycle of treatment, the patient achieved a quick response, and symptoms improved significantly. Repeat evaluation imaging demonstrated that the lesions in the brain and lung were significantly smaller and evaluation showed partial response. The treatment was well tolerated and the patient remained in partial response until the last follow-up by July 2022, 6 months after the initiation of treatment. This case suggests that immune checkpoint blockade combined with antivascular therapy might be a new possibility for patients with metastatic urothelial carcinoma, including brain metastases.
Collapse
|
28
|
Li J, Zhang D, Liu Z, Wang Y, Li X, Wang Z, Liang G, Yuan X, Li Y, Komorowski AL, Rozen WM, Orlandi A, Takabe K, Franceschini G, Jerusalem G, Wang X. The combined effect and mechanism of antiangiogenic drugs and PD-L1 inhibitor on cell apoptosis in triple negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:83. [PMID: 36819490 PMCID: PMC9929791 DOI: 10.21037/atm-22-6446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Breast cancer is the most common cancer worldwide, and triple-negative breast cancer (TNBC) has the worst prognosis. Standard systemic treatment includes chemotherapy and immunotherapy. Poly ADP-ribose polymerase (PARP) inhibitors are considered in breast cancer (BRCA) susceptibility genes mutated tumors. The role of antiangiogenic drugs is controversial. Immunotherapy with immune checkpoint inhibitor is now a standard of care for TNBC in the US, but its use in combination with anlotinib, an inhibitor of angiogenesis, on TNBC cells was never investigated. Methods We tested the effects of anlotinib and programmed cell death-ligand 1 (PD-L1) inhibitor on the proliferation, apoptosis, migration, and invasion of MDA-MB-468 and BT-549 TNBC cells through 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assays, cell apoptosis assay, wound healing and transwell matrix assays, and verified whether the combination of the two drugs had synergistic effect. Western blotting was used to detect the effect of anlotinib and PD-L1 inhibitor on the protein expression levels of PI3K, p-PI3K, AKT, p-AKT, Bcl-xl in MDA-MB-468 and BT-549 cells. The effects of anlotinib, PD-L1 inhibitor and the combination of the two drugs on the transplanted tumor of TNBC mice were tested by animal experiments. Results Anlotinib and PD-L1 inhibitor inhibited the proliferation and promote cell apoptosis of MDA-MB-468 and BT-549 cells, and the combination demonstrated the synergetic effect. Anlotinib and PD-L1 inhibitor inhibited cell migration and invasion, and the effect was strongest in the combination group. Both anlotinib and PD-L1 inhibitor reduced the expression of p-PI3K, p-AKT and Bcl-xl proteins in cells and the effects were the strongest in the combination group. Both anlotinib and PD-L1 inhibitor inhibited the growth of transplanted tumors in mice, and the combined group demonstrated the strongest growth suppression. Conclusions Anlotinib and PD-L1 inhibitor can inhibit cell proliferation, migration, and invasion of TNBC and promote cell apoptosis, and the two drugs show combined anti-tumor effects in vivo and in vitro. The combination of anlotinib and PD-L1 inhibitor may promote apoptosis of TNBC cells through PI3K/AKT/Bcl-xl signaling pathways, which might offer potential clinical treatment roles for these.
Collapse
Affiliation(s)
- Jing Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Dianbao Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zhiwei Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yukun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Ziming Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | | | - Warren Matthew Rozen
- Peninsula Clinical School, Central Clinical School, Faculty of Medicine, Monash University, Frankston Victoria, Australia
| | - Armando Orlandi
- Comprehensive Cancer Center, Unit of Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kazuaki Takabe
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences The State University of New York, Bufflo, NY, USA;,Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Bufflo, NY, USA
| | - Gianluca Franceschini
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Guy Jerusalem
- Medica l Oncology Department, CHU Liège and Liège University, Liege, Belgium
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
29
|
Wu Z, Bian Y, Chu T, Wang Y, Man S, Song Y, Wang Z. The role of angiogenesis in melanoma: Clinical treatments and future expectations. Front Pharmacol 2022; 13:1028647. [PMID: 36588679 PMCID: PMC9797529 DOI: 10.3389/fphar.2022.1028647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of melanoma has increased rapidly over the past few decades, with mortality accounting for more than 75% of all skin cancers. The high metastatic potential of Melanoma is an essential factor in its high mortality. Vascular angiogenic system has been proved to be crucial for the metastasis of melanoma. An in-depth understanding of angiogenesis will be of great benefit to melanoma treatment and may promote the development of melanoma therapies. This review summarizes the recent advances and challenges of anti-angiogenic agents, including monoclonal antibodies, tyrosine kinase inhibitors, human recombinant Endostatin, and traditional Chinese herbal medicine. We hope to provide a better understanding of the mechanisms, clinical research progress, and future research directions of melanoma.
