1
|
Gauthaman DK, Muthukrishnan I, Acharya KA, Simon S. Ga-68 Pentixafor PET/CT in multiple myeloma and its correlation with clinical parameters: institutional pilot study. Ann Nucl Med 2025; 39:588-599. [PMID: 40053177 DOI: 10.1007/s12149-025-02036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE This study evaluates the role of Ga-68 Pentixafor PET/CT in staging and follow-up of multiple myeloma (MM) and its correlation with clinical parameters. METHODS Thirteen participants (9 males, 4 females; median age: 65 years) with MM were recruited in this prospective observational study. Six participants were included for staging evaluation, seven were included for follow-up evaluation, and underwent Ga-68 Pentixafor PET/CT. Focal PET-positive bone marrow lesions or diffuse bone marrow uptake (uptake more than liver) was considered a positive scan. The quantitative variables like SUVmax, SUVmean, total bone marrow volume and uptake (TBMV & TBMU) and tumor to background ratio (TBRmax) were obtained. Durie Salmon Plus Staging (DSPS) was used for MM staging by PET/CT and was compared with the International Staging System (ISS). Statistical comparison was performed between PET/CT quantitative variables and laboratory parameters. RESULTS Twelve participants (12/13) had positive Ga-68 Pentixafor PET/CT, among which one was diagnosed to have anemia of chronic disease. One participant (1/13) who was clinically negative on follow-up had negative Ga-68 Pentixafor PET/CT. The sensitivity, specificity, PPV and NPV of Ga-68 Pentixafor PET/CT in MM (95% CI) were observed to be 100%, 50%, 91.6% and 100%, respectively. The correlation between DSPS and ISS in the patients who came for staging scans was found to be statistically significant (p-value 0.02). In quantitative analysis, either of the quantitative variables in Ga-68 Pentixafor PET/CT was positively correlated with clinical parameters related to tumor burden like CRAB score, serum protein electrophoresis M-protein, beta 2 microglobulin, LDH, percentage of plasma cells infiltrates in bone marrow aspiration, ISS, serum free light chain and negatively correlated with hemoglobin, albumin (p < 0.5). CONCLUSION Ga-68 Pentixafor PET/CT is a promising tracer and the only available non-invasive tool to assess the whole-body disease burden of CXCR4 receptors in staging and follow-up of MM. In addition, it has a vital role in the development of CXCR4-targeted theranostics. Dual tracer imaging using F-18 FDG and Ga-68 Pentixafor PET/CT may help in evaluating tumor heterogeneity in MM and add prognostic value at diagnosis and follow-up.
Collapse
Affiliation(s)
- Dinesh Kumar Gauthaman
- Department of Nuclear Medicine, Apollo Hospitals, Greams Lane, 21, Greams Road, Thousand Lights, Chennai, Tamil Nadu, 600006, India
| | - Indirani Muthukrishnan
- Department of Nuclear Medicine, Apollo Hospitals, Greams Lane, 21, Greams Road, Thousand Lights, Chennai, Tamil Nadu, 600006, India
| | - K Ashish Acharya
- Department of Nuclear Medicine, Apollo Hospitals, Greams Lane, 21, Greams Road, Thousand Lights, Chennai, Tamil Nadu, 600006, India
| | - Shelley Simon
- Department of Nuclear Medicine, Apollo Hospitals, Greams Lane, 21, Greams Road, Thousand Lights, Chennai, Tamil Nadu, 600006, India.
| |
Collapse
|
2
|
Peng Y, Liu H, Miao M, Cheng X, Chen S, Yan K, Mu J, Cheng H, Liu G. Micro-Nano Convergence-Driven Radiotheranostic Revolution in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29047-29081. [PMID: 40347149 DOI: 10.1021/acsami.5c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.
Collapse
Affiliation(s)
- Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mengmeng Miao
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xu Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shangqing Chen
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kaifei Yan
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Lin C, Li X, Wu Y, Wang Y, Song W, Yan F, Sun L. Ultrasound Molecular Imaging of Blood Vessel Walls and Vulnerable Plaques via CXCR4-Targeted Nanoscale GVs. Int J Nanomedicine 2025; 20:6205-6220. [PMID: 40395655 PMCID: PMC12091238 DOI: 10.2147/ijn.s504265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/06/2025] [Indexed: 05/22/2025] Open
Abstract
Purpose C-X-C chemokine receptor 4 (CXCR4) mediates the inflammatory response of atherosclerotic vulnerable plaques (ASVP) and is a potential biomarker of atherosclerotic vulnerable plaques. The purpose of this study was to use the imaging ability of a new type of ultrasound contrast agent, nanoscale biosynthetic gas vesicles (GVs), on the vascular wall and to combine the specific ligand of CXCR4 to construct a targeted molecular probe to achieve early identification of atherosclerotic vulnerable plaques and guide clinical treatment decisions. Materials and Methods Compared three contrast agents: GVs, the micro-contrast agent SonoVue, and polyethylene glycol (PEG)-modified GVs in the carotid artery. The expression of CXCR4 in atherosclerotic plaques was demonstrated using flow cytometry and immunofluorescence experiments. Cell adhesion and in vivo ultrasound imaging experiments demonstrated their ability to target the nanoscale biosynthetic gas vesicles. The safety of GVs, PEG-GVs, and CXCR4-GVs was tested the CCk8 test, H&E staining, and serum detection. Results Strong CXCR4 expression was observed in plaques, whereas little expression was observed in normal vessels. GVs can produce stable contrast signals on the carotid artery walls of rats, whereas PEG-GVs can produce more lasting contrast signals on the carotid artery wall of rats. CXCR4-GVs exhibited excellent binding capability to ox-LDL-induced RAW264.7 cells. Animal experiments showed that compared with Con-GVs, CXCR4-GVs injected plaque imaging signal was stronger and more durable. In vitro scanning of vulnerable plaques in rats injected with fluorescent vesicles demonstrated that CXCR4-GVs oozed through the neovasculars within vulnerable plaques and aggregated in vulnerable plaques. Through the CCK8 test, H&E staining, and serum detection, the safety of CXCR4-GVs was confirmed. Conclusion CXCR4-GVs were constructed as targeted molecular probes, which can be proven to have good targeting properties to vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Chen Lin
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Department of Ultrasound Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Xiaoying Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
4
|
Nakashima K, Shimohara H, Watanabe H, Ono M. Improvement of tumor-to-blood ratio of radioimmunoconjugates by poly(ethyleneimine)-containing chelating agent. Ann Nucl Med 2025; 39:323-333. [PMID: 39585568 DOI: 10.1007/s12149-024-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Monoclonal antibody (mAb)-based radioimmunoconjugates (RICs) exhibit marked tumor uptake in cancer imaging and therapy, although their high blood retention has limited the development of RICs. In our previous study, a trifunctional chelating agent with a cationic poly(ethyleneimine) (PEI) structure of tetraethylenepentamine (PEI4), maleimide-DOTA-PEI4 (MDI4), improved the tumor-to-blood ratio of RICs by increasing tumor retention compared with a conventional bifunctional chelating agent. In this study, we developed a novel chelating agent composed of a maleimide moiety, DOTA derivative, and two PEI4 structures as a PEI4-2 unit, maleimide-DOTA-PEI4-2 (MDI4-2), a design for a highly cationized chelating agent to synthesize RICs. The properties of MDI4-2 were compared with MDI4 to evaluate the effect of the PEI4-2 unit on the pharmacokinetics of RICs. METHODS Trastuzumab and 111In were selected as a model mAb and radiometal, respectively. Trastuzumab-based RICs were synthesized using MDI4-2 by two-step radiolabeling, wherein conjugation with mAbs is followed by radiolabeling of chelating agents, to obtain trastuzumab-[111In]In-MDI4-2 ([111In]In-TMDI4-2). The immunoreactivity and residualizing properties of [111In]In-TMDI4-2 were evaluated using human epidermal growth factor receptor 2 (HER2)/neu-expressing SK-OV-3 cells. A biodistribution assay using SK-OV-3 tumor-bearing mice was also performed for [111In]In-TMDI4-2 and the results were compared with trastuzumab-[111In]In-MDI4 ([111In]In-TMDI4). RESULTS [111In]In-TMDI4-2 was successfully synthesized by two-step radiolabeling at a radiochemical yield of 37.7%. The immunoreactivity of [111In]In-TMDI4-2 was determined as 81.7%, suggesting the maintained binding ability through radiolabeling steps. The internalization assay revealed equivalent internalizing properties of [111In]In-TMDI4-2 to [111In]In-TMDI4. In the biodistribution assay, [111In]In-TMDI4-2 exhibited lower blood retention of radioactivity to and comparable tumor uptake with [111In]In-TMDI4, resulting in an improved tumor-to-blood ratio. These in vitro and in vivo results indicate that the PEI4-2 unit largely contributed to the decrease in the blood radioactivity of RICs without compromising the tumor uptake. CONCLUSION MDI4-2 with the PEI4-2 unit exhibited favorable properties for designing RICs with an improved tumor-to-blood ratio.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroki Shimohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Gaonkar RH, Bailly T, Millul J, Mansi R, Harms M, Münch J, Fani M. Improving Affinity while Reducing Kidney Uptake of CXCR4-Targeting Radioligands Derived from the Endogenous Antagonist EPI-X4. ChemMedChem 2025; 20:e202400773. [PMID: 39782735 DOI: 10.1002/cmdc.202400773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The C-X-C chemokine receptor 4 (CXCR4) is highly upregulated in most cancers, making it an ideal target for delivering radiation therapy to tumors. We previously demonstrated the feasibility of targeting CXCR4 in vivo using a radiolabeled derivative of EPI-X4, an endogenous CXCR4 antagonist, named DOTA-K-JM#173. However, this derivative showed undesirable accumulation in the kidneys, which would limit its clinical use. In this study, we identified that removing a positive charge from the peptide sequence significantly reduced renal uptake. We evaluated a series of optimized derivatives lacking this positive charge, in vitro and in vivo in a xenografted athymic nude mice model, after radiolabeling with 177Lu. The most promising derivatives were further assessed in vivo after 68Ga labeling. Among them, we identified DOTA-JM#173 and D-L1-DOTA-JM#173, where the D-Ile1 was replaced by D-Leu1, two optimized derivatives with a lysine residue removed. These two molecules represent the most advanced DOTA-conjugated ligands derived from EPI-X4 for CXCR4-directed theranostic applications, offering enhanced potential for targeted cancer treatment.
