1
|
Tripathi I, Barber-Choi N, Woodward L, Falta N, Shahwan N, Yang N, Knowles B. Distinguishing Lytic and Temperate Infection Dynamics in the Environment. Viruses 2025; 17:513. [PMID: 40284956 PMCID: PMC12031542 DOI: 10.3390/v17040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Viral infection and lysis drive bacterial diversity and abundances, ultimately regulating global biogeochemical cycles. Infection can follow lytic or temperate routes, with lytic dynamics suppressing bacterial population growth and temperate infection enhancing it. Given that bacterial over-proliferation is a pervasive threat to ecosystems, determining which infection dynamic dominates a given ecosystem is a central question in viral ecology. However, the fields that describe and test the rules of viral infection-theoretical ecology and environmental microbiology, respectively-remain disconnected. To address this, we simulated common empirical approaches to analyze and distinguish between the predictions of three theoretical models mechanistically representing lytic to temperate infection dynamics. By doing so, we found that the models have remarkably similar predictions despite their mechanistic differences, as shown by PCA and correlation analyses. Essentially, the models are only discernable under simulated nutrient addition, where lytic models become less stable with no increase in host densities while the temperate model remains stable and has elevated host abundances. Highlighting this difference between the models, we present a dichotomous key illustrating how researchers can determine whether lytic or temperate infection dynamics dominate their ecosystem of interest using common metrics and empirical approaches.
Collapse
Affiliation(s)
- Isha Tripathi
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Naomi Barber-Choi
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Lauren Woodward
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Natalie Falta
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Natalia Shahwan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Nickie Yang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Ben Knowles
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Draghi J, Zook E. Spatial clustering of hosts can favor specialist parasites. Ecol Evol 2024; 14:e70273. [PMID: 39559465 PMCID: PMC11570423 DOI: 10.1002/ece3.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
Generalist parasites seem to enjoy the clear ecological advantage of a greater chance to find a host, and genetic trade-offs are therefore often invoked to explain why specialists can coexist with or outcompete generalists. Here we develop an alternative perspective based on optimal foraging theory to explain why spatial clustering can favor specialists even without genetic trade-offs. Using analytical and simulation models inspired by bacteriophage, we examine the optimal use of two hosts, one yielding greater reproductive success for the parasite than the other. We find that a phage may optimally ignore the worse host when the two hosts are clustered together in dense, ephemeral patches. We model conditions that enhance or reduce this selective benefit to a specialist parasite and show that it is eliminated entirely when the hosts occur only in separate patches. These results show that specialists can be favored even when trade-offs are weak or absent and emphasize the importance of spatiotemporal heterogeneity in models of optimal niche breadth.
Collapse
Affiliation(s)
- Jeremy Draghi
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Evan Zook
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Hvid U, Mitarai N. Competitive advantages of T-even phage lysis inhibition in response to secondary infection. PLoS Comput Biol 2024; 20:e1012242. [PMID: 38976747 PMCID: PMC11257392 DOI: 10.1371/journal.pcbi.1012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
T-even bacteriophages are known to employ lysis inhibition (LIN), where the lysis of an infected host is delayed in response to secondary adsorptions. Upon the eventual burst of the host, significantly more phage progenies are released. Here, we analysed the competitive advantage of LIN using a mathematical model. In batch culture, LIN provides a bigger phage yield at the end of the growth where all the hosts are infected due to an exceeding number of phage particles and, in addition, gives a competitive advantage against LIN mutants with rapid lysis by letting them adsorb to already infected hosts in the LIN state. By simulating plaque formation in a spatially structured environment, we show that, while LIN phages will produce a smaller zone of clearance, the area over which the phages spread is actually comparable to those without LIN. The analysis suggests that LIN induced by secondary adsorption is favourable in terms of competition, both in spatially homogeneous and inhomogeneous environments.
Collapse
Affiliation(s)
- Ulrik Hvid
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Eriksen RS, Larsen F, Svenningsen SL, Sneppen K, Mitarai N. The dynamics of phage predation on a microcolony. Biophys J 2024; 123:147-156. [PMID: 38069473 PMCID: PMC10808037 DOI: 10.1016/j.bpj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Phage predation is an important factor for controlling the bacterial biomass. At face value, dense microbial habitats are expected to be vulnerable to phage epidemics due to the abundance of fresh hosts immediately next to any infected bacteria. Despite this, the bacterial microcolony is a common habitat for bacteria in nature. Here, we experimentally quantify the fate of microcolonies of Escherichia coli exposed to virulent phage T4. It has been proposed that the outer bacterial layers of the colony will shield the inner layers from the phage invasion and thereby constrain the phage to the colony's surface. We develop a dynamical model that incorporates this shielding mechanism and fit the results with experimental measurements to extract important phage-bacteria interaction parameters. The analysis suggests that, while the shielding mechanism delays phage attack, T4 phage are able to diffuse so deep into the dense bacterial environment that colony-level survival of the bacterial community is challenged.
Collapse
Affiliation(s)
- Rasmus Skytte Eriksen
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frej Larsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Kim Sneppen
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Mageiros L, Megremis S, Papadopoulos NG. The virome in allergy and asthma: A nascent, ineffable player. J Allergy Clin Immunol 2023; 152:1347-1351. [PMID: 37778473 DOI: 10.1016/j.jaci.2023.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Allergic diseases can be affected by virus-host interactions and are increasingly linked with the tissue-specific microbiome. High-throughput metagenomic sequencing has offered the opportunity to study the presence of viruses as an ecologic system, namely, the virome. Even though virome studies are technically challenging conceptually and analytically, they are already producing novel data expanding our understanding of the pathophysiologic mechanisms related to chronic inflammation and allergy. The importance of interspecies and intraspecies interactions is becoming apparent, as they can significantly, directly or indirectly, affect the host's response and antigenic state. Here, we emphasize the challenges and potential insights related to study of the virome in the context of allergy and asthma. We review the limited number of studies that have investigated the virome in these conditions, underlining the need for prospective, repeated sampling designs to unravel the virome's impact on disease development and its interplay with microbiota and immunity. The potential therapeutic use of bacteriophages, which are highly complex components of the virome, is discussed. There is clearly a need for further in-depth investigation of the virome as a system in allergic diseases.