Collapse
Affiliation(s)
- Zhuzhu Wu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Zhenguo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| |
Collapse
|
30
|
Berenjabad NJ, Nejati V, Rezaie J. Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: possible role of vegfr-2/akt-1 signaling pathway. BMC Mol Cell Biol 2022; 23:31. [PMID: 35879650 PMCID: PMC9310472 DOI: 10.1186/s12860-022-00435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Many attempts are used to discover mechanisms driving impaired angiogenesis in age-related diseases. Angiogenesis is highly regulated by different signaling pathways. Here, we investigated the angiogenesis potential of human endothelial cells (ECs) upon exposure to hydrogen peroxide (H2O2), a cellular senescent factor.
Results
Data showed that the wound healing rate of HUVECs decreased upon incubation with H2O2 (P < 0.05). LOX activity and NO production were decreased in H2O2 treated cells (P < 0.05). Expression of miR-126 and VEGFR-2 up-regulated, while expression of miR-373 and HSP-70 up = regulated in H2O2 -induced cells (P < 0.05). In addition, we found that protein levels of p-Akt-1, VCAM-1, MMP-9, and IL-6 decreased in treated cells (P < 0.05).
Conclusions
Our data showed that H2O2 reduced the angiogenic response of HUVECs in vitro, which may be due to impairment of the VEGFR-2 signaling pathway.
Collapse
|
31
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
32
|
Ogawa Y, Akamatsu R, Fuchizaki A, Yasui K, Saino O, Tanaka M, Kikuchi-Taura A, Kimura T, Taguchi A. Gap Junction-Mediated Transport of Metabolites Between Stem Cells and Vascular Endothelial Cells. Cell Transplant 2022; 31:9636897221136151. [PMID: 36401520 PMCID: PMC9679345 DOI: 10.1177/09636897221136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously demonstrated that small molecular transfer, such as glucose, between hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs) and vascular endothelial cells via gap junctions constitutes an important mechanism of stem cell therapy. Cell metabolites are high-potential small-molecule candidates that can be transferred to small molecules between stem cells and vascular endothelial cells. Here, we investigated the differences in metabolite levels between stem cells (HSCs and MSCs), vascular endothelial cells, and the levels of circulating non-hematopoietic white blood cells (WBCs). The results showed remarkable differences in metabolite concentrations between cells. Significantly higher concentrations of adenosine triphosphate (ATP), guanosine triphosphate (GTP), total adenylate or guanylate levels, glycolytic intermediates, and amino acids were found in HSCs compared with vascular endothelial cells. In contrast, there was no significant difference in the metabolism of MSCs and vascular endothelial cells. From the results of this study, it became clear that HSCs and MSCs differ in their metabolites. That is, metabolites that transfer between stem cells and vascular endothelial cells differ between HSCs and MSCs. HSCs may donate various metabolites, several glycolytic and tricarboxylic acid cycle metabolites, and amino acids to damaged vascular endothelial cells as energy sources and activate the energy metabolism of vascular endothelial cells. In contrast, MSCs and vascular endothelial cells regulate each other under normal conditions. As the existing MSCs cannot ameliorate the dysregulation during insult, exogenous MSCs administered by cell therapy may help restore normal metabolic function in the vascular endothelial cells by taking up excess energy sources from the lumens of blood vessels. Results of this study suggested that the appropriate timing of cell therapy is different between HSCs and MSCs.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan,Akihiko Taguchi, Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