Collapse
Affiliation(s)
- Raghuvir H Gaonkar
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Thibaud Bailly
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jacopo Millul
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center Meyerhofstraße 1,89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center Meyerhofstraße 1,89081, Ulm, Germany
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
6
|
Kosmala A, Hasenauer N, Serfling SE, Michalski K, Fröhlich M, Dreher N, Hartrampf PE, Higuchi T, Buck AK, Weich A, Reiter T, Werner RA. C-X-C motif chemokine receptor 4-directed PET signal in the arterial tree is not consistently linked to calcified plaque burden and cardiovascular risk. Theranostics 2025; 15:804-814. [PMID: 39776816 PMCID: PMC11700869 DOI: 10.7150/thno.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose: To establish the extent, distribution and frequency of in-vivo vessel wall [68Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). Methods: 65 oncological patients undergoing [68Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined. We then investigated associations of vessel wall uptake with CAP burden, cardiovascular risk (CVRF and European Society of Cardiology [ESC] SCORE2/SCORE2-OP risk chart) and image noise (determined by coefficient of variation [CoV] from unaffected liver parenchyma). Results: We identified 1292 sites of high focal [68Ga]Ga-PentixaFor uptake (PentixaFor+ sites) in the vessel wall in 65/65 (100%) patients, with concomitant calcification in 385/1292 (29.8%) sites. There were no significant associations between vessel wall uptake and CAP burden (number of PentixaFor+ sites: r ≤ 0.18, P ≥ 0.14; PentixaFor+ TBR: r ≤ 0.08, P ≥ 0.54). The number of PentixaFor+ sites showed a moderate correlation with cardiovascular risk (ESC SCORE2/SCORE2-OP, r = 0.30; number of CVRF, r = 0.26; P = 0.04, respectively), but failed to reach significance for PentixaFor+ TBR (r ≤ 0.18, P ≥ 0.22). In univariable regression analysis, body mass index (odds ratio [OR] 1.08, 95%-confidence interval [CI] 1.02-1.14) and CoV (OR, 1.07; CI, 1.05-1.10) were linked to TBR and the number of PentixaFor+ sites (P < 0.01, respectively), while injected activity was only associated with the latter imaging parameter (OR, 0.99; CI, 0.98-1.00; P = 0.04). In multivariable regression, injected activity (OR, 1.00; CI, 0.99-1.00) and CoV (OR, 1.06; CI, 1.06-1.07) remained significantly associated with the number of PentixaFor+ sites (P < 0.01, respectively). CoV, however, was the only parameter significantly linked to PentixaFor+ TBR on multivariable analysis (OR, 1.02; CI, 1.01-1.03; P < 0.01). Conclusion: On a visual and quantitative level, high focal [68Ga]Ga-PentixaFor uptake in the arterial tree was not consistently linked to vessel wall calcification or cardiovascular risk. Image noise, however, may account for a substantial portion of apparent vessel wall uptake.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Natalie Hasenauer
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Kerstin Michalski
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Fröhlich
- Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Weich
- Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD, United States
- Goethe University Frankfurt, University Hospital, Clinic for Diagnostic and Interventional Radiology and Nuclear Medicine, Department of Nuclear Medicine, Germany
| |
Collapse
|
7
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2025; 52:26-38. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Yang Q, Zhang F, Hao Z, Zhuang J, Huo L. Chemokine Receptor 4-Targeted PET/CT with [ 68Ga]pentixather in Newly Diagnosed Multiple Myeloma: a Comparative Study with [ 68Ga]pentixafor PET/CT. Mol Imaging Biol 2024; 26:986-994. [PMID: 39304574 DOI: 10.1007/s11307-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This study aimed to compare the detection rate of [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT in newly diagnosed multiple myeloma (NDMM) patients, and to explore the value of [68Ga]pentixather PET/CT for tumor load assessment. METHODS Nineteen NDMM Patients were prospectively recruited and underwent both [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT. A positive PET scan was defined as the presence of PET-positive focal bone lesions, paraskeletal disease, extramedullary plasmacytoma, or diffuse bone marrow uptake. Lesion numbers, SUVmax and PET-related tumor burden values were compared. The correlations between PET-related tumor burden and clinical risk stratification were analyzed. RESULTS [68Ga]pentixather PET/CT showed a tendency of higher positive rate compared with [68Ga]pentixafor PET/CT [94.7% (18/19) vs. 78.9% (15/19), p > 0.05]. Among 14 patients with 151 matched focal bone lesions, [68Ga]pentixather PET detected more or equal number of lesions in 13 patients, and demonstrated higher uptake value than 68 Ga-pentixafor PET [SUVmax, 16.8 (9.0, 23.8) vs. 13.4 (6.5, 20.4), p < 0.001]. For PET related-tumor burden, positive correlations of total bone marrow uptake (TBmU) (r = 0.9540, p < 0.0001) and SUVmean of total bone marrow (r = 0.9632, p < 0.0001) in two PET scans were observed. Higher TBmU [7864.9 (5549.2, 11,616.2) vs. 5383.4(4102.7, 11,041.8), p < 0.001], SUVmean of total bone marrow [1.4 (1.1, 2.2) vs. 1.1 (0.7, 2.1), p < 0.001] were demonstrated on [68Ga]pentixather PET than [68Ga]pentixafor PET. And the level of TBmU in [68Ga]pentixather PET and [68Ga]pentixafor PET were both elevated in Durie-Salmon Staging (DSS) III than DSS I (p < 0.01). CONCLUSIONS [68Ga]pentixather PET/CT performed a non-inferior capability for tumor detection compared to [68Ga]pentixafor PET/CT in NDMM patients. [68Ga]pentixather PET/CT can assess tumor load in MM patients and depict a significantly higher PET-related total tumor burden than [68Ga]pentixafor PET/CT.
Collapse
Affiliation(s)
- Qiao Yang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhixin Hao
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Ayati N, Askari E, Fotouhi M, Soltanabadi M, Aghaee A, Roustaei H, Scott AM. Nuclear medicine imaging in non-seminomatous germ cell tumors: lessons learned from the past failures. Cancer Imaging 2024; 24:156. [PMID: 39558421 PMCID: PMC11571929 DOI: 10.1186/s40644-024-00794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
There is an unmet need for a more accurate molecular imaging radiotracer in the field of non-seminomatous germ cell tumors (NSGCT). The clinical problem is that no single imaging modality is able to differentiate teratoma from necrotic tissue in NSGCTs, which the nuclear medicine techniques are no exception. The exponential growth in the list of potentially promising radiotracers may hold promise in the future for imaging of NSGCTs. Here, we have reviewed the past efforts and potential future advances in this field.