Collapse
Affiliation(s)
- Leonardos Mageiros
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece; University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
6
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
7
|
Han M, Luo G, He J, Liang Y, Chen X, Liu G, Su Y, Ge F, Yu H, Zhao J, Hao Q, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Amundsen Sea, West Antarctica during the austral summer. Front Microbiol 2022; 13:941323. [PMID: 35966700 PMCID: PMC9363919 DOI: 10.3389/fmicb.2022.941323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.5° to 150°W and 67° to 75.5°S in the Amundsen Sea of West Antarctica. The epipelagic stations were grouped into four clusters based on the virio- and picoplankton composition and abundance. Clusters three and four, which were associated with the ice-edge blooms in the coastal and Amundsen Sea Polynya (ASP) areas, had high abundances of autotrophic picoeukaryotes; this resulted in subsequent high abundances of heterotrophic prokaryotes and viruses. Cluster two stations were in open oceanic areas, where the abundances of autotrophic and heterotrophic picoplankton were low. Cluster one stations were located between the areas of blooms and the oceanic areas, which had a low abundance of heterotrophic prokaryotes and picoeukaryotes and a high abundance of virioplankton. The abundance of viruses was significantly correlated with the abundances of autotrophic picoeukaryotes and Chl-a concentration in oceanic areas, although this reflected a time-lag with autotrophic picoeukaryote and heterotrophic prokaryotes abundances in ice-edge bloom areas. The upwelling of Circumpolar Deep Water (CDW) might have induced the high abundance of autotrophic picoeukaryotes in the epipelagic zone, and the sinking particulate organic carbon (POC) might have induced the high abundance of heterotrophic prokaryotes and virioplankton in the meso- and bathypelagic zones. This study shows that the summer distribution of virio- and picoplankton in the Amundsen Sea of West Antarctica was mainly controlled by upwelling of the CDW and the timing of ice-edge blooms.
Collapse
Affiliation(s)
- Meiaoxue Han
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Guangfu Luo
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Shanghai, China
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Shanghai, China
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Jianfeng He,
| | - Yantao Liang
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Yantao Liang,
| | - Xuechao Chen
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Gang Liu
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yue Su
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Fuyue Ge
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Hao Yu
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jun Zhao
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Qiang Hao
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hongbing Shao
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University of Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University of Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University of Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- Min Wang,
| |
Collapse
|
8
|
Bonachela JA, Choua M, Heath MR. Unconstrained coevolution of bacterial size and the latent period of plastic phage. PLoS One 2022; 17:e0268596. [PMID: 35617195 PMCID: PMC9135238 DOI: 10.1371/journal.pone.0268596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Viruses play critical roles in the dynamics of microbial communities. Lytic viruses, for example, kill significant fractions of autotrophic and heterotrophic microbes daily. The dynamic interplay between viruses and microbes results from an overlap of physiological, ecological, and evolutionary responses: environmental changes trigger host physiological changes, affecting the ecological interactions of host and virus and, ultimately, the evolutionary pressures influencing the two populations. Recent theoretical work studied how the dependence of viral traits on host physiology (viral plasticity) affects the evolutionarily stable host cell size and viral infection time emerging from coevolution. Here, we broaden the scope of the framework to consider any coevolutionary outcome, including potential evolutionary collapses of the system. We used the case study of Escherichia coli and T-like viruses under chemostat conditions, but the framework can be adapted to any microbe-virus system. Oligotrophic conditions led to smaller, lower-quality but more abundant hosts, and infections that were longer but produced a reduced viral offspring. Conversely, eutrophic conditions resulted in fewer but larger higher-quality hosts, and shorter but more productive infections. The virus influenced host evolution decreasing host size more noticeably for low than for high dilution rates, and for high than for low nutrient input concentration. For low dilution rates, the emergent infection time minimized host need/use, but higher dilution led to an opportunistic strategy that shortened the duration of infections. System collapses driven by evolution resulted from host failure to adapt quickly enough to the evolving virus. Our results contribute to understanding the eco-evolutionary dynamics of microbes and virus, and to improving the predictability of current models for host-virus interactions. The large quantitative and qualitative differences observed with respect to a classic description (in which viral traits are assumed to be constant) highlights the importance of including viral plasticity in theories describing short- and long-term host-virus dynamics.
Collapse
Affiliation(s)
- Juan A. Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, United States of America
| | - Melinda Choua
- Blue Remediation Ltd., Glasgow, Scotland, United Kingdom
| | - Michael R. Heath
- Marine Population Modelling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland, United Kingdom
| |
Collapse
|
9
|
Igler C, Schwyter L, Gehrig D, Wendling CC. Conjugative plasmid transfer is limited by prophages but can be overcome by high conjugation rates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200470. [PMID: 34839704 PMCID: PMC8628080 DOI: 10.1098/rstb.2020.0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using Escherichia coli, prophage λ and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Lukas Schwyter
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Daniel Gehrig
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Carolin Charlotte Wendling
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Silva J, Dias R, Junior JI, Marcelino M, Silva M, Carmo A, Sousa M, Silva C, de Paula S. A Rapid Method for Performing a Multivariate Optimization of Phage Production Using the RCCD Approach. Pathogens 2021; 10:1100. [PMID: 34578135 PMCID: PMC8468216 DOI: 10.3390/pathogens10091100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages can be used in various applications, from the classical approach as substitutes for antibiotics (phage therapy) to new biotechnological uses, i.e., as a protein delivery vehicle, a diagnostic tool for specific strains of bacteria (phage typing), or environmental bioremediation. The demand for bacteriophage production increases daily, and studies that improve these production processes are necessary. This study evaluated the production of a T4-like bacteriophage vB_EcoM-UFV09 (an E. coli-infecting phage with high potential for reducing environmental biofilms) in seven types of culture media (Luria-Bertani broth and the M9 minimal medium with six different carbon sources) employing four cultivation variables (temperature, incubation time, agitation, and multiplicity of infection). For this purpose, the rotatable central composite design (RCCD) methodology was used, combining and comparing all parameters to determine the ideal conditions for starting to scale up the production process. We used the RCCD to set up the experimental design by combining the cultivation parameters in a specific and systematic way. Despite the high number of conditions evaluated, the results showed that when specific conditions were utilized, viral production was effective even when using a minimal medium, such as M9/glucose, which is less expensive and can significantly reduce costs during large-scale phage production.