33
|
Structural determination and pro-angiogenic effect of polysaccharide from the pollen of Typha angustifolia L. Int J Biol Macromol 2022; 222:2028-2040. [DOI: 10.1016/j.ijbiomac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
34
|
Lawler J. Counter Regulation of Tumor Angiogenesis by Vascular Endothelial Growth Factor and Thrombospondin-1. Semin Cancer Biol 2022; 86:126-135. [PMID: 36191900 DOI: 10.1016/j.semcancer.2022.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
Considerable progress has been made in our understanding of the process of angiogenesis in the context of normal and tumor tissue over the last fifty years. Angiogenesis, like most physiological processes, is carefully controlled by dynamic and opposing effects of positive factors, such as vascular endothelial growth factor (VEGF), and negative factors, such as thrombospondin-1. In most cases, the progression of a small mass of cancerous cells to a life-threatening tumor depends upon the initiation of angiogenesis and involves the dysregulation of the angiogenic balance. Whereas our newfound appreciation for the role of angiogenesis in cancer has opened up new avenues for treatment, the success of these treatments, which have focused almost exclusively on antagonizing the VEGF pathway, has been limited to date. It is anticipated that this situation will improve as more therapeutics that target other pathways are developed, more strategies for combination therapies are advanced, more detailed stratification of patient populations occurs, and a better understanding of resistance to anti-angiogenic therapy is gained.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, The Center for Vascular Biology Research, 99 Brookline Ave, Boston MA 02215, United States.
| |
Collapse
|
35
|
Aberrant expression of miR-133a in endothelial cells inhibits angiogenesis by reducing pro-angiogenic but increasing anti-angiogenic gene expression. Sci Rep 2022; 12:14730. [PMID: 36042288 PMCID: PMC9427859 DOI: 10.1038/s41598-022-19172-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is a multi-factorial physiological process deregulated in human diseases characterised by excessive or insufficient blood vessel formation. Emerging evidence highlights a novel role for microRNAs as regulators of angiogenesis. Previous studies addressing the effect of miR-133a expression in endothelial cells during blood vessel formation have reported conflicting results. Here, we have assessed the specific effect of mature miR-133a strands in angiogenesis and the expression of endothelial angiogenic genes. Transfection of miR-133a-3p or -5p mimics in primary human endothelial cells significantly inhibited proliferation, migration, and tubular morphogenesis of transfected cells. Screening of gene arrays related to angiogenic processes, and further validation by TaqMan qPCR, revealed that aberrant expression of miR-133a-3p led to a decrease in the expression of genes encoding pro-angiogenic molecules, whilst increasing those with anti-angiogenic functions. Ingenuity Pathway Analysis of a collection of genes differentially expressed in cells harbouring miR-133a-3p, predicted decreased cellular functions related to vasculature branching and cell cycle progression, underlining the inhibitory role of miR-133a-3p in angiogenic cellular processes. Our results suggest that controlled delivery of miR-133a-3p mimics, or antagomirs in diseased endothelial cells, might open new therapeutic interventions to treat patients suffering from cardiovascular pathologies that occur with excessive or insufficient angiogenesis.