Collapse
Affiliation(s)
- Narjess Ayati
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Maryam Fotouhi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masume Soltanabadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atena Aghaee
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Hesamoddin Roustaei
- Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Roustaei H, Vosoughi H, Askari E, Aziz Kalantari B, Norouzbeigi N, Anvari K, Beheshti M, Aryana K. [ 68 Ga]Ga-CXCR4 PET/CT imaging in high-grade glioma for assessment of CXCR4 receptor expression. Eur J Radiol 2024; 180:111694. [PMID: 39213763 DOI: 10.1016/j.ejrad.2024.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Gliomas account for 75 % of primary malignant CNS tumors. High-grade glioma (CNS WHO grades 3 and 4) have an unfavorable treatment response and poor outcome. CXCR4 is a G protein-coupled receptor that plays an important part in the signaling pathway between cancer cells and tumor microenvironment. CXCR4 overexpression has been shown in a variety of cancers. In this study, we evaluate the potential value of [68Ga]Ga-Pentixafor as a PET/CT CXCR4-probe for in vivo assessment of CXCR4 expression in patients with high-grade glioma and its correlation with tumor grade. MATERIALS AND METHODS [68Ga]Ga-CXCR4 PET/CT was performed in the prospective single-center study in treatment-naïve biopsy-proven patients with high-grade glioma. The acquired images were analyzed qualitatively and semi-quantitatively. RESULT A total of 26 patients (mean age: 53.3±14.4 years, 11 women, 15 men) were enrolled. CNS WHO grade 3 pathology was seen in 19 % (5/26) of the sample. The patient-based sensitivity of 68Ga-CXCR4 was 96.2 %. Overall, 28 pathologic lesions were detected, leading to a lesion-based sensitivity of 96.4 %. The median (IQR) SUVmax of grade 4 lesions was substantially greater than the grade 3(3.03(2.5-3.7) vs. 1.51(1.2-1.8), p = 0.0145).). The highest tracer activity of organs -beside bladder as the main excretion reservoir-was in lymphoid tissue of Waldeyer's ring (mean SUVmax: 7.41), and spleen (mean SUVmax: 6.62). CONCLUSION In conclusion, this new application for [68Ga]Ga-Pentixafor PET tracer exhibits excellent visual and semi-quantitative diagnostic properties. Further studies are warranted.
Collapse
Affiliation(s)
- Hessamoddin Roustaei
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Habibeh Vosoughi
- Nuclear Medicine Department, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nasim Norouzbeigi
- Nuclear Medicine Department, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kamran Aryana
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Liebich A, Bundschuh RA, Pfob CH, Kircher M, Wienand G, Raake P, Nekolla SG, Schottelius M, Higuchi T, Rieger M, Lapa C. [ 99mTc]-PentixaTec SPECT/CT for Imaging of Chemokine Receptor 4 Expression After Myocardial Infarction. Circ Cardiovasc Imaging 2024; 17:e016992. [PMID: 39534974 DOI: 10.1161/circimaging.124.016992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Accumulation of CXCR4 (C-X-C motif chemokine receptor 4)-positive immune cells after acute myocardial infarction (AMI) can be visualized by positron emission tomography. For a broader clinical application, there is a need for CXCR4-directed radiotracers labeled with isotopes that can be used with single-photon emission computed tomography (SPECT). We report on the detection of CXCR4 expression after AMI in humans using the novel tracer [99mTc]-PentixaTec. METHODS In this retrospective analysis, 9 patients with AMI after mechanical revascularization underwent myocardial inflammation imaging with [99mTc]-PentixaTec SPECT/computed tomography and rest perfusion SPECT imaging. Tracer uptake in the infarcted area, spleen, bone marrow, and blood pool were used for semiquantitative analysis and calculation of signal-to-background ratios. The extent and intensity of SPECT-derived inflammatory changes were compared with serological markers and perfusion defects. RESULTS CXCR4-directed SPECT was positive in all patients. Increased CXCR4 expression was only detected in areas with diminished perfusion corresponding to the affected vessel in coronary angiography, with a signal-to-background ratio (infarcted area-to-blood pool) of 2.36±0.74. Uptake in bone marrow and spleen showed a significant correlation with CXCR4 expression in the infarcted areas (r=0.73 and P=0.03 for spleen and r=0.81 and P=0.008 for bone marrow, respectively). The extent and intensity of SPECT-derived inflammatory changes showed no significant association with serum troponin, CK (creatine kinase), leukocyte, or CRP (C-reactive protein) levels. CONCLUSIONS This is the first report of in vivo CXCR4 imaging after AMI using a 99mTc-labeled tracer. Increased CXCR4 expression was observed locally in the infarcted region and was related to a systemic inflammatory response in the reticuloendothelial system. This proof-of-concept investigation demonstrates the general feasibility of evaluating the inflammation-related CXCR4 expression in the myocardium after AMI using conventional scintigraphy or SPECT and might, thus, broaden its worldwide application in clinical practice.
Collapse
Affiliation(s)
- Alessandro Liebich
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| | - Christian H Pfob
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| | - Philip Raake
- Cardiology, Faculty of Medicine (P.R., M.R.), University of Augsburg, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Germany (S.G.N.)
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland (M.S.)
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center and Department of Nuclear Medicine, University Hospital Würzburg, Germany (T.H.)
| | - Maximilian Rieger
- Cardiology, Faculty of Medicine (P.R., M.R.), University of Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine (A.L., R.A.B., C.H.P., M.K., G.W., C.L.), University of Augsburg, Germany
| |
Collapse
|
12
|
Enke JS, Bundschuh RA, Claus R, Lapa C. New PET Tracers for Lymphoma. PET Clin 2024; 19:463-474. [PMID: 38969567 DOI: 10.1016/j.cpet.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
While functional imaging with [18F]Fluoro-deoxy-glucose positron emission tomography (PET)/computed tomography is a well-established imaging modality in most lymphoma entities, novel tracers addressing cell surface receptors, tumor biology, and the microenvironment are being developed. Especially, with the emergence of immuno-PET targeting surface markers of lymphoma cells, a new imaging modality of immunotherapies is evolving, which might especially aid in relapsed and refractory disease stages. This review highlights different new PET tracers in indolent and aggressive lymphoma subtypes and summarizes the current state of immuno-PET imaging in lymphoma.
Collapse
Affiliation(s)
- Johanna S Enke
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Pathology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
13
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Wang F, Ma J, Yang L, Hu P, Tang S, Wang J, Li Z. Discovery of novel CXCR4 inhibitors for the treatment of inflammation by virtual screening and biological evaluation. Eur J Med Chem 2024; 275:116605. [PMID: 38885550 DOI: 10.1016/j.ejmech.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.
Collapse
Affiliation(s)
- Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie Ma
- The Central Hospital of Wuhan, Tongji Medical College of HUST, Wuhan, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ping Hu
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siming Tang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Yang T, Shi D, Lin Q, Shen H, Tan H, Liu Y, Shi H, Cheng D. Synthesis, Screening, and Evaluation of Theranostic Molecular CPCR4-Based Probe Targeting CXCR4. Mol Pharm 2024; 21:2415-2424. [PMID: 38606663 DOI: 10.1021/acs.molpharmaceut.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemokines and chemokine receptors are indispensable to play a key role in the development of malignant tumors. As one of the most widely expressed chemokine receptors, chemokine (C-X-C motif) receptor 4 (CXCR4) has been a popular research focus. In most tumors, CXCR4 expression is significantly upregulated. Moreover, integrated nuclide diagnosis and therapy targeting CXCR4 show great potential. [68Ga]Ga-pentixafor, a radioligand targeting CXCR4, exhibits a strong affinity for CXCR4 both in vivo and in vitro. However, [177Lu]Lu-pentixather, the therapeutic companion of [68Ga]Ga-pentixafor, requires significant refinement to mitigate its pronounced hepatic biodistribution. The objective of this study was to synthesize theranostic molecular tracers with superior CXCR4 targeting functions. The Daudi cell line, which highly expressed CXCR4, and the MM.1S cell line, which weakly expressed CXCR4, were used in this study. Based on the pharmacophore cyclo (-d-Tyr-n-me-d-Orn-l-Arg-L-2-NAL-Gly-) (CPCR4) of pentixafor, six tracers were synthesized: [124I]I-1 ([124I]I-CPCR4), [99mTc]Tc-2 ([99mTc]Tc-HYNIC-CPCR4), [124I]I-3 ([124I]I-pentixafor), [18F]AlF-4 ([18F]AlF-NETA-CPCR4), [99mTc]Tc-5 ([99mTc]Tc-MAG3-CPCR4) and [124I]I-6 ([124I]I-pentixafor-Ga) and their radiochemical purities were all higher than 95%. After positron emission tomography (PET)/single-photon emission computed tomography (SPECT) imaging, the [124I]I-6 group exhibited the best target-nontarget ratio. At the same time, comparing the [68Ga]Ga-pentixafor group with the [124I]I-6 group, we found that the [124I]I-6 group had a better target-nontarget ratio and lower uptake in nontarget organs. Therefore, compound 6 was selected for therapeutic radionuclide (131I) labeling, and the tumor-bearing animal models were treated with [131I]I-6. The volume of the tumor site was significantly reduced in the treatment group compared with the control group, and no significant side effects were found. [124I]I-6 and [131I]I-6 showed excellent affinity for targeting CXCR4, and they showed great potential for the integrated diagnosis and treatment of tumors with high CXCR4 expression.