Collapse
Affiliation(s)
- Jessica Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Roberto Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - José Ivo Junior
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Maraísa Marcelino
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Mirelly Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Adriele Carmo
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Maira Sousa
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
- Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro 20230-010, Brazil
| | - Cynthia Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Sergio de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| |
Collapse
|
11
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Zuo P, Yu P, Alvarez PJJ. Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. Appl Environ Microbiol 2021; 87:e0046821. [PMID: 34020940 PMCID: PMC8276799 DOI: 10.1128/aem.00468-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
The common cooccurrence of antibiotics and phages in both natural and engineered environments underscores the need to understand their interactions and implications for bacterial control and antibiotic resistance propagation. Here, aminoglycoside antibiotics that inhibit protein synthesis (e.g., kanamycin and neomycin) impeded the replication of coliphage T3 and Bacillus phage BSP, reducing their infection efficiency and mitigating their hindrance of bacterial growth, biofilm formation, and tolerance to antibiotics. For example, treatment with phage T3 reduced subsequent biofilm formation by Escherichia coli liquid cultures to 53% ± 5% of that of the no-phage control, but a smaller reduction of biofilm formation (89% ± 10%) was observed for combined exposure to phage T3 and kanamycin. Despite sharing a similar mode of action with aminoglycosides (i.e., inhibiting protein synthesis) and antagonizing phage replication, albeit to a lesser degree, tetracyclines did not inhibit bacterial control by phages. Phage T3 combined with tetracycline showed higher suppression of biofilm formation than when combined with aminoglycosides (25% ± 6% of the no-phage control). The addition of phage T3 to E. coli suspensions with tetracycline also suppressed the development of tolerance to tetracycline. However, this suppression of antibiotic tolerance development disappeared when tetracycline was replaced with 3 mg/liter kanamycin, corroborating the greater antagonism with aminoglycosides. Overall, this study highlights this overlooked antagonistic effect on phage proliferation, which may attenuate phage suppression of bacterial growth, biofilm formation, antibiotic tolerance, and maintenance of antibiotic resistance genes. IMPORTANCE The coexistence of residual antibiotics and phages is common in many environments, which underscores the need to understand their interactive effects on bacteria and the implications for antibiotic resistance propagation. Here, aminoglycosides acting as bacterial protein synthesis inhibitors impeded the replication of various phages. This alleviated the suppressive effects of phages against bacterial growth and biofilm formation and diminished bacterial fitness costs that suppress the emergence of tolerance to antibiotics. We show that changes in bacteria caused by environmentally relevant concentrations of sublethal antibiotics can affect phage-host dynamics that are commonly overlooked in vitro but can result in unexpected environmental consequences.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
13
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
14
|
Choua M, Heath MR, Bonachela JA. Evolutionarily Stable Coevolution Between a Plastic Lytic Virus and Its Microbial Host. Front Microbiol 2021; 12:637490. [PMID: 34093461 PMCID: PMC8172972 DOI: 10.3389/fmicb.2021.637490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Hosts influence and are influenced by viral replication. Cell size, for example, is a fundamental trait for microbial hosts that can not only alter the probability of viral adsorption, but also constrain the host physiological processes that the virus relies on to replicate. This intrinsic connection can affect the fitness of both host and virus, and therefore their mutual evolution. Here, we study the coevolution of bacterial hosts and their viruses by considering the dependence of viral performance on the host physiological state (viral plasticity). To this end, we modified a standard host-lytic phage model to include viral plasticity, and compared the coevolutionary strategies emerging under different scenarios, including cases in which only the virus or the host evolve. For all cases, we also obtained the evolutionary prediction of the traditional version of the model, which assumes a non-plastic virus. Our results reveal that the presence of the virus leads to an increase in host size and growth rate in the long term, which benefits both interacting populations. Our results also show that viral plasticity and evolution influence the classic host quality-quantity trade-off. Poor nutrient environments lead to abundant low-quality hosts, which tends to increase viral infection time. Conversely, richer nutrient environments lead to fewer but high-quality hosts, which decrease viral infection time. Our results can contribute to advancing our understanding of the microbial response to changing environments. For instance, both cell size and viral-induced mortality are essential factors that determine the structure and dynamics of the marine microbial community, and therefore our study can improve predictions of how marine ecosystems respond to environmental change. Our study can also help devise more reliable strategies to use phage to, for example, fight bacterial infections.
Collapse
Affiliation(s)
- Melinda Choua
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Scotland, United Kingdom
| | - Michael R Heath
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Scotland, United Kingdom
| | - Juan A Bonachela
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol 2021; 97:5974270. [PMID: 33175111 DOI: 10.1093/femsec/fiaa227] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 01/04/2023] Open
Abstract
Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1049-001, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, CA 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 Berkeley, USA
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,School of Science, University of Waikato, Gate 1, Knighton Road 3240, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Steele Ocean Sciences Building, Dalhousie University 1355 Oxford St., B3H4R2 Halifax, NS, Canada
| |
Collapse
|
16
|
Temperate and chronic virus competition leads to low lysogen frequency. J Theor Biol 2021; 523:110710. [PMID: 33839160 DOI: 10.1016/j.jtbi.2021.110710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
The canonical bacteriophage is obligately lytic: the virus infects a bacterium and hijacks cell functions to produce large numbers of new viruses which burst from the cell. These viruses are well-studied, but there exist a wide range of coexisting virus lifestyles that are less understood. Temperate viruses exhibit both a lytic cycle and a latent (lysogenic) cycle, in which viral genomes are integrated into the bacterial host. Meanwhile, chronic (persistent) viruses use cell functions to produce more viruses without killing the cell; chronic viruses may also exhibit a latent stage in addition to the productive stage. Here, we study the ecology of these competing viral strategies. We demonstrate the conditions under which each strategy is dominant, which aids in control of human bacterial infections using viruses. We find that low lysogen frequencies provide competitive advantages for both virus types; however, chronic viruses maximize steady state density by eliminating lysogeny entirely, while temperate viruses exhibit a non-zero 'sweet spot' lysogen frequency. Viral steady state density maximization leads to coexistence of temperate and chronic viruses, explaining the presence of multiple viral strategies in natural environments.