Collapse
|
36
|
Chen Q, Lai Q, Jiang Y, Yao J, Chen Q, Zhang L, Wang C, Zhou Y, Deng M, Xu B. Anlotinib exerts potent antileukemic activities in Ph chromosome negative and positive B-cell acute lymphoblastic leukemia via perturbation of PI3K/AKT/mTOR pathway. Transl Oncol 2022; 25:101516. [PMID: 35985203 PMCID: PMC9418595 DOI: 10.1016/j.tranon.2022.101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Despite advances in the development of novel targeted therapies, the need for B-ALL alternative treatments has not been met. Anlotinib could blunt the proangiogenic activity of VEGFR, PDGFR, and FGFR, and has shown strong antitumor activities across multiple tumors. However, anlotinib cytotoxicity against B-ALL has not ever been evaluated, thus prompting us to initiate this study. METHODS Expression2Kinases program was used to identify potential treatment targets. Cell viability and apoptosis were determined by CCK-8 and Annexin V/PI staining kit, respectively. qRT-PCR and Western blotting were utilized to investigate the molecular mechanisms. In vivo antileukemia activity of Anlotinib was evaluated in a Ph+ B-ALL patient-Derived Xenograft (PDX) model. RESULTS Compared with treatment-naive B-ALL cases, RR B-ALL patients had higher activities in the VEGF/VEGFR signaling and the PI3K/AKT/mTOR pathway. Exposure of Ph- and Ph+ B-ALL cells to anlotinib resulted in significant cell viability reduction, apoptosis enhancement, and cell cycle arrest at G2/M phase. Importantly, anlotinib treatment led to remarkably decreased leukemia burdens and extended the survival period in a Ph+ B-ALL PDX model. Blockade of the role of the proangiogenic mediators, comprising VEGFR2, PDGFR-beta, and FGFR3, played a critical role in the cytotoxicity of anlotinib against Ph- and Ph+ B-ALL. Moreover, anlotinib dampened the activity of PI3K/AKT/mTOR pathway that resides in the convergence of the three mentioned proangiogenic signals. CONCLUSION This work provides impressive preclinical evidence of anlotinib against Ph- and Ph+ B-ALL and raises a rationale for future clinical evaluation of this drug in the management of Ph- and Ph+ B-ALL.
Collapse
Affiliation(s)
- Qiuling Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China; Department of Hematology & Oncology, Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, Fuzhou 350000, China
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Li Zhang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Caiyan Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China.
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, Fujian 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen 361102, China.
| |
Collapse
|
37
|
Pro-Angiogenetic Effects of Purified Extracts from Helix aspersa during Zebrafish Development. Curr Issues Mol Biol 2022; 44:3364-3377. [PMID: 36005128 PMCID: PMC9406997 DOI: 10.3390/cimb44080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Helix aspersa is a species of land snail belonging to the Helicidae family, widespread in the Mediterranean and continental area up to Northern Europe. In some areas it is appreciated as a food, but is mostly considered a parasite of gardens and cultivated fields. The mucus of Helix aspersa has found multiple applications in the cosmetic and health fields. In the present study, we investigated for the first time the angiogenetic properties of purified extracts from Helix aspersa using a transgenic zebrafish line Tg (kdrl:EGFP). The angiogenesis induced by purified snail extracts was demonstrated by their capability to increase the three well-established parameters of angiogenesis: generation of intersegmental vessels, modeling of caudal venous plexus, and formation of sub-intestinal venous plexus. The effects appeared to be mediated by the vascular endothelial growth factor (VEGF) pathway, being prevented by pretreatment of embryos with the selective VEGF receptor antagonist SU5416, and supported by the increased VEGF mRNA levels found in snail-extract-treated embryos. Insufficient vascular supply is underlined by low VEGF signaling, primarily because of its indispensable role in preventing capillary loss. Our findings might have a pharmacological impact by counteracting VEGF hypofunction and promoting angiogenesis to maintain adequate microvascular and vascular density in normal and suffering tissues and organs.
Collapse
|
38
|
Sadat-Ebrahimi SR, Amini H, Rahbarghazi R, Habibollahi P, Ghaderi S, Rajabi H, Rezabakhsh A. Putative therapeutic impacts of cardiac CTRP9 in ischaemia/reperfusion injury. J Cell Mol Med 2022; 26:3120-3132. [PMID: 35535510 PMCID: PMC9170823 DOI: 10.1111/jcmm.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Recently, cytokines belonging to C1q/tumour necrosis factor‐related proteins (CTRPs) superfamily have attracted increasing attention due to multiple metabolic functions and desirable anti‐inflammatory effects. These various molecular effectors exhibit key roles upon the onset of cardiovascular diseases, making them novel adipo/cardiokines. This review article aimed to highlight recent findings correlated with therapeutic effects and additional mechanisms specific to the CTRP9, particularly in cardiac ischaemia/reperfusion injury (IRI). Besides, the network of the CTPR9 signalling pathway and its possible relationship with IRI were discussed. Together, the discovery of all involved underlying mechanisms could shed light to alleviate the pathological sequelae after the occurrence of IRI.