Collapse
Affiliation(s)
- Tingting Yang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dai Shi
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Lin
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Shen
- Department of Applied Chemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hui Tan
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxia Liu
- Department of Applied Chemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongcheng Shi
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dengfeng Cheng
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
17
|
Lindenberg L, Ahlman M, Lin F, Mena E, Choyke P. Advances in PET Imaging of the CXCR4 Receptor: [ 68Ga]Ga-PentixaFor. Semin Nucl Med 2024; 54:163-170. [PMID: 37923671 PMCID: PMC10792730 DOI: 10.1053/j.semnuclmed.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
[68Ga]Ga-PentixaFor, a PET agent targeting CXCR4 is emerging as a versatile radiotracer with promising applications in oncology, cardiology and inflammatory disease. Preclinical work in various cancer cell lines have demonstrated high specificity and selectivity. In human investigations of several tumors, the most promising applications may be in multiple myeloma, certain lymphomas and myeloproliferative neoplasms. In the nononcologic setting, [68Ga]Ga-PentixaFor could greatly improve detection for primary aldosteronism and other endocrine abnormalities. Similarly, atherosclerotic disease and other inflammatory conditions could also benefit from enhanced identification by CXCR4 targeting. Rapidly cleared from the body with a favorable imaging and radiation dosimetry profile that has been already studied in over 1000 patients, [68Ga]Ga-PentixaFor is a worthy agent for further clinical exploration with potential for theranostic applications in hematologic malignancies.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Uniformed Services University of the Health Sciences, Bethesda, MD.
| | - Mark Ahlman
- Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Peter Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
18
|
Pekošak A, Windhorst AD, Poot AJ. Enantioselective Synthesis of Carbon-11-Labeled Amino Acids and Peptides. Methods Mol Biol 2024; 2729:15-27. [PMID: 38006488 DOI: 10.1007/978-1-0716-3499-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiolabeled amino acids (AAs), their derivatives, and peptides are essential radiotracers in nuclear imaging. Despite its potential, the preparation of enantiopure radiopharmaceuticals poses several challenges, demanding a great need for rapid and stereocontrolled reactions. This chapter describes a highly stereoselective carbon-11 alkylation of Schiff bases, to obtain radiolabeled AAs and small peptides. The method uses chiral quaternary ammonium salt phase-transfer catalyst with two alkylating agents, namely, [11C]methyl iodide and [11C]benzyl iodide. This methodology allows the radiolabeling of AAs and peptides with excellent regioselectivity and enantiomeric or diastereomeric excess.
Collapse
Affiliation(s)
- Aleksandra Pekošak
- Department of Radiology and Nuclear Medicine, Radionuclide Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Radionuclide Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, Radionuclide Center, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Rodnick ME, Sollert C, Parr DC, Frigell J, Gagnon K, Scott PJH. Preparation of [ 68Ga]GaCl 3 Using a Cyclotron. Methods Mol Biol 2024; 2729:55-64. [PMID: 38006491 DOI: 10.1007/978-1-0716-3499-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Recent developments in 68Ga-radiopharmaceuticals, including a number of regulatory approvals for clinical use, has created a hitherto unprecedented demand for 68Ga. Reliable access to enough 68Ga to meet growing clinical demand using only 68Ge/68Ga generators has been problematic in recent years. To address this challenge, we have optimized the direct production of 68Ga on a cyclotron via the 68Zn(p,n)68Ga reaction using a liquid target. This protocol describes the cyclotron-based production of [68Ga]GaCl3 implemented at the University of Michigan using a liquid target on GE PETtrace instrumentation. The protocol provides 56 ± 4 mCi (n = 3) of [68Ga]GaCl3 that meets the necessary quality control criteria to use for the preparation of 68Ga-radiopharmaceuticals for human use.
Collapse
Affiliation(s)
| | | | | | - Jens Frigell
- GE Healthcare, GEMS PET Systems, Uppsala, Sweden
| | | | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Hassanzadeh L, Erfani M, Jokar S, Shariatpanahi M. Design of a New 99mTc-radiolabeled Cyclo-peptide as Promising Molecular Imaging Agent of CXCR 4 Receptor: Molecular Docking, Synthesis, Radiolabeling, and Biological Evaluation. Curr Radiopharm 2024; 17:77-90. [PMID: 37921191 DOI: 10.2174/0118744710249305231017073022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION C-X-C Chemokine receptor type 4 (CXCR4) is often overexpressed or overactivated in different types and stages of cancer disease. Therefore, it is considered a promising target for imaging and early detection of primary tumors and metastasis. In the present research, a new cyclo-peptide radiolabelled with 99mTc, 99mTc-Cyclo [D-Phe-D-Tyr-Lys (HYNIC)- D-Arg-2-Nal-Gly-Lys(iPr)], was designed based on the parental LY251029 peptide, as a potential in vivo imaging agent of CXCR4-expressing tumors. METHODS The radioligand was successfully prepared using the method of Fmoc solid-phase peptide synthesis and was evaluated in biological assessment. Molecular docking findings revealed high affinity (binding energy of -9.7 kcal/mol) and effective interaction of Cyclo [D-Phe- D-Tyr-Lys (HYNIC)-D-Arg-2-Nal-Gly-Lys(iPr)] in the binding pocket of CXCR4 receptor (PDB code: 3OE0) as well. RESULT The synthesized peptide and its purity were assessed by both reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectroscopy. High stability (95%, n = 3) in human serum and favorable affinity (Kd = 28.70 ± 13.56 nM and Bmax = 1.896 ± 0.123 fmol/mg protein) in the B16-F10 cell line resulted. Biodistribution evaluation findings and planar image interpretation of mice both showed high affinity and selectivity of the radiotracer to the CXCR4 receptors. CONCLUSION Therefore, the findings indicate this designed radioligand could be used as a potential SPECT imaging agent in highly proliferated CXCR4 receptor tumors.
Collapse
Affiliation(s)
- Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Imaging Technology, Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, (NSTRI), P.O. Box: 14395-836, Tehran, Iran
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
22
|
Konrad M, Rinscheid A, Wienand G, Nittbaur B, Wester HJ, Janzen T, Lapa C, Pfob CH, Schottelius M. [ 99mTc]Tc-PentixaTec: development, extensive pre-clinical evaluation, and first human experience. Eur J Nucl Med Mol Imaging 2023; 50:3937-3948. [PMID: 37597009 PMCID: PMC10611619 DOI: 10.1007/s00259-023-06395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE The clinical success non-invasive imaging of CXCR4 expression using [68 Ga]Ga-PentixaFor-PET warrants an expansion of the targeting concept towards conventional scintigraphy/SPECT with their lower cost and general availability. To this aim, we developed and comparatively evaluated a series of 99mTc-labeled cyclic pentapeptides based on the PentixaFor scaffold. METHODS Six mas3-conjugated CPCR4 analogs with different 4-aminobenzoic acid (Abz)-D-Ala-D-Arg-aa3 linkers (L1-L6) as well as the corresponding HYNIC- and N4-analogs of L6-CPCR4 were synthesized via standard SPPS. Competitive binding studies (IC50 and IC50inv) were carried out using Jurkat T cell lymphoma cells and [125I]FC-131 as radioligand. Internalization kinetics were investigated using hCXCR4-overexpressing Chem-1 cells. Biodistribution studies and small animal SPECT/CT imaging (1 h p.i.) were carried out using Jurkat xenograft bearing CB17/SCID mice. Based on the preclinical results, [99mTc]Tc-N4-L6-CPCR4 ([99mTc]Tc-PentixaTec) was selected for an early translation to the human setting. Five patients with hematologic malignancies underwent [99mTc]Tc-N4-L6-CPCR4 SPECT/planar imaging with individual dosimetry. RESULTS Of the six mas3-conjugated peptides, mas3-L6-CPCR4 (mas3-dap-r-a-Abz-CPCR4) showed the highest CXCR4 affinity (IC50 = 5.0 ± 1.3 nM). Conjugation with N4 (N4-L6-CPCR4) further improved hCXCR4 affinity to 0.6 ± 0.1 nM. [99mTc]Tc-N4-L6-CPCR4 also showed the most efficient internalization (97% of total cellular activity at 2 h) and the highest tumor accumulation (8.6 ± 1.3% iD/g, 1 h p.i.) of the compounds investigated. Therefore, [99mTc]Tc-N4-L6-CPCR4 (termed [99mTc]Tc-PentixaTec) was selected for first-in-human application. [99mTc]Tc-PentixaTec was well tolerated, exhibits a favorable biodistribution and dosimetry profile (2.1-3.4 mSv per 500 MBq) and excellent tumor/background ratios in SPECT and planar imaging. CONCLUSION The successive optimization of the amino acid composition of the linker structure and the N-terminal 99mTc-labeling strategies (mas3 vs HYNIC vs N4) has provided [99mTc]Tc-PentixaTec as a novel, highly promising CXCR4-targeted SPECT agent for clinical application. With its excellent CXCR4 affinity, efficient internalization, high uptake in CXCR4-expressing tissues, suitable clearance/biodistribution characteristics, and favorable human dosimetry, it holds great potential for further clinical use.