Collapse
|
17
|
Li G, Cortez MH, Dushoff J, Weitz JS. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol 2020; 6:veaa042. [PMID: 36204422 PMCID: PMC9532926 DOI: 10.1093/ve/veaa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial viruses, that is 'bacteriophage' or 'phage', can infect and lyse their bacterial hosts, releasing new viral progeny. In addition to the lytic pathway, certain bacteriophage (i.e. 'temperate' bacteriophage) can also initiate lysogeny, a latent mode of infection in which the viral genome is integrated into and replicated with the bacterial chromosome. Subsequently, the integrated viral genome, that is the 'prophage', can induce and restart the lytic pathway. Here, we explore the relationship among infection mode, ecological context, and viral fitness, in essence asking: when should viruses be temperate? To do so, we use network loop analysis to quantify fitness in terms of network paths through the life history of an infectious pathogen that start and end with infected cells. This analysis reveals that temperate strategies, particularly those with direct benefits to cellular fitness, should be favored at low host abundances. This finding applies to a spectrum of mechanistic models of phage-bacteria dynamics spanning both explicit and implicit representations of intra-cellular infection dynamics. However, the same analysis reveals that temperate strategies, in and of themselves, do not provide an advantage when infection imposes a cost to cellular fitness. Hence, we use evolutionary invasion analysis to explore when temperate phage can invade microbial communities with circulating lytic phage. We find that lytic phage can drive down niche competition amongst microbial cells, facilitating the subsequent invasion of latent strategies that increase cellular resistance and/or immunity to infection by lytic viruses-notably this finding holds even when the prophage comes at a direct fitness cost to cellular reproduction. Altogether, our analysis identifies broad ecological conditions that favor latency and provide a principled framework for exploring the impacts of ecological context on both the short- and long-term benefits of being temperate.
Collapse
Affiliation(s)
- Guanlin Li
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Joshua S Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Liang X, Wagner RE, Li B, Zhang N, Radosevich M. Quorum Sensing Signals Alter in vitro Soil Virus Abundance and Bacterial Community Composition. Front Microbiol 2020; 11:1287. [PMID: 32587586 PMCID: PMC7298970 DOI: 10.3389/fmicb.2020.01287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-density dependent quorum sensing (QS) is fundamental for many coordinated behaviors among bacteria. Most recently several studies have revealed a role for bacterial QS communication in bacteriophage (phage) reproductive decisions. However, QS based phage-host interactions remain largely unknown, with the mechanistic details revealed for only a few phage-host pairs and a dearth of information available at the microbial community level. Here we report on the specific action of eight different individual QS signals (acyl-homoserine lactones; AHLs varying in acyl-chain length from four to 14 carbon atoms) on prophage induction in soil microbial communities. We show QS autoinducers, triggered prophage induction in soil bacteria and the response was significant enough to alter bacterial community composition in vitro. AHL treatment significantly decreased the bacterial diversity (Shannon Index) but did not significantly impact species richness. Exposure to short chain-length AHLs resulted in a decrease in the abundance of different taxa than exposure to higher molecular weight AHLs. Each AHL targeted a different subset of bacterial taxa. Our observations indicate that individual AHLs may trigger prophage induction in different bacterial taxa leading to changes in microbial community structure. The findings also have implications for the role of phage-host interactions in ecologically significant processes such as biogeochemical cycles, and phage mediated transfer of host genes, e.g., photosynthesis and heavy metal/antibiotic resistance.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Regan E. Wagner
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Ning Zhang
- College of Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
19
|
Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME JOURNAL 2020; 14:2007-2018. [PMID: 32358533 DOI: 10.1038/s41396-020-0664-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Natural bacterial populations are subjected to constant predation pressure by bacteriophages. Bacteria use a variety of molecular mechanisms to defend themselves from phage predation. However, since phages are nonmotile, perhaps the simplest defense against phage is for bacteria to move faster than phages. In particular, chemotaxis, the active migration of bacteria up attractant gradients, may help the bacteria escape slowly diffusing phages. Here we study phage infection dynamics in migrating bacterial populations driven by chemotaxis through low viscosity agar plates. We find that expanding phage-bacteria populations supports two moving fronts, an outermost bacterial front driven by nutrient uptake and chemotaxis and an inner phage front at which the bacterial population collapses due to phage predation. We show that with increasing adsorption rate and initial phage population, the speed of the moving phage front increases, eventually overtaking the bacterial front and driving the system across a transition from a regime where bacterial front speed exceeds that of the phage front to one where bacteria must evolve phage resistance to survive. Our data support the claim that this process requires phage to hitchhike with moving bacteria. A deterministic model recapitulates the transition under the assumption that phage virulence declines with host growth rate which we confirm experimentally. Finally, near the transition between regimes we observe macroscopic fluctuations in bacterial densities at the phage front. Our work opens a new, spatio-temporal, line of investigation into the eco-evolutionary struggle between bacteria and phage.
Collapse
|
20
|
The effect of viral plasticity on the persistence of host-virus systems. J Theor Biol 2020; 498:110263. [PMID: 32333976 DOI: 10.1016/j.jtbi.2020.110263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 11/21/2022]
Abstract
Phenotypic plasticity plays an important role in the survival of individuals. In microbial host-virus systems, previous studies have shown the stabilizing effect that host plasticity has on the coexistence of the system. By contrast, it remains uncertain how the dependence of the virus on the metabolism of the host (i.e. "viral plasticity") shapes bacteria-phage population dynamics in general, or the stability of the system in particular. Moreover, bacteria-phage models that do not consider viral plasticity are now recognised as overly simplistic. For these reasons, here we focus on the effect of viral plasticity on the stability of the system under different environmental conditions. We compared the predictions from a standard bacteria-phage model, which neglects plasticity, with those of a modification that includes viral plasticity. We investigated under which conditions viral plasticity promotes coexistence, with or without oscillatory dynamics. Our analysis shows that including viral plasticity reveals coexistence in regions of the parameter space where models without plasticity predict a collapse of the system. We also show that viral plasticity tends to reduce population oscillations, although this stabilizing effect is not consistently observed across environmental conditions: plasticity may instead reinforce dynamic feedbacks between the host, the virus, and the environment, which leads to wider oscillations. Our results contribute to a deeper understanding of the dynamic control of bacteriophage on host populations observed in nature.