Collapse
Affiliation(s)
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Habibollahi
- Department of Pharmacology and Toxicology, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrouz Ghaderi
- Institute of Molecular Medicine III, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, School of Medicine, Istanbul, Turkey
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Emergency Medicine & Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
A Bioinformatics Evaluation of the Role of Dual-Specificity Tyrosine-Regulated Kinases in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14082034. [PMID: 35454940 PMCID: PMC9025863 DOI: 10.3390/cancers14082034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The dual-specificity tyrosine-regulated kinase (DYRK) family has been implicated in various diseases, including cancer. However, its role in colorectal cancer has not been elucidated. In this research, we used publicly available web-based tools to investigate DYRKs status in colorectal cancer. Our results showed that among DYRKs, only DYRK1A was upregulated significantly in late tumor stages, and it is associated with poor prognosis for colorectal cancer patients. These finding comprehensively characterized DYRK1A as a potential new therapeutic approach in CRC, especially in late tumor stages. Abstract Colorectal cancer (CRC) is the third most common cancer worldwide and has an increasing incidence in younger populations. The dual-specificity tyrosine-regulated kinase (DYRK) family has been implicated in various diseases, including cancer. However, the role and contribution of the distinct family members in regulating CRC tumorigenesis has not been addressed yet. Herein, we used publicly available CRC patient datasets (TCGA RNA sequence) and several bioinformatics webtools to perform in silico analysis (GTEx, GENT2, GEPIA2, cBioPortal, GSCALite, TIMER2, and UALCAN). We aimed to investigate the DYRK family member expression pattern, prognostic value, and oncological roles in CRC. This study shed light on the role of distinct DYRK family members in CRC and their potential outcome predictive value. Based on mRNA level, DYRK1A is upregulated in late tumor stages, with lymph node and distant metastasis. All DYRKs were found to be implicated in cancer-associated pathways, indicating their key role in CRC pathogenesis. No significant DYRK mutations were identified, suggesting that DYRK expression variation in normal vs. tumor samples is likely linked to epigenetic regulation. The expression of DYRK1A and DYRK3 expression correlated with immune-infiltrating cells in the tumor microenvironment and was upregulated in MSI subtypes, pointing to their potential role as biomarkers for immunotherapy. This comprehensive bioinformatics analysis will set directions for future biological studies to further exploit the molecular basis of these findings and explore the potential of DYRK1A modulation as a novel targeted therapy for CRC.
Collapse
|
40
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
41
|
Li T, Ge G, Zhang H, Wang R, Liu Y, Zhang Q, Yue Z, Ma W, Li W, Zhang J, Yang H, Wang P, Zhao J, Fang Y, Xie Q, Wang M, Li Y, Zhu H, Li H. HM-3-HSA exhibits potent anti-angiogenesis and antitumor activity in hepatocellular carcinoma. Eur J Pharm Sci 2021; 167:106017. [PMID: 34555448 DOI: 10.1016/j.ejps.2021.106017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
HM-3-HSA is an antitumor fusion protein which improved the pharmacokinetics of HM-3. Previous studies reported that HM-3-HSA enhanced antitumor activity of HM-3 in melanoma cells. However, the efficacy and the mechanism of HM-3-HSA in hepatocellular carcinoma, especially its effect on tumor angiogenesis, have not been elucidated. Herein, we showed that HM-3-HSA significantly inhibited the H22 and SMMC-7721 tumor xenografts growth and tumor angiogenesis in vivo, indicating the antitumor activity exerted by HM-3-HSA was closely corrected with its potency on tumor angiogenesis. To investigate the anti-angiogenic mechanism, we evaluated the efficacy of HM-3-HSA in HUVECs in vitro. The results showed that multiple steps of tumor angiogenesis, including endothelial cell proliferation, migration, invasion and tube formation, were substantially inhibited by HM-3-HSA. Mechanism investigations revealed that HM-3-HSA could bind HUVECs via integrin αvβ3 and α5β1 and inhibited phosphorylation of the downstream protein kinases including FAK, Src and PI3 K. Our study was the first to report the activity of HM-3-HSA against hepatocellular carcinoma and tumor angiogenesis as well as the underlying mechanism by which HM-3-HSA to exert its anti-angiogenic activity.