Collapse
Affiliation(s)
- Matthias Konrad
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Bernd Nittbaur
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Tilman Janzen
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Christian Helmut Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland.
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland.
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland.
| |
Collapse
|
23
|
Mirshahvalad SA, Manafi-Farid R, Fallahi B, Seifi S, Geramifar P, Emami-Ardekani A, Eftekhari M, Beiki D. Diagnostic value of [ 68 Ga]Ga-Pentixafor versus [ 18 F]FDG PET/CTs in non-small cell lung cancer: a head-to-head comparative study. Nucl Med Commun 2023; 44:803-809. [PMID: 37334548 DOI: 10.1097/mnm.0000000000001719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE In this study, we aimed to compare the diagnostic value of [ 68 Ga]Ga-Pentixafor and [ 18 F]FDG PET/CT in the evaluation of non-small cell lung cancer (NSCLC) patients. METHODS Patients with pathology-proven NSCLC were prospectively included. Patients underwent [ 18 F]FDG and [ 68 Ga]Ga-Pentixafor PET/CT within 1 week. All suspicious lesions were interpreted as benign or malignant, and the corresponding PET/CT semi-quantitative parameters were recorded. A two-sided P -value <0.05 was considered significant. RESULTS Twelve consecutive NSCLC patients (mean age: 60 ± 7) were included. All patients underwent both [ 18 F]FDG and [ 68 Ga]Ga-Pentixafor PET/CT scans with a median interval of 2 days. Overall, 73 abnormal lesions were detected, from which 58 (79%) were concordant between [ 18 F]FDG and [ 68 Ga]Ga-Pentixafor PET/CT. All primary tumors were clearly detectable in both scans visually. Also, [ 68 Ga]Ga-Pentixafor PET/CT demonstrated rather comparable results with [ 18 F]FDG PET/CT scan in detecting metastatic lesions. However, malignant lesions demonstrated significantly higher SUVmax and SUVmean in [ 18 F]FDG PET/CT ( P -values <0.05). Regarding the advantages, [ 68 Ga]Ga-Pentixafor depicted two brain metastases that were missed by [ 18 F]FDG PET/CT. Also, a highly suspicious lesion for recurrence on [ 18 F]FDG PET/CT scan was correctly classified as benign by subsequent [ 68 Ga]Ga-Pentixafor PET/CT. CONCLUSION [ 68 Ga]Ga-Pentixafor PET/CT was concordant with [ 18 F]FDG PET/CT in detecting primary NSCLC tumors and could visualize the majority of metastatic lesions. Moreover, this modality was found to be potentially helpful in excluding tumoural lesions when the [ 18 F]FDG PET/CT was equivocal, as well as in detecting brain metastasis where [ 18 F]FDG PET/CT suffers from poor sensitivity. However, the count statistics were significantly lower.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Babak Fallahi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Sharareh Seifi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Alireza Emami-Ardekani
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Mohammad Eftekhari
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| | - Davood Beiki
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences
| |
Collapse
|
24
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
26
|
Pomykala KL, Hadaschik BA, Sartor O, Gillessen S, Sweeney CJ, Maughan T, Hofman MS, Herrmann K. Next generation radiotheranostics promoting precision medicine. Ann Oncol 2023; 34:507-519. [PMID: 36924989 DOI: 10.1016/j.annonc.2023.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Radiotheranostics is a field of rapid growth with some approved treatments including 131I for thyroid cancer, 223Ra for osseous metastases, 177Lu-DOTATATE for neuroendocrine tumors, and 177Lu-PSMA (prostate-specific membrane antigen) for prostate cancer, and several more under investigation. In this review, we will cover the fundamentals of radiotheranostics, the key clinical studies that have led to current success, future developments with new targets, radionuclides and platforms, challenges with logistics and reimbursement and, lastly, forthcoming considerations regarding dosimetry, identifying the right line of therapy, artificial intelligence and more.
Collapse
Affiliation(s)
- K L Pomykala
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - B A Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - O Sartor
- School of Medicine, Tulane University, New Orleans, USA
| | - S Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - C J Sweeney
- Dana-Farber Cancer Institute, Boston, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - T Maughan
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - M S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - K Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
27
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Orekhov AN. Diagnostics of atherosclerosis: Overview of the existing methods. Front Cardiovasc Med 2023; 10:1134097. [PMID: 37229223 PMCID: PMC10203409 DOI: 10.3389/fcvm.2023.1134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Atherosclerosis was and remains an extremely common and serious health problem. Since the elderly are most at risk of cardiovascular risk, and the average life expectancy is increasing, the spread of atherosclerosis and its consequences increases as well. One of the features of atherosclerosis is its asymptomaticity. This factor makes it difficult to make a timely diagnosis. This entails the lack of timely treatment and even prevention. To date, in the arsenal of physicians, there is only a limited set of methods to suspect and fully diagnose atherosclerosis. In this review, we have tried to briefly describe the most common and effective methods for diagnosing atherosclerosis.
Collapse
|
28
|
Horowitz T, Tabouret E, Graillon T, Salgues B, Chinot O, Verger A, Guedj E. Contribution of nuclear medicine to the diagnosis and management of primary brain tumours. Rev Neurol (Paris) 2023; 179:394-404. [PMID: 36934021 DOI: 10.1016/j.neurol.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Positron emission tomography (PET) is a powerful tool that can help physicians manage primary brain tumours at diagnosis and follow-up. In this context, PET imaging is used with three main types of radiotracers: 18F-FDG, amino acid radiotracers, and 68Ga conjugated to somatostatin receptor ligands (SSTRs). At initial diagnosis, 18F-FDG helps to characterize primary central nervous system (PCNS) lymphomas and high-grade gliomas, amino acid radiotracers are indicated for gliomas, and SSTR PET ligands are indicated for meningiomas. Such radiotracers provide information on tumour grade or type, assist in directing biopsies and help with treatment planning. During follow-up, in the presence of symptoms and/or MRI modifications, the differential diagnosis between tumour recurrence and post-therapeutic changes, in particular radiation necrosis, may be challenging, and there is strong interest in using PET to evaluate therapeutic toxicity. PET may also contribute to identifying specific complications, such as postradiation therapy encephalopathy, encephalitis associated with PCNS lymphoma, and stroke-like migraine after radiation therapy (SMART) syndrome associated with glioma recurrence and temporal epilepsy, originally illustrated in this review. This review summarizes the main contribution of PET to the diagnosis, management, and follow-up of brain tumours, specifically gliomas, meningiomas, and primary central nervous system lymphomas.
Collapse
Affiliation(s)
- T Horowitz
- CNRS, CERIMED, nuclear medicine department, Centrale Marseille, Institut Fresnel, Timone hospital, Aix-Marseille university, AP-HM, Marseille, France
| | - E Tabouret
- Neuro-oncology department, Timone hospital, AP-HM, Marseille, France; Team 8 GlioME, CNRS 7051, Inst. neurophysiopathol, Aix-Marseille university, Marseille, France
| | - T Graillon
- Inserm, MMG, neurosurgery department, Timone hospital, Aix-Marseille university, AP-HM, Marseille, France
| | - B Salgues
- CNRS, CERIMED, nuclear medicine department, Centrale Marseille, Institut Fresnel, Timone hospital, Aix-Marseille university, AP-HM, Marseille, France
| | - O Chinot
- Neuro-oncology department, Timone hospital, AP-HM, Marseille, France
| | - A Verger
- IADI, Inserm, UMR 1254, department of nuclear medicine & nancyclotep imaging platform, université de Lorraine, CHRU-Nancy, Nancy, France
| | - E Guedj
- CNRS, CERIMED, nuclear medicine department, Centrale Marseille, Institut Fresnel, Timone hospital, Aix-Marseille university, AP-HM, Marseille, France.
| |
Collapse
|
29
|
Vorster M. Gallium-68 Labelled Radiopharmaceuticals for Imaging Inflammatory Disorders. Semin Nucl Med 2023; 53:199-212. [PMID: 36270829 DOI: 10.1053/j.semnuclmed.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Inflammation is an important component of several chronic and debilitating diseases that result in significant morbidity and mortality. This is best evidenced within the cardiovascular system where it may manifest as atherosclerosis or myocarditis, and at the extreme end of the spectrum as myocardial infarction, ventricular remodeling, or cardiac failure. Early non-invasive detection and monitoring of inflammation in these and other settings may better guide patient management with resultant improved outcomes. Key role players in inflammation pathophysiology include chemokines, macrophages, neutrophils, fibroblasts, integrins, and reactive oxygen species, amongst others. Examples of receptor expression and over-expression include somatostatin receptors, CXCR4-, folate-, mannose-, TSPO- receptors and secretion of various vascular adhesion molecules (such as VCAM and ICAM). Gallium-68-based PET offers imaging possibilities for nearly all the major pathophysiological role players in inflammation, with mounting recent interest in macrophage differentiation, various forms of receptor expression and secretion of chemokines and vascular adhesion molecules. The advantages in terms of logistics and costs of having generator-produced PET probes available is well known, and a 68Ga-based tracer provides easily translatable theranostic possibilities to especially Lu-177. Some of the more versatile and better validated Ga-68-based inflammation probes include 68Ga-DOTA-TATE/NOC/TOC, 68Ga-NOTA-RGD, 68Ga-CXCR4, 68Ga-citrate and 68Ga-FAPI.