Collapse
|
21
|
Eriksen RS, Mitarai N, Sneppen K. Sustainability of spatially distributed bacteria-phage systems. Sci Rep 2020; 10:3154. [PMID: 32081858 PMCID: PMC7035299 DOI: 10.1038/s41598-020-59635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Virulent phages can expose their bacterial hosts to devastating epidemics, in principle leading to complete elimination of their hosts. Although experiments indeed confirm a large reduction of susceptible bacteria, there are no reports of complete extinctions. We here address this phenomenon from the perspective of spatial organization of bacteria and how this can influence the final survival of them. By modelling the transient dynamics of bacteria and phages when they are introduced into an environment with finite resources, we quantify how time delayed lysis, the spatial separation of initial bacterial positions, and the self-protection of bacteria growing in spherical colonies favour bacterial survival. Our results suggest that spatial structures on the millimetre and submillimetre scale play an important role in maintaining microbial diversity.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Mitarai N. How pirate phage interferes with helper phage: Comparison of the two distinct strategies. J Theor Biol 2019; 486:110096. [PMID: 31786182 DOI: 10.1016/j.jtbi.2019.110096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Pirate phages use the structural proteins encoded by unrelated helper phages to propagate. The best-studied example is the pirate P4 and helper P2 of coliphages, and it has been known that the Staphylococcus aureus pathogenicity islands (SaPIs) that can encode virulence factors act as pirate phages, too. When alone in the host, the pirate phages act as a prophage, but when the helper phage gene is also in the same host cell, the pirate phage has ability to exploit the helper phages structural proteins to produce pirate phage particles and spread, interfering with the helper phage production. The known helper phages in these systems are temperate phages. Interestingly, the interference of the pirate phage to the helper phage occurs in a different manner between the SaPI-helper system and the P4-P2 system. SaPIs cannot lyse a helper lysogen upon infection, while when a helper phage lyse a SaPI lysogen, most of the phage particles produced are the SaPI particles. On the contrary, in the P4-P2 system, a pirate phage P4 can lyse a helper P2 lysogen to produce mostly the P4 particles, while when P2 phage lyses a P4 lysogen, most of the produced phages are the P2 particles. Here, the consequences of these different strategies in the pirate and helper phage spreading among uninfected host is analyzed by using mathematical models. It is found that SaPI's strategy interferes with the helper phage spreading significantly more than the P4's strategy, because SaPI interferes with the helper phage's main reproduction step, while P4 interferes only by forcing the helper lysogens to lyse. However, the interference is found to be weaker in the spatially structured environment than in the well-mixed environment. This is because, in the spatial setting, the system tends to self-organize so that the helper phages take over the front of propagation due to the need of helper phage for the pirate phage spreading.
Collapse
Affiliation(s)
- Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, 2100-DK, Denmark.
| |
Collapse
|
23
|
Maslov S, Sneppen K. Regime Shifts in a Phage-Bacterium Ecosystem and Strategies for Its Control. mSystems 2019; 4:e00470-19. [PMID: 31690591 PMCID: PMC6832019 DOI: 10.1128/msystems.00470-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/16/2019] [Indexed: 01/21/2023] Open
Abstract
The competition between bacteria often involves both nutrients and phage predators and may give rise to abrupt regime shifts between the alternative stable states characterized by different species compositions. While such transitions have been previously studied in the context of competition for nutrients, the case of phage-induced bistability between competing bacterial species has not been considered yet. Here we demonstrate a possibility of regime shifts in well-mixed phage-bacterium ecosystems. In one of the bistable states, the fast-growing bacteria competitively exclude the slow-growing ones by depleting their common nutrient. Conversely, in the second state, the slow-growing bacteria with a large burst size generate such a large phage population that the other species cannot survive. This type of bistability can be realized as the competition between a strain of bacteria protected from phage by abortive infection and another strain with partial resistance to phage. It is often desirable to reliably control the state of microbial ecosystems, yet bistability significantly complicates this task. We discuss successes and limitations of one control strategy in which one adds short pulses to populations of individual species. Our study proposes a new type of phage therapy, where introduction of the phage is supplemented by the addition of a partially resistant host bacteria.IMPORTANCE Phage-microbe communities play an important role in human health as well as natural and industrial environments. Here we show that these communities can assume several alternative species compositions separated by abrupt regime shifts. Our model predicts these regime shifts in the competition between bacterial strains protected by two different phage defense mechanisms: abortive infection/CRISPR and partial resistance. The history dependence caused by regime shifts greatly complicates the task of manipulation and control of a community. We propose and study a successful control strategy via short population pulses aimed at inducing the desired regime shifts. In particular, we predict that a fast-growing pathogen could be eliminated by a combination of its phage and a slower-growing susceptible host.
Collapse
Affiliation(s)
- Sergei Maslov
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
25
|
Pauly MD, Bautista MA, Black JA, Whitaker RJ. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180093. [PMID: 30905292 PMCID: PMC6452263 DOI: 10.1098/rstb.2018.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
The population diversity and structure of CRISPR-Cas immunity provides key insights into virus-host interactions. Here, we examined two geographically and genetically distinct natural populations of the thermophilic crenarchaeon Sulfolobus islandicus and their interactions with Sulfolobus spindle-shaped viruses (SSVs) and S. islandicus rod-shaped viruses (SIRVs). We found that both virus families can be targeted with high population distributed immunity, whereby most immune strains target a virus using unique unshared CRISPR spacers. In Kamchatka, Russia, we observed high immunity to chronic SSVs that increases over time. In this context, we found that some SSVs had shortened genomes lacking genes that are highly targeted by the S. islandicus population, indicating a potential mechanism of immune evasion. By contrast, in Yellowstone National Park, we found high inter- and intra-strain immune diversity targeting lytic SIRVs and low immunity to chronic SSVs. In this population, we observed evidence of SIRVs evolving immunity through mutations concentrated in the first five bases of protospacers. These results indicate that diversity and structure of antiviral CRISPR-Cas immunity for a single microbial species can differ by both the population and virus type, and suggest that different virus families use different mechanisms to evade CRISPR-Cas immunity. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Matthew D. Pauly
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Maria A. Bautista
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jesse A. Black
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Rachel J. Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, Youngblut ND, Hewson I, Reyes A, Ley RE. Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host Microbe 2019; 25:261-272.e5. [PMID: 30763537 PMCID: PMC6411085 DOI: 10.1016/j.chom.2019.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Abstract
The virome is one of the most variable components of the human gut microbiome. Within twin pairs, viromes have been shown to be similar for infants, but not for adults, indicating that as twins age and their environments and microbiomes diverge, so do their viromes. The degree to which the microbiome drives the vast virome diversity is unclear. Here, we examine the relationship between microbiome and virome diversity in 21 adult monozygotic twin pairs selected for high or low microbiome concordance. Viromes derived from virus-like particles are unique to each individual, are dominated by Caudovirales and Microviridae, and exhibit a small core that includes crAssphage. Microbiome-discordant twins display more dissimilar viromes compared to microbiome-concordant twins, and the richer the microbiomes, the richer the viromes. These patterns are driven by bacteriophages, not eukaryotic viruses. Collectively, these observations support a strong role of the microbiome in patterning for the virome.