Collapse
Affiliation(s)
- Ting Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guangfei Ge
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hanzi Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruyue Wang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yiyao Liu
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qian Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaorong Yue
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuli Ma
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Peiya Wang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jiang Zhao
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yanhao Fang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Qinjian Xie
- Gansu Crops Hospital of CAPF, Lanzhou, China
| | - Meizhu Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Zhu
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Hongyu Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
43
|
Lauwen S, Baerenfaenger M, Ruigrok S, de Jong EK, Wessels HJCT, den Hollander AI, Lefeber DJ. Loss of the AMD-associated B3GLCT gene affects glycosylation of TSP1 without impairing secretion in retinal pigment epithelial cells. Exp Eye Res 2021; 213:108798. [PMID: 34695439 DOI: 10.1016/j.exer.2021.108798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Age-related macular degeneration (AMD) has been associated with protective genetic variants in the β1-3 glucosyltransferase (B3GLCT) locus through genome-wide association studies. B3GLCT mediates modification of proteins with thrombospondin type I repeats (TSR) that contain O-linked glucose β1-3 fucose and C-linked mannose glycosylation motifs. B3GLCT-mediated modification is required for proper secretion of TSR-containing proteins. We aimed to start understanding the role of B3GLCT in AMD by evaluating its effect on glycosylation and secretion of proteins from retinal pigment epithelium (RPE) cells. We generated B3GLCT knockout (KO) RPE cells and analyzed glycosylation and secretion of thrombospondin 1 (TSP1), a protein involved in cellular processes highly relevant to AMD. Glycopeptide analysis confirmed the presence of the glucose-β1,3-fucose product of B3GLCT on TSP1 in wildtype (WT) cells and its absence in KO cells. C-mannosylation was variably present on WT TSP1 and increased on TSR domains 1 and 3 in KO cells. Secretion of TSP1 was not affected by the absence of B3GLCT, even not when TSP1 was upregulated by TNFα treatment or when TSP1 was overexpressed in HEK293T cells. Future research is needed to elucidate the effect of the observed glycosylation defects in the context of AMD, which might involve functional loss of TSP1 or effects on other TSR proteins.
Collapse
Affiliation(s)
- Susette Lauwen
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Melissa Baerenfaenger
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Sanne Ruigrok
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
44
|
Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091337. [PMID: 34575413 PMCID: PMC8467741 DOI: 10.3390/pharmaceutics13091337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the family of extracellular signaling proteins involved in the processes of angiogenesis. VEGFA overexpression and altered regulation of VEGFA signaling pathways lead to pathological angiogenesis, which contributes to the progression of various diseases, such as age-related macular degeneration and cancer. Monoclonal antibodies and decoy receptors have been extensively used in the anti-angiogenic therapies for the neutralization of VEGFA. However, multiple side effects, solubility and aggregation issues, and the involvement of compensatory VEGFA-independent pro-angiogenic mechanisms limit the use of the existing VEGFA inhibitors. Short chemically synthesized VEGFA binding peptides are a promising alternative to these full-length proteins. In this review, we summarize anti-VEGFA peptides identified so far and discuss the molecular basis of their inhibitory activity to highlight their pharmacological potential as anti-angiogenic drugs.
Collapse
|
45
|
Clearing up Clear Cell: Clarifying the Immuno-Oncology Treatment Landscape for Metastatic Clear Cell RCC. Cancers (Basel) 2021; 13:cancers13164140. [PMID: 34439293 PMCID: PMC8391664 DOI: 10.3390/cancers13164140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced or malignant renal cell carcinoma at the time of diagnosis have historically had a poor prognosis. Immunonologic agents have significantly altered the therapeutic landscape and clinical outcomes of these patients. In this review, we highlight recent and upcoming clinical trials investigating the role of immunotherapies in clear cell RCC. In particular, we emphasize immunotherapy-based combinations, including immune checkpoint inhibitor (ICI) combinations, neoadjuvant, and adjuvant ICI, and ICI agents combined with anti-VEGF therapy.