Collapse
Affiliation(s)
- Mariza Vorster
- Nuclear Medicine, Department of Nuclear Medicine at Inkosi Albert Luthuli Hospital, University of KwaZulu-Natal, Berea, KwaZulu-Natal, South Africa.
| |
Collapse
|
30
|
Daniel T, Balouzet Ravinet C, Clerc J, Batista R, Mouraeff Y. Automated synthesis and quality control of [ 68Ga]Ga-PentixaFor using the Gaia/Luna Elysia-Raytest module for CXCR4 PET imaging. EJNMMI Radiopharm Chem 2023; 8:4. [PMID: 36749409 PMCID: PMC9905377 DOI: 10.1186/s41181-023-00187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND [68Ga]Ga-PentixaFor is a promising radiotracer for positron emission tomography imaging of several human tumors overexpressing the chemokine receptor-4 (CXCR4). CXCR4 overexpression has been demonstrated in patients with hematologic malignancies, solid cancers, as well as cardiovascular pathologies of inflammatory origins. However, its radio synthesis is not yet fully developed in France, and existing methods do not use our type of synthesis module. Therefore, we aimed at developing a [68Ga]Ga-PentixaFor synthesis with Gaia/Luna Elysia-Raytest module to use it in clinical purpose. RESULTS 12 syntheses were carried out by varying the temperature conditions and radiolabeling times, and led to choose specific labelling conditions with the Gaia/Luna Elysia-Raytest module: 97 °C, 4 min. The mean synthesis time of the 3 validation runs under good manufacturing practice (GMP) was 24 min 27 s (± 8 s), and the mean radiochemical yield was 87.0% [standard deviation (SD) 6.67%]. Different quality control parameters were also evaluated in accordance with European Pharmacopeia: radiochemical and radionuclidic purity, pH, sterility, stability and endotoxins levels. The average radiochemical purity was 99.1% (SD 0.25%) assessed by instant thin layer chromatography and 99.8% (SD 0.092%) assessed by high pressure liquid chromatography. average [68Ge] breakthrough was 1.48 × 10-5%, under the recommended level of 0.001%. We assessed the stability of the radiotracer up to 4 h at room temperature (no augmentation of the [68Ga] chloride in the final product, i.e. radiochemical purity (RCP) > 98.5%). The endotoxins levels were < 5 EU/mL, and the pH was 6.5 (same for the three syntheses). CONCLUSION The [68Ga]Ga-PentixaFor synthesis process developed on the Gaia/Luna Elysia-Raytest module has fulfilled all acceptance criteria for injectable radiopharmaceutical products regarding the European Pharmacopeia. The radiochemical purity, stability, efficacy, as well as the microbiological quality of the three GMP batches were found to be good. The robustness of the synthesis process may be suitable for multi-dose application in clinical settings.
Collapse
Affiliation(s)
- Thomas Daniel
- Cochin Hospital, Assistance Publique Hôpitaux de Paris, 123 Boulevard de Port Royal, 75014, Paris, France.
| | - Clara Balouzet Ravinet
- grid.50550.350000 0001 2175 4109Cochin Hospital, Assistance Publique Hôpitaux de Paris, 123 Boulevard de Port Royal, 75014 Paris, France
| | - Jérôme Clerc
- grid.50550.350000 0001 2175 4109Cochin Hospital, Assistance Publique Hôpitaux de Paris, 123 Boulevard de Port Royal, 75014 Paris, France
| | - Rui Batista
- grid.50550.350000 0001 2175 4109Cochin Hospital, Assistance Publique Hôpitaux de Paris, 123 Boulevard de Port Royal, 75014 Paris, France
| | - Yvan Mouraeff
- grid.50550.350000 0001 2175 4109Cochin Hospital, Assistance Publique Hôpitaux de Paris, 123 Boulevard de Port Royal, 75014 Paris, France
| |
Collapse
|
31
|
Andrade ADO, Mesquita RA, Gordón-Núñez MA, Alves PM, Nonaka CFW. Immunoexpression of CXCL12 and CXCR4 in Radicular Cysts, Dentigerous Cysts, and Odontogenic Keratocysts. Appl Immunohistochem Mol Morphol 2023; 31:113-120. [PMID: 36449693 DOI: 10.1097/pai.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study was to evaluate the immunoexpression of chemokine CXCL12 and its receptor CXCR4 in radicular cysts (RCs), dentigerous cysts (DCs), and odontogenic keratocysts (OKCs), and to correlate the findings with morphologic parameters of RCs (inflammatory infiltrate and cystic epithelium). Twenty RCs, 20 DCs, and 20 OKCs were submitted to immunohistochemistry. The percentages of cytoplasmic (CXCL12 and CXCR4) and nuclear (CXCR4) staining in epithelial and fibrous capsule cells were determined. RCs and DCs exhibited higher epithelial expression of CXCL12 than OKCs ( P <0.05). The expression of CXCL12 in the fibrous capsule was higher in DCs than in RCs and OKCs ( P <0.05). Higher cytoplasmic expression of CXCR4 was observed in the epithelial lining and fibrous capsule of RCs and DCs compared with OKCs ( P <0.05). In the fibrous capsule, DCs exhibited higher nuclear expression of CXCR4 than OKCs ( P <0.05). No significant differences in the immunoexpression of CXCL12 or CXCR4 were observed according to the morphologic parameters of RCs ( P >0.05). Strong positive correlations were found between cytoplasmic and nuclear expression of CXCR4 in the epithelial lining of RCs and DCs and in the fibrous capsule of all groups ( P <0.05). The results suggest the participation of CXCL12 and CXCR4 in the pathogenesis of RCs, DCs, and OKCs. These proteins may be particularly relevant for the development of odontogenic cysts with less aggressive biological behavior, irrespective of their nature (inflammatory or developmental). In RCs, the expression of CXCL12 and CXCR4 may not be related to the intensity of the inflammatory infiltrate or the status of cystic epithelium.
Collapse
Affiliation(s)
| | - Ricardo Alves Mesquita
- Department of Oral Pathology and Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Pollianna Muniz Alves
- Department of Dentistry, School of Dentistry, State University of Paraíba, Campina Grande, Brazil
| | | |
Collapse
|
32
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
33
|
Roustaei H, Askari E, Barashki S, Anvari K, Sadeghi R, Aryana K. [ 68Ga] Ga-Pentixafor diffuse bilateral Adrenal & Breast uptake in a patient with High-grade Glioma: A note of caution on normal variants. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2023; 11:168-170. [PMID: 37324227 PMCID: PMC10261692 DOI: 10.22038/aojnmb.2022.66223.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
[68Ga] Ga-labeled C-X-C motif receptor4 as a novel radio-ligand using PET/CT has been investigated for tracing various kinds of solid and hematopoietic malignancies in recent years. High-grade Glioma (WHO classification 2016 grade III and IV) shows elevated levels of CXCR4 ligand expression in the affected tumoral cells. Healthy and non-affected organ cells express low-level CXCR4 ligands density. We performed [68Ga] Ga-Pentixafor (Pars-Cixafor™) PET/CT in a patient with high-grade Glioma (anaplastic oligodendroglioma WHO grade III) with no other documented medical condition and history. In addition to the Pentixafor-avid tumor remnant in the PET/CT images, we observed mild symmetrical bilateral uptake in the fibro glandular tissue of the breasts and moderate CXCR4(Pentixafor) avidity in both adrenal glands without any discernable pathology and abnormal density changes in the CT component of the study. Attention should be paid to the interpreting [68Ga] Ga-Pentixafor PET/CT examination and its normal uptakes and variants.
Collapse
Affiliation(s)
- Hessamoddin Roustaei
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Barashki
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Aryana
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain. Int J Mol Sci 2022; 23:ijms232415880. [PMID: 36555521 PMCID: PMC9784940 DOI: 10.3390/ijms232415880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we discuss novel aspects of GRK6 interaction and its impact upon hyperalgesia and inflammatory processes. In this review, we compile important findings concerning GRK6 regulation for a better pathophysiological understanding of the intracellular interaction in the context of inflammation and show clinical implications-for example, the identification of possible therapy goals in the treatment of chronic inflammatory hyperalgesia.