Collapse
Affiliation(s)
- J Leonardo Moreno-Gallego
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Shao-Pei Chou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sara C Di Rienzi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Julia K Goodrich
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
27
|
Abstract
Viruses use the host machinery to replicate, and their performance thus depends on the host's physiological state. For bacteriophages, this link between host and viral performance has been characterized empirically and with intracellular theories. Such theories are too detailed to be included in models that study host-phage interactions in the long term, which hinders our understanding of systems that range from pathogens infecting gut bacteria to marine phage shaping the oceans. Here, we combined data and models to study the short- and long-term consequences that host physiology has on bacteriophage performance. We compiled data showing the dependence of lytic-phage traits on host growth rate (referred to as viral phenotypic plasticity) to deduce simple expressions that represent such plasticity. Including these expressions in a standard host-phage model allowed us to understand mechanistically how viral plasticity affects emergent evolutionary strategies and the population dynamics associated with different environmental scenarios including, for example, nutrient pulses or host starvation. Moreover, we show that plasticity on the offspring number drives the phage ecological and evolutionary dynamics by reinforcing feedbacks between host, virus, and environment. Standard models neglect viral plasticity, which therefore handicaps their predictive ability in realistic scenarios. Our results highlight the importance of viral plasticity to unravel host-phage interactions and the need of laboratory and field experiments to characterize viral plastic responses across systems.
Collapse
|
28
|
Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol Ecol 2018; 94:5061119. [DOI: 10.1093/femsec/fiy143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Angela França
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Brandão
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Low activity of lytic pelagiphages in coastal marine waters. ISME JOURNAL 2018; 12:2100-2102. [PMID: 29872114 PMCID: PMC6052063 DOI: 10.1038/s41396-018-0185-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 11/08/2022]
Abstract
Phages infect marine bacteria impacting their dynamics, diversity and physiology, but little is known about specific phage-host interactions in situ. We analyzed the joint dynamics in the abundance of phage-related transcripts, as an indicator of viral lytic activity, and their potential hosts using a metatranscriptomic dataset obtained over 2 years in coastal temperate waters of the NE Atlantic. Substantial temporal variability was identified in the expression levels of different phages, likely in response to host availability. Indeed, a significant positive relationship between the abundance of transcripts from some of the most abundant phage types (infecting SAR11, SAR116 and cyanobacteria) and their putative hosts was found. Yet, the ratio of increase in phage transcripts per host cell was significantly lower for pelagiphages than for the HMO-2011 phage, which infects SAR116. Despite the high abundance of pelagiphages in the ocean, they may be less active than other phage types in coastal waters.
Collapse
|
30
|
Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host Microbe 2018; 22:38-47.e4. [PMID: 28704651 DOI: 10.1016/j.chom.2017.06.018] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues.
Collapse
Affiliation(s)
- Dwayne R Roach
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Chung Yin Leung
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Marine Henry
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Eric Morello
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
31
|
Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities. Antibiotics (Basel) 2018; 7:antibiotics7010008. [PMID: 29382134 PMCID: PMC5872119 DOI: 10.3390/antibiotics7010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here.
Collapse
Affiliation(s)
- James J Bull
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA.
- The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
- Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA.
| | - Kelly A Christensen
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
| | - Carly Scott
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Benjamin R Jack
- The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | - Cameron J Crandall
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Stephen M Krone
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
32
|
Eriksen RS, Svenningsen SL, Sneppen K, Mitarai N. A growing microcolony can survive and support persistent propagation of virulent phages. Proc Natl Acad Sci U S A 2018; 115:337-342. [PMID: 29259110 PMCID: PMC5777033 DOI: 10.1073/pnas.1708954115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria form colonies and secrete extracellular polymeric substances that surround the individual cells. These spatial structures are often associated with collaboration and quorum sensing between the bacteria. Here we investigate the mutual protection provided by spherical growth of a monoclonal colony during exposure to phages that proliferate on its surface. As a proof of concept we exposed growing colonies of Escherichia coli to a virulent mutant of phage P1. When the colony consists of less than [Formula: see text]50,000 members it is eliminated, while larger initial colonies allow long-term survival of both phage-resistant mutants and, importantly, colonies of mostly phage-sensitive members. A mathematical model predicts that colonies formed solely by phage-sensitive bacteria can survive because the growth of bacteria throughout the colony exceeds the killing of bacteria on the surface and pinpoints how the critical colony size depends on key parameters in the phage infection cycle.
Collapse
Affiliation(s)
| | - Sine L Svenningsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| |
Collapse
|
33
|
Sinha S, Grewal RK, Roy S. Modeling Bacteria-Phage Interactions and Its Implications for Phage Therapy. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:103-141. [PMID: 29914656 DOI: 10.1016/bs.aambs.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriophages are more abundant than any other organism on our planet. The interaction of bacteriophages and bacteria and their coevolution is well known. In this chapter, we describe various aspects of modeling such systems and their dynamics. We explore their interaction in: (i) liquid media, which leads to well-mixed populations and (ii) solid media, where their interaction is spatially restricted. Such modeling, when used in conjunction with experiments would not only shed deep insight into the underlying dynamics but also provide useful clues toward potential therapeutic applications.
Collapse
|
34
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Martorelli E, Ingrassia M, Chiocci FL, Lo Martire M, Danovaro R. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ Microbiol 2017; 19:4432-4446. [DOI: 10.1111/1462-2920.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Michael Tangherlini
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Eleonora Martorelli
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Francesco L. Chiocci
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| |
Collapse
|
35
|
Sinha V, Goyal A, Svenningsen SL, Semsey S, Krishna S. In silico Evolution of Lysis-Lysogeny Strategies Reproduces Observed Lysogeny Propensities in Temperate Bacteriophages. Front Microbiol 2017; 8:1386. [PMID: 28798729 PMCID: PMC5526970 DOI: 10.3389/fmicb.2017.01386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages are the most abundant organisms on the planet and both lytic and temperate phages play key roles as shapers of ecosystems and drivers of bacterial evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts by producing multiple phage particles and releasing them by lysing the host cell, and (ii) lysogeny: establishing a potentially mutually beneficial relationship with the host by integrating their chromosome into the host cell's genome. Temperate phages exhibit lysogeny propensities in the curiously narrow range of 5–15%. For some temperate phages, the propensity is further regulated by the multiplicity of infection, such that single infections go predominantly lytic while multiple infections go predominantly lysogenic. We ask whether these observations can be explained by selection pressures in environments where multiple phage variants compete for the same host. Our models of pairwise competition, between phage variants that differ only in their propensity to lysogenize, predict the optimal lysogeny propensity to fall within the experimentally observed range. This prediction is robust to large variation in parameters such as the phage infection rate, burst size, decision rate, as well as bacterial growth rate, and initial phage to bacteria ratio. When we compete phage variants whose lysogeny strategies are allowed to depend upon multiplicity of infection, we find that the optimal strategy is one which switches from full lysis for single infections to full lysogeny for multiple infections. Previous attempts to explain lysogeny propensity have argued for bet-hedging that optimizes the response to fluctuating environmental conditions. Our results suggest that there is an additional selection pressure for lysogeny propensity within phage populations infecting a bacterial host, independent of environmental conditions.