Collapse
|
46
|
A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, nanobiohybrids of plasmonic gold nanoparticles (AuNP, anti-angiogenic) and a peptide mimicking the vascular endothelial growth factor (VEGF, pro-angiogenic) were assembled and scrutinized in terms of physicochemical characterization, including optical properties, surface charge, surface chemical structure and morphology of the bioengineered metal nanoparticles, for their potential application as multifunctional theranostic (i.e., therapy + sensing) nanoplatform (AuNP/VEGF). Specifically, a peptide sequence encompassing the VEGF cellular receptor domain 73–101 (VEGF73–101) and its single point cysteine mutated were immobilized onto AuNP by physi- and chemi-sorption, respectively. The new hybrid systems were characterized by means of a multitechnique approach, including dynamic light scattering (DLS) analyses, zeta potential (ZP), spectroscopic (UV-Vis, FT-IR, XPS), spectrometric (TOF-SIMS) and microscopic (AFM, SEM) techniques. Proof-of-work cellular experiments in human umbilical vein endothelial cells (HUVEC) upon the treatment with AuNP/VEGF samples, demonstrated no toxicity up to 24 h (MTT assay) as well an effective internalization (laser confocal microscopy, LSM).
Collapse
|
47
|
Gdula AM, Swiatkowska M. A2 A receptor agonists and P2Y 12 receptor antagonists modulate expression of thrombospondin-1 (TSP-1) and its secretion from Human Microvascular Endothelial Cells (HMEC-1). Microvasc Res 2021; 138:104218. [PMID: 34182003 DOI: 10.1016/j.mvr.2021.104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS AND AIMS To address the problem of resistance to standard antiplatelet therapy in some patients, our team proposed a purinoceptor-dependent dual therapy. Its efficacy is also determined by the condition of the vascular endothelium which, by secreting numerous factors, is involved in hemostasis. Among them, thrombospondin-1 is important in the context of thrombotic events. Therefore we sought to determine if the novel dual purinoceptor-dependent concept is associated with TSP-1 changes in vascular endothelial cells. METHODS AND RESULTS TSP-1 expression in human microvascular endothelial cells was determined at transcriptional and protein level. We performed real-time PCR, the Western blot analysis and ELISA test. We found that TSP-1 mRNA and protein expression levels significantly changed in response to P1R agonists treatment. Furthermore, we have observed that co-administration of selective A2AR agonists (UK-432,097 or MRE0094) with P2Y12R antagonists altered TSP-1 expression levels, and the direction of these changes was not synergistic. MRE0094 applied with ARC69931MX or R-138727 increased mRNA expression from 39 to 56 or 57%, respectively (*P < 0.05 vs. MRE0094; ***P < 0.001 vs. control). Also, in the case of the P2Y12R antagonists used together with UK-432,097, there was an increase from 53 to 71 and 70% (*P < 0.05 vs. UK-432,097; ***P < 0.001 vs. control). The observed trends in gene expression were reflected in the protein expression and the level of its secretion from HMEC-1. CONCLUSION The article presents evidence which proves that the purinoceptor-dependent concept is associated with TSP-1 changes in endothelial cells (EC). Moreover, Human Microvascular Endothelial Cells treatment applied together with agonists (MRE0094 or UK-432,097) and P2Y12R antagonist did not result in any synergistic effect, implicating a possible crosstalk between G proteins in GPCRs dependent signaling. Therefore, we suggest that understanding of the specific mechanism underlying TSP-1 alterations in EC in the context of the dual purinoceptor-dependent approach is essential for antiplatelet therapies and should be the subject of future research.