Collapse
|
35
|
Hertz B, Watabe T, Baum RP. Celebrating 80 years anniversary of radioiodine for use in thyroid cancer and perspectives for theranostics. Ann Nucl Med 2022; 36:1007-1009. [DOI: 10.1007/s12149-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
36
|
Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics (Basel) 2022; 12:diagnostics12092135. [PMID: 36140541 PMCID: PMC9497673 DOI: 10.3390/diagnostics12092135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Chemokine receptor CXCR4 is overexpressed in neoplasms and its expression is related to tumour invasion, metastasis and aggressiveness. 68Ga-Pentixafor is used to non-invasively image the expression of CXCR4 in tumours and has been widely used in haematological malignancies. Recent evidence shows that therapies targeting CXCR4 can increase the chemosensitivity of the tumour as well as inhibit tumour metastasis and aggressiveness. 68Ga-Pentixafor has shown promise as an elegant radiotracer to aid in the selection of patients whose tumours demonstrate CXCR4 overexpression and who therefore may benefit from novel therapies targeting CXCR4. In addition, its therapeutic partners 177Lu- and 90Y-Pentixather have been investigated in the treatment of patients with advanced haematological malignancies, and initial studies have shown a good treatment response in metabolically active lesions. 68Ga-Pentixafor in solid tumours complements 18F-FDG by providing prognostic information and selecting patients who may benefit from therapies targeting CXCR4. This review summarises the available literature on the potential applications of 68Ga-Pentixafor in solid tumours.
Collapse
|
37
|
Kraus S, Klassen P, Kircher M, Dierks A, Habringer S, Gäble A, Kortüm KM, Weinhold N, Ademaj-Kospiri V, Werner RA, Schirbel A, Buck AK, Herhaus P, Wester HJ, Rosenwald A, Weber WA, Einsele H, Keller U, Rasche L, Lapa C. Reduced splenic uptake on 68Ga-Pentixafor-PET/CT imaging in multiple myeloma - a potential imaging biomarker for disease prognosis. Am J Cancer Res 2022; 12:5986-5994. [PMID: 35966583 PMCID: PMC9373803 DOI: 10.7150/thno.75847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Beyond being a key factor for tumor growth and metastasis in human cancer, C-X-C motif chemokine receptor 4 (CXCR4) is also highly expressed by a number of immune cells, allowing for non-invasive read-out of inflammatory activity. With two recent studies reporting on prognostic implications of the spleen signal in diffusion-weighted magnetic resonance imaging in patients with plasma cell dyscrasias, the aim of this study was to correlate splenic 68Ga-Pentixafor uptake in multiple myeloma (MM) with clinical parameters and to evaluate its prognostic impact. Methods: Eighty-seven MM patients underwent molecular imaging with 68Ga-Pentixafor-PET/CT. Splenic CXCR4 expression was semi-quantitatively assessed by peak standardized uptake values (SUVpeak) and corresponding spleen-to-bloodpool ratios (TBR) and correlated with clinical and prognostic features as well as survival parameters. Results:68Ga-Pentixafor-PET/CT was visually positive in all MM patients with markedly heterogeneous tracer uptake in the spleen. CXCR4 expression determined by 68Ga-Pentixafor-PET/CT corresponded with advanced disease and was inversely associated with the number of previous treatment lines as compared to controls or untreated smouldering multiple myeloma patients (SUVpeakSpleen 4.06 ± 1.43 vs. 6.02 ± 1.16 vs. 7.33 ± 1.40; P < 0.001). Moreover, reduced splenic 68Ga-Pentixafor uptake was linked to unfavorable clinical outcome. Patients with a low SUVpeakSpleen (<3.35) experienced a significantly shorter overall survival of 5 months as compared to 62 months in patients with a high SUVpeakSpleen >5.79 (P < 0.001). Multivariate Cox analysis confirmed SUVpeakSpleen as an independent predictor of survival (HR 0.75; P = 0.009). Conclusion: These data suggest that splenic 68Ga-Pentixafor uptake might provide prognostic information in pre-treated MM patients similar to what was reported for diffusion-weighted magnetic resonance imaging. Further research to elucidate the underlying biologic implications is warranted.
Collapse
Affiliation(s)
- Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp Klassen
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Gäble
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Klaus Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Valëza Ademaj-Kospiri
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Technical University Munich, School of Medicine, Klinikum rechts der Isar, Clinic and Policlinic for Internal Medicine III, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, Munich, Germany
| | | | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
38
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
39
|
Kirienko M, Biroli M, Pini C, Gelardi F, Sollini M, Chiti A. COVID-19 vaccination, implications for PET/CT image interpretation and future perspectives. Clin Transl Imaging 2022; 10:631-642. [PMID: 35992042 PMCID: PMC9379874 DOI: 10.1007/s40336-022-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
Introduction The present paper aims to systematically review the literature on COVID-19 vaccine-related findings in patients undergoing PET/CT. Methods The search algorithms included the following combination of terms: "PET" OR "positron emission tomography" AND "COVID"; "PET" OR "positron emission tomography" AND "COVID" AND "vaccination"; "PET" OR "positron emission tomography" AND "COVID", AND "autoimmune". Results We selected 17 articles which were assessed for quality and included in the systematic analysis. The most frequent vaccine-related signs on PET/CT were the deltoid [18F]FDG uptake and axillary hypermetabolic lymph nodes, which were described in 8-71% and 7-90% of the patients, respectively. Similarly, frequency of these findings using other tracers than [18F]FDG was greatly variable. This large variability was related to the variability in time elapsed between vaccination and PET/CT, and the criteria used to define positivity. In addition, vaccine-related findings were detected more frequently in young and immunocompetent patients than in elderly and immunocompromised ones. Discussion Therefore, awareness on vaccination status (timing, patient characteristics, and concurrent therapies) and knowledge on patterns of radiopharmaceutical uptake are necessary to properly interpret PET/CT findings.
Collapse
Affiliation(s)
- Margarita Kirienko
- Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy
| | - Matteo Biroli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Cristiano Pini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
40
|
Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines 2022; 10:biomedicines10071680. [PMID: 35884987 PMCID: PMC9313294 DOI: 10.3390/biomedicines10071680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/04/2022] Open
Abstract
Advanced endometrial cancer (EC) lacks therapy, thus, there is a need for novel treatment targets. CXCR4 overexpression is associated with a poor prognosis in several cancers, whereas its inhibition prevents metastases. We assessed CXCR4 expression in EC in women by using IHC. Orthotopic models were generated with transendometrial implantation of CXCR4-transduced EC cells. After in vitro evaluation of the CXCR4-targeted T22-GFP-H6 nanocarrier, subcutaneous EC models were used to study its uptake in tumor and normal organs. Of the women, 91% overexpressed CXCR4, making them candidates for CXCR4-targeted therapies. Thus, we developed CXCR4+ EC mouse models to improve metastagenesis compared to current models and to use them to develop novel CXCR4-targeted therapies for unresponsive EC. It showed enhanced dissemination, especially in the lungs and liver, and displayed 100% metastasis penetrance at all clinically relevant sites with anti-hVimentin IHC, improving detection sensitivity. Regarding the CXCR4-targeted nanocarrier, 60% accumulated in the SC tumor; therefore, selectively targeting CXCR4+ cancer cells, without toxicity in non-tumor organs. Our CXCR4+ EC models will allow testing of novel CXCR4-targeted drugs and development of nanomedicines derived from T22-GFP-H6 to deliver drugs to CXCR4+ cells in advanced EC. This novel approach provides a therapeutic option for women with metastatic, high risk or recurrent EC that have a dismal prognosis and lack effective therapies.
Collapse
|
41
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
42
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Werner RA, Schirbel A, Buck AK, Fassnacht M, Hahner S. Adrenal functional imaging. Presse Med 2022; 51:104114. [PMID: 35131316 DOI: 10.1016/j.lpm.2022.104114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Given the more widespread use of conventional imaging techniques such as magnetic resonance imaging or computed tomography, recent years have witnessed an increased rate of incidental findings in the adrenal gland and those adrenal masses can be either of benign or malignant origin. In this regard, routinely conducted morphological imaging cannot always reliably distinguish between cancerous and noncancerous lesions. As such, those incidental adrenal masses trigger further diagnostic work-up, including molecular functional imaging providing a non-invasive read-out on a sub-cellular level. For instance, [18F]FDG positron emission tomography (PET) as a marker of glucose consumption has been widely utilized to distinguish between malignant vs benign adrenal lesions. In addition, more adrenal cortex-targeted radiotracers for PET or single photon emission computed tomography have entered the clinical arena, e.g., Iodometomidate or IMAZA, which are targeting CYP11B enzymes, or Pentixafor identifying CXCR4 in adrenal tissue. All these tracers are used for diagnosing tumors deriving from the adrenal cortex. Furthermore, radiolabeled MIBG, DOPA, and DOTATOC/-TATE are radiotracers that are quite helpful in detecting pheochromocytomas originating from the adrenal medulla. Of note, after having quantified the retention capacities of the target in-vivo, such radiotracers have the potential to be used as anti-cancer therapeutics by using their therapeutic equivalents in a theranostic setting. The present review will summarize the current advent of established and recently introduced molecular image biomarkers for investigating adrenal masses and highlight its transformation beyond providing functional status towards image-guided therapeutic approaches, in particular in patients afflicted with adrenocortical carcinoma.