Collapse
Affiliation(s)
- Vaibhhav Sinha
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences-TIFRBangalore, India.,Manipal UniversityManipal, India
| | - Akshit Goyal
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences-TIFRBangalore, India
| | | | - Szabolcs Semsey
- Department of Biology, University of CopenhagenCopenhagen, Denmark
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences-TIFRBangalore, India
| |
Collapse
|
36
|
Nadeem A, Wahl LM. Prophage as a genetic reservoir: Promoting diversity and driving innovation in the host community. Evolution 2017; 71:2080-2089. [PMID: 28590013 DOI: 10.1111/evo.13287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/07/2017] [Indexed: 12/16/2022]
Abstract
Sequencing of bacterial genomes has revealed an abundance of prophage sequences in many bacterial species. Since these sequences are accessible, through recombination, to infecting phages, bacteria carry an arsenal of genetic material that can be used by these viruses. We develop a mathematical model to isolate the effects of this phenomenon on the coevolution of temperate phage and bacteria. The model predicts that prophage sequences may play a key role in maintaining the phage population in situations that would otherwise favor host cell resistance. In addition, prophage recombination facilitates the existence of multiple phage types, thus promoting diverse co-existence in the phage-host ecosystem. Finally, because the host carries an archive of previous phage strategies, prophage recombination can drive waves of innovation in the host cell population.
Collapse
Affiliation(s)
- A Nadeem
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lindi M Wahl
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
37
|
O'Malley MA. The ecological virus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:71-79. [PMID: 26972871 DOI: 10.1016/j.shpsc.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency.
Collapse
|
38
|
Lytic to temperate switching of viral communities. Nature 2016; 531:466-70. [PMID: 26982729 DOI: 10.1038/nature17193] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.
Collapse
|
39
|
Storms ZJ, Sauvageau D. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology 2015; 485:355-62. [DOI: 10.1016/j.virol.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
40
|
Sneppen K, Semsey S, Seshasayee ASN, Krishna S. Restriction modification systems as engines of diversity. Front Microbiol 2015; 6:528. [PMID: 26082758 PMCID: PMC4451750 DOI: 10.3389/fmicb.2015.00528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Restriction modification (RM) systems provide protection against a broad spectrum of phages. However, the likelihood of a phage permanently bypassing this can be as high as 0.1 per infection (Korona et al., 1993) which makes for a relatively weak defense. Here we argue that, apart from providing such transient defenses, RM systems can facilitate long-term coexistence of many bacterial strains. We show that this diversity can be as large as the burst size of the phage but no larger-a curious correspondence between a number at the level of species and another number at the level of individuals. Such a highly diverse and stably coexisting ecosystem is robust to substantial variation in both bacterial growth rates and strength of their RM systems, which might be one reason why quite weak RM systems exist in the wild.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark
| | - Szabolcs Semsey
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark
| | | | - Sandeep Krishna
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark ; National Centre for Biological Sciences Bangalore, India ; Simons Centre for the Study of Living Machines, National Centre for Biological Sciences Bangalore, India
| |
Collapse
|
41
|
Maslov S, Sneppen K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci Rep 2015; 5:10523. [PMID: 26035282 PMCID: PMC4451807 DOI: 10.1038/srep10523] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/16/2015] [Indexed: 11/09/2022] Open
Abstract
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. "Well-temperate" phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system's environmental, ecological, and biophysical parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.
Collapse
Affiliation(s)
- Sergei Maslov
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, Follows MJ, Fuhrman JA, Jover LF, Lennon JT, Middelboe M, Sonderegger DL, Suttle CA, Taylor BP, Frede Thingstad T, Wilson WH, Eric Wommack K. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. THE ISME JOURNAL 2015; 9:1352-64. [PMID: 25635642 PMCID: PMC4438322 DOI: 10.1038/ismej.2014.220] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Abstract
Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.
Collapse
Affiliation(s)
- Joshua S Weitz
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Charles A Stock
- Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Lydia Bourouiba
- Department of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Michael J Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Luis F Jover
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | | | - Curtis A Suttle
- Department of Earth and Ocean Sciences, Department of Botany, and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bradford P Taylor
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
43
|
Refardt D. Real-time quantitative PCR to discriminate and quantify lambdoid bacteriophages of Escherichia coli K-12. BACTERIOPHAGE 2014; 2:98-104. [PMID: 23050220 PMCID: PMC3442831 DOI: 10.4161/bact.20092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantification of bacteriophages by real-time quantitative PCR (qPCR) is an interesting alternative to the traditional plaque assay. Importantly, the method should in principle be able to discriminate between closely related phages that are indistinguishable by most other means. Here, a method is presented that employs qPCR to discriminate and quantify ten closely related lambdoid phages of Escherichia coli str. K-12. It is shown that (1) treatment of samples with DNase efficiently removes non-encapsidated DNA, while the titer of plaque forming units is not affected, (2) individual phage types can be accurately quantified in mixed lysates, and (3) the detection limit corresponds to that of a plaque assay. The method is used to quantify individual phage types that are released from lysogens that carry up to three different prophages.
Collapse
Affiliation(s)
- Dominik Refardt
- ETH Zürich; Department of Environmental Systems Science; Institute of Integrative Biology; Zürich, Switzerland
| |
Collapse
|
44
|
Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. BACTERIOPHAGE 2014; 1:31-45. [PMID: 21687533 DOI: 10.4161/bact.1.1.14942] [Citation(s) in RCA: 699] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 12/28/2022]
Abstract
Bacteriophages or phages are the most abundant organisms in the biosphere and they are a ubiquitous feature of prokaryotic existence. A bacteriophage is a virus which infects a bacterium. Archaea are also infected by viruses, whether these should be referred to as 'phages' is debatable, but they are included as such in the scope this article. Phages have been of interest to scientists as tools to understand fundamental molecular biology, as vectors of horizontal gene transfer and drivers of bacterial evolution, as sources of diagnostic and genetic tools and as novel therapeutic agents. Unraveling the biology of phages and their relationship with their hosts is key to understanding microbial systems and their exploitation. In this article we describe the roles of phages in different host systems and show how modeling, microscopy, isolation, genomic and metagenomic based approaches have come together to provide unparalleled insights into these small but vital constituents of the microbial world.