Collapse
Affiliation(s)
- Anna M Gdula
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
48
|
Bhat A, Yadav J, Thakur K, Aggarwal N, Tripathi T, Chhokar A, Singh T, Jadli M, Bharti AC. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog-GLI signaling components. Cancer Cell Int 2021; 21:319. [PMID: 34167524 PMCID: PMC8223267 DOI: 10.1186/s12935-021-02026-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Angiogenic switch is a hallmark feature of transition from low-grade to high-grade cervical intraepithelial neoplasia (CIN) in cervical cancer progression. Therefore, early events leading to locally-advanced cervical metastatic lesions demand a greater understanding of the underlying mechanisms. Recent leads indicate the role of tumor-derived exosomes in altering the functions of endothelial cells in cervical cancer, which needs further investigation. METHODS Exosomes isolated from cervical cancer cell lines were assessed for their angiogenic effect on the human umbilical vein endothelial cells (HUVEC) using tube formation and wound healing assay. The exosomal uptake by HUVEC cells was monitored using PKH-67 labelling followed by fluorescence microscopy. Alterations in Hh-GLI signaling components, PTCH1 and GLI1, in HUVEC were measured by immunoblotting. Changes in angiogenesis-related transcripts of vascular endothelial growth factor VEGF-A, VEGF-B, VEGFR2 and angiopoietin-1, angiopoietin-2, osteopontin were measured in exosome-treated HUVEC and in the exosomal RNA by RT-PCR. RESULTS Enhanced tube formation, with an increased number of nodes and branching was observed in HUVEC's treated with exosomes derived from different cervical cancer cell lines. HPV-positive (SiHa and HeLa) cells' exosomes were more angiogenic. Exosome-treated HUVEC showed increased migration rate. PKH-67 labelled exosomes were found internalized in HUVEC. A high level of PTCH1 protein was detected in the exosome-treated endothelial cells. Subsequent RT-PCR analysis showed increased transcripts of Hh-GLI downstream target genes VEGF-A, VEGFR2, angiopoietin-2, and decreased expression of VEGF-B, and angiopoietin-1, suggestive of active Hh-GLI signaling. These effects were more pronounced in HUVEC's treated with exosomes of HPV-positive cells. However, these effects were independent of tumor-derived VEGF-A as exosomal cargo lacked VEGF-A transcripts or proteins. CONCLUSION Overall, the data showed cervical cancer exosomes promote pro-angiogenic response in endothelial cells via upregulation of Hh-GLI signaling and modulate downstream angiogenesis-related target genes. The study provides a novel exosome-mediated mechanism potentially favoring cervical angiogenesis and thus identifies the exosomes as potential pharmacological targets against locally-advanced metastatic cervical lesions.
Collapse
Affiliation(s)
- Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India.
| |
Collapse
|
49
|
Chen Y, Nilsson AH, Goncalves I, Edsfeldt A, Engström G, Melander O, Orho-Melander M, Rauch U, Tengryd C, Venuraju SM, Lahiri A, Liang C, Nilsson J. Evidence for a protective role of placental growth factor in cardiovascular disease. Sci Transl Med 2021; 12:12/572/eabc8587. [PMID: 33268513 DOI: 10.1126/scitranslmed.abc8587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Placental growth factor (PlGF) is a mitogen for endothelial cells, but it can also act as a proinflammatory cytokine. Because it promotes early stages of plaque formation in experimental models of atherosclerosis and was implicated in epidemiological associations with risk of cardiovascular disease (CVD), PlGF has been attributed a pro-atherogenic role. Here, we investigated whether PlGF has a protective role in CVD and whether elevated PlGF reflects activation of repair processes in response to vascular stress. In a population cohort of 4742 individuals with 20 years of follow-up, high baseline plasma PlGF was associated with increased risk of cardiovascular death, myocardial infarction, and stroke, but these associations were lost or weakened when adjusting for cardiovascular risk factors known to cause vascular stress. Exposure of cultured endothelial cells to high glucose, oxidized low-density lipoprotein (LDL) or an inducer of apoptosis enhanced the release of PlGF. Smooth muscle cells and endothelial cells treated with PlGF small interference RNA demonstrated that autocrine PlGF stimulation plays an important role in vascular repair responses. High expression of PlGF in human carotid plaques removed at surgery was associated with a more stable plaque phenotype and a lower risk of future cardiovascular events. When adjusting associations of PlGF with cardiovascular risk in the population cohort for plasma soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2, a biomarker of cellular stress, a high PlGF/TRAIL receptor-2 ratio was associated with a lower risk. Our findings provide evidence for a protective role of PlGF in CVD.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | | | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden-Klinikgatan 32, 22184 Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| | | | - Uwe Rauch
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | | | | | | | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden. .,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
50
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|