Collapse
Affiliation(s)
- Rudolf A Werner
- University Hospital, University of Würzburg, Department of Nuclear Medicine, Germany
| | - Andreas Schirbel
- University Hospital, University of Würzburg, Department of Nuclear Medicine, Germany
| | - Andreas K Buck
- University Hospital, University of Würzburg, Department of Nuclear Medicine, Germany
| | - Martin Fassnacht
- University Hospital, University of Würzburg, Division of Endocrinology and Diabetes, Department of Medicine I, Oberdürrbacher Str. 6, Würzburg 97080, Germany
| | - Stefanie Hahner
- University Hospital, University of Würzburg, Division of Endocrinology and Diabetes, Department of Medicine I, Oberdürrbacher Str. 6, Würzburg 97080, Germany.
| |
Collapse
|
44
|
Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics-Advancement from Peptides to Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200673. [PMID: 35527333 DOI: 10.1002/smll.202200673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Endogenous targeted radiotherapy is emerging as an integral modality to treat a variety of cancer entities. Nevertheless, despite the positive clinical outcome of the treatment using radiolabeled peptides, small molecules, antibodies, and nanobodies, a high degree of hepatotoxicity and nephrotoxicity still persist. This limits the amount of dose that can be injected. In an attempt to mitigate these side effects, the use of nanocarriers such as nanoparticles (NPs), dendrimers, micelles, liposomes, and nanogels (NGs) is currently being explored. Nanocarriers can prolong circulation time and tumor retention, maximize radiation dosage, and offer multifunctionality for different targeting strategies. In this review, the authors first provide a summary of radiation therapy and imaging and discuss the new radiotracers that are used preclinically and clinically. They then highlight and identify the advantages of radio-nanomedicine and its potential in overcoming the limitations of endogenous radiotherapy. Finally, the review points to the ongoing efforts to maximize the use of radio-nanomedicine for efficient clinical translation.
Collapse
Affiliation(s)
- Prachi Desai
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, School for Cardiovascular Diseases (CARIM) and School of oncology (GROW), Maastricht University, Maastricht, 6229 HX, The Netherlands
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Smriti Singh
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Max-Planck-Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
45
|
Toczek J, Riou L. Considerations on PET/MR imaging of carotid plaque inflammation with 68Ga-Pentixafor. J Nucl Cardiol 2022; 29:503-505. [PMID: 32914318 DOI: 10.1007/s12350-020-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Laurent Riou
- Laboratoire Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, UMR UGA - INSERM U1039, Grenoble, France.
| |
Collapse
|
46
|
van den Wyngaert T, de Schepper S, Elvas F, Seyedinia SS, Beheshti M. Positron emission tomography-magnetic resonance imaging as a research tool in musculoskeletal conditions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:15-30. [PMID: 35005878 DOI: 10.23736/s1824-4785.22.03434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared to positron emission tomography/computed tomography (PET/CT), the uptake of PET- magnetic resonance imaging (MRI) has been slow, even more so in clinical practice compared to the (pre-)clinical research setting. However, for applications in musculoskeletal (MSK) research, the combination of PET and MRI into a single modality offers attractive advantages over other imaging modalities. Most importantly, MRI has exquisite soft-tissue detail without the use of contrast agents or ionizing radiation, superior bone marrow visualization, and an extensive spectrum of distinct multiparametric assessment methods. In the preclinical setting, the introduction of PET inserts for small-animal MRI machines has proven to be a successful concept in bringing this technology to the lab. Initial hurdles in quantification have been mainly overcome in this setting. In parallel, a promising range of radiochemistry techniques has been developed to create multimodality probes that offer the possibility of simultaneously querying different metabolic pathways. Not only will these applications help in elucidating disease mechanisms, but they can also facilitate drug development. The clinical applications of PET/MRI in MSK are still limited, but encouraging initial results with novel radiotracers suggest a high potential for use in various MSK conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and inflammation and infection. Further innovations will be required to bring down the cost of PET/MRI to justify a broader clinical implementation, and remaining issues with quality control and standardization also need to be addressed. Nevertheless, PET/MRI is a powerful platform for MSK research with distinct qualities that are not offered by other techniques.
Collapse
Affiliation(s)
- Tim van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium -
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium -
- Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium -
| | - Stijn de Schepper
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Seyedeh S Seyedinia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
47
|
von Hinten J, Kircher M, Dierks A, Pfob CH, Higuchi T, Pomper MG, Rowe SP, Buck AK, Samnick S, Werner RA, Lapa C. Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:801792. [PMID: 39354963 PMCID: PMC11440847 DOI: 10.3389/fnume.2022.801792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 10/03/2024]
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.
Collapse
Affiliation(s)
- Johannes von Hinten
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H. Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
48
|
Salimian F, Nabiuni M, Salehghamari E. Melittin Prevents Metastasis of Epidermal Growth Factor-Induced MDA-MB-231 Cells through The Inhibition of The SDF-1α/CXCR4 Signaling Pathway. CELL JOURNAL 2022; 24:85-90. [PMID: 35279964 PMCID: PMC8918271 DOI: 10.22074/cellj.2022.7626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
Objective Melittin is one of the natural components of bee venom (Apis mellifera), and its anticancer and antimetastatic properties have been well established, but the underlying mechanism remains elusive. The MDA-MB-231 is a triplenegative cell line that is highly aggressive and invasive. Besides, many critical proteins are involved in tumor invasion and metastasis. In this study, we investigated whether melittin inhibits the migration and metastasis of epidermal growth factor (EGF)-induced MDA-MB-231 cells via the suppression of SDF-1α/CXCR4 and Rac1-mediated signaling pathways. Materials and Methods In this experimental study, cells were treated with melittin (0.5-4 μg/ml), and the toxicity of melittin was assessed by the MTT assay. Afterward, the migration assay was conducted to measure the degree of the migration of EGF-induced cells. The western blot technique was performed to analyze the rate of Rac1, p-Rac1, SDF- 1α, and CXCR4 expression in different groups. Results The results demonstrated that melittin markedly suppressed the migration of EGF-induced cells and decreased the expression of p-Rac1, CXCR4, and SDF-1α proteins. Conclusion The results of the present study suggested that the anti-tumor properties of melittin could be through the blocking of the SDF-1α/CXCR4 signaling pathway, which is beneficial for the reduction of tumor migration and invasion.
Collapse
Affiliation(s)
| | - Mohammad Nabiuni
- P.O.Box: 31979-37551Department of Cell and Molecular BiologyFaculty of Biological SciencesKharazmi
UniversityTehranIran
| | | |
Collapse
|
49
|
Nasir NN, Sekar M, Fuloria S, Gan SH, Rani NNIM, Ravi S, Begum MY, Chidambaram K, Sathasivam KV, Jeyabalan S, Dhiravidamani A, Thangavelu L, Lum PT, Subramaniyan V, Wu YS, Azad AK, Fuloria NK. Kirenol: A Potential Natural Lead Molecule for a New Drug Design, Development, and Therapy for Inflammation. Molecules 2022; 27:734. [PMID: 35163999 PMCID: PMC8839644 DOI: 10.3390/molecules27030734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.
Collapse
Affiliation(s)
- Naurah Nabihah Nasir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Arulmozhi Dhiravidamani
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia;
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Abul Kalam Azad
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
| |
Collapse
|
50
|
Liu J, Ren WX, Shu J. Multimodal molecular imaging evaluation for early diagnosis and prognosis of cholangiocarcinoma. Insights Imaging 2022; 13:10. [PMID: 35050416 PMCID: PMC8776965 DOI: 10.1186/s13244-021-01147-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and lethal malignancy with limited therapeutic options. Despite recent advances in diagnostic imaging for CCA, the early diagnosis of CCA and evaluation of tumor invasion into the bile duct and its surrounding tissues remain challenging. Most patients with CCA are diagnosed at an advanced stage, at which treatment options are limited. Molecular imaging is a promising diagnostic method for noninvasive imaging of biological events at the cellular and molecular level in vivo. Molecular imaging plays a key role in the early diagnosis, staging, and treatment-related evaluation and management of cancer. This review will describe different methods for molecular imaging of CCA, including nuclear medicine, magnetic resonance imaging, optical imaging, and multimodal imaging. The main challenges and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wen Xiu Ren
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|