Collapse
Affiliation(s)
- Martha Rj Clokie
- Department of Infection, Immunity and Inflammation; Medical Sciences Building; University of Leicester; Leicester, UK
| | | | | | | |
Collapse
|
45
|
Berezovskaya FS, Wolf YI, Koonin EV, Karev GP. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biol Direct 2014; 9:13. [PMID: 24986220 PMCID: PMC4096434 DOI: 10.1186/1745-6150-9-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics. RESULTS We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex, and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the hosts into the immune and susceptible populations, so that the system consists of three components. CONCLUSIONS Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are experimentally testable. REVIEWERS' REPORTS This manuscript was reviewed by Sandor Pongor, Sergei Maslov and Marek Kimmel. For the complete reports, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Georgy P Karev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
46
|
Phage and bacteria support mutual diversity in a narrowing staircase of coexistence. ISME JOURNAL 2014; 8:2317-26. [PMID: 24858781 DOI: 10.1038/ismej.2014.80] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/16/2014] [Indexed: 01/02/2023]
Abstract
The competitive exclusion principle states that phage diversity M should not exceed bacterial diversity N. By analyzing the steady-state solutions of multistrain equations, we find a new constraint: the diversity N of bacteria living on the same resources is constrained to be M or M+1 in terms of the diversity of their phage predators. We quantify how the parameter space of coexistence exponentially decreases with diversity. For diversity to grow, an open or evolving ecosystem needs to climb a narrowing 'diversity staircase' by alternatingly adding new bacteria and phages. The unfolding coevolutionary arms race will typically favor high growth rate, but a phage that infects two bacterial strains differently can occasionally eliminate the fastest growing bacteria. This context-dependent fitness allows abrupt resetting of the 'Red-Queen's race' and constrains the local diversity.
Collapse
|
47
|
Chen A, Sanchez A, Dai L, Gore J. Dynamics of a producer-freeloader ecosystem on the brink of collapse. Nat Commun 2014; 5:3713. [PMID: 24785661 PMCID: PMC4063714 DOI: 10.1038/ncomms4713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Ecosystems can undergo sudden shifts to undesirable states, but recent studies with simple single-species ecosystems have demonstrated that advance warning can be provided by the slowing down of population dynamics near a tipping point. However, it is unclear how this “critical slowing down” will manifest in ecosystems with strong interactions between their components. Here we probe the dynamics of an experimental producer-freeloader ecosystem as it approaches a catastrophic collapse. Surprisingly, the producer population grows in size as the environment deteriorates, highlighting that population size can be a misleading measure of ecosystem stability. By analyzing the oscillatory producer-freeloader dynamics for over 100 generations in multiple environmental conditions, we find that the collective ecosystem dynamics slow down as the tipping point is approached. Analysis of the coupled dynamics of interacting populations may therefore be necessary to provide advance warning of collapse in complex communities.
Collapse
Affiliation(s)
- Andrew Chen
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA02139
| | - Alvaro Sanchez
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA02139
| | - Lei Dai
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA02139
| | - Jeff Gore
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA02139
| |
Collapse
|
48
|
Bull JJ, Vegge CS, Schmerer M, Chaudhry WN, Levin BR. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS One 2014; 9:e94690. [PMID: 24743264 PMCID: PMC3990542 DOI: 10.1371/journal.pone.0094690] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/17/2014] [Indexed: 01/04/2023] Open
Abstract
The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence - because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of phage yet result in a rapid rebound of bacterial density after phage are introduced. We describe mathematical models of these processes and suggest how different types of this 'phenotypic' resistance may be elucidated. We offer preliminary in vitro studies of a previously characterized E. coli model system and Campylobacter jejuni illustrating apparent phenotypic resistance. As phenotypic resistance may be specific to the receptors used by phages, awareness of its mechanisms may identify ways of improving the choice of phages for therapy. Phenotypic resistance can also explain several enigmas in the ecology of phage-bacterial dynamics. Phenotypic resistance does not preclude the evolution of genetic resistance and may often be an intermediate step to genetic resistance.
Collapse
Affiliation(s)
- James J. Bull
- The Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas, United States of America
- Center for Computational Biology and Bioinformatics, The University of Texas, Austin, Texas, United States of America
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
- * E-mail:
| | | | - Matthew Schmerer
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
| | - Waqas Nasir Chaudhry
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
49
|
Bonachela JA, Levin SA. Evolutionary comparison between viral lysis rate and latent period. J Theor Biol 2013; 345:32-42. [PMID: 24361326 DOI: 10.1016/j.jtbi.2013.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Marine viruses shape the structure of the microbial community. They are, thus, a key determinant of the most important biogeochemical cycles in the planet. Therefore, a correct description of the ecological and evolutionary behavior of these viruses is essential to make reliable predictions about their role in marine ecosystems. The infection cycle, for example, is indistinctly modeled in two very different ways. In one representation, the process is described including explicitly a fixed delay between infection and offspring release. In the other, the offspring are released at exponentially distributed times according to a fixed release rate. By considering obvious quantitative differences pointed out in the past, the latter description is widely used as a simplification of the former. However, it is still unclear how the dichotomy "delay versus rate description" affects long-term predictions of host-virus interaction models. Here, we study the ecological and evolutionary implications of using one or the other approaches, applied to marine microbes. To this end, we use mathematical and eco-evolutionary computational analysis. We show that the rate model exhibits improved competitive abilities from both ecological and evolutionary perspectives in steady environments. However, rate-based descriptions can fail to describe properly long-term microbe-virus interactions. Moreover, additional information about trade-offs between life-history traits is needed in order to choose the most reliable representation for oceanic bacteriophage dynamics. This result affects deeply most of the marine ecosystem models that include viruses, especially when used to answer evolutionary questions.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
50
|
Poisot T, Mouquet N, Gravel D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol Lett 2013; 16:853-61. [DOI: 10.1111/ele.12118] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Nicolas Mouquet
- Institut des Sciences de l'Évolution; UMR CNRS-UM2 5554, Université Montpellier 2; CC 065, Place Eugène Bataillon, 34095; Montpellier Cedex 05; France
| | | |
Collapse
|