1
|
Moreno-Mariscal C, Moroni F, Pérez-Sánchez J, Mora L, Toldrá F. Optimization of Sequential Enzymatic Hydrolysis in Porcine Blood and the Influence on Peptide Profile and Bioactivity of Prepared Hydrolysates. Int J Mol Sci 2025; 26:3583. [PMID: 40332072 PMCID: PMC12026864 DOI: 10.3390/ijms26083583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The search for new alternatives for the revalorization of porcine blood is crucial due to the large quantities that are annually generated in slaughterhouses. In this study, a sequential enzymatic hydrolysis of pig blood was optimized using different combinations of the enzymes, namely, Alcalase 4.0 L and Protana™ Prime, Flavourzyme 1000 L, and Protamex®, as a sustainable method for obtaining extracts rich in bioactive peptides. All the assayed hydrolysates exhibited different peptide profiles and showed in vitro antioxidant, hypoglycemic, and anti-inflammatory activity, although their values differed significantly depending on the type of hydrolysis in ABTS, FRAP, and ORAC assays, as well as in the determination of the inhibitory activity of DPP-IV, NEP, TACE, and MGL enzymes. The hydrolysate obtained by the combination of Alcalase 4.0 L, Flavourzyme 1000 L, and Protana™ Prime (AFPP) resulted in the highest hydrolysis degree (33.39 ± 0.98%), and its peptide profile reflected a higher amount of peptides < 3 kDa. This hydrolysate also obtained significantly higher values for ABTS and the inhibition of TACE and MGL. However, APP2 stood out in NEP inhibition (79.39 ± 3.91%), while APPP was notable for DPP-IV inhibition (43.02 ± 1.39%). The analysis of the hydrolysates using mass spectrometry in tandem allowed for the identification of those sequences that are potentially responsible for the biological activities determined, which were characterized using in silico bioinformatic tools. The results show the potential of using sequential enzymatic hydrolysis in porcine blood to obtain multifunctional peptides.
Collapse
Affiliation(s)
- Cristina Moreno-Mariscal
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain; (C.M.-M.); (F.T.)
| | - Federico Moroni
- Instituto de Acuicultura Torre de la Sal (IATS-CSI), 12595 Ribera de Cabanes, Spain; (F.M.); (J.P.-S.)
| | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal (IATS-CSI), 12595 Ribera de Cabanes, Spain; (F.M.); (J.P.-S.)
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain; (C.M.-M.); (F.T.)
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain; (C.M.-M.); (F.T.)
| |
Collapse
|
2
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
3
|
Wu D, Cheng M, Yi X, Xia G, Liu Z, Shi H, Shen X. Effects of Mactra chinenesis Peptides on Alcohol-Induced Acute Liver Injury and Intestinal Flora in Mice. Foods 2024; 13:1431. [PMID: 38790731 PMCID: PMC11119424 DOI: 10.3390/foods13101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.
Collapse
Affiliation(s)
- Dong Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ming Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
4
|
Hoffmann RG, Moraes GP, da Silva CB, Daroit DJ. Enzymatic processing of animal by-products: production of antioxidant hydrolysates with Bacillus sp. CL18 crude protease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26737-26746. [PMID: 38456978 DOI: 10.1007/s11356-024-32819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Protein hydrolysates might display diverse bioactivities with potential relevance to human and animal health and food technology. Enzymatic hydrolysis of agro-industrial by-products is increasingly focused. In this study, a crude protease from Bacillus sp. CL18 was applied to obtain antioxidant protein hydrolysates from porcine, bovine, poultry, and fish by-products. The crude enzyme hydrolyzed all the twelve investigated by-products, as detected by increased soluble protein contents after 4 h of proteolysis. Hydrolysates exhibited higher radical-scavenging, Fe2+-chelating and reducing power capacities than non-hydrolyzed by-products. Hydrolysis times (0-8 h) and enzyme-to-substrate (E/S) ratios (384, 860, and 1,400 U/g) were assessed to produce antioxidant bovine lung hydrolysates. The highest E/S ratio accelerated both hydrolysis and increases in antioxidant activities; however, it did not result in bioactivities higher than hydrolysates obtained with the intermediate E/S ratio. Optimal antioxidant activities could be reached after 6 h of hydrolysis using 860 U/g. Animal by-products are interesting sources of bioactive protein hydrolysates, which could be produced with a non-commercial bacterial protease. This might represent a promising strategy for the valorization of animal by-products generated in large amounts by the agri-food sector.
Collapse
Affiliation(s)
- Rubia Godoy Hoffmann
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Gabriela Poll Moraes
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Carolina Becker da Silva
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil.
| |
Collapse
|
5
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Ozturk-Kerimoglu B, Heres A, Mora L, Toldrá F. Antioxidant peptides generated from chicken feet protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7207-7217. [PMID: 37347843 DOI: 10.1002/jsfa.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND As major industrial poultry by-products, chicken feet are considered as notable sources of several bioactive molecules. The current work covers the processing of chicken feet proteins as substrates to be hydrolysed by combinations of three commercial enzymes (Alcalase®, Flavourzyme® and Protana® Prime) during different hydrolysis periods and the evaluation of the identified peptides having antioxidant activity after simulated gastrointestinal digestion. RESULTS Enzymatic hydrolysis with Alcalase® and Protana® Prime combination for 4 h resulted in the highest activities. Reversed-phase high-performance liquid chromatographic separation of the purified hydrolysate yielded three active fractions that were further identified by nano-liquid chromatography-tandem mass spectrometry. The bioactivities of over 230 identified peptide sequences were estimated after simulated gastrointestinal digestion, and those peptides with the highest chance of exerting antioxidant activity were selected to be further synthesised and tested. In this sense, the synthesised dipeptides CF and GY showed the highest antioxidant capacity. CF presented IC50 values of 69.63 and 145.41 μmol L-1 in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays, respectively. In contrast, GY IC50 values were 15.27 and 10.06 μmol L-1 in ABTS and ORAC assays, respectively. Significant differences (P < 0.05) were registered between peptides in the same antioxidant assays. CONCLUSION Overall, the findings emphasised the favourable impact of enzymatic hydrolysis with the obtaining of antioxidant peptides from poultry by-products that could be evaluated as a safe and economical source to retard oxidation in food systems. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Alejandro Heres
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - Leticia Mora
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - Fidel Toldrá
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| |
Collapse
|
7
|
López-Pedrouso M, Zaky AA, Lorenzo JM, Camiña M, Franco D. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci 2023; 204:109278. [PMID: 37442015 DOI: 10.1016/j.meatsci.2023.109278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Meat and its by-products offer a rich source of bioactive compounds which have potential applications in both the food and pharmaceutical industries. In this review, we present several extraction methods and report the identification and properties of bioactive peptides. We also examine the challenges and limitations associated with their use in food applications. Enzymatic hydrolysis and fermentation using starts cultures are common methods for generating bioactive peptides from meat proteins. Additionally, natural gastrointestinal digestion can also produce bioactive peptides. However, emerging technologies like high hydrostatic pressure, subcritical extraction and pulsed electric fields can improve hydrolysis and increase the yield of bioactive peptides. Online bioinformatics applications have emerged as an established method for identifying potentially bioactive peptides. These tools reduce the cost and time required for traditional methods of research. Finally, incorporating bioactive peptides into diets for specific purposes such as supporting vulnerable populations like children and the elderly ensures safety and efficacy.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Ahmed A Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mercedes Camiña
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
8
|
Zheng H, Zhao S, Lu Y, Zhang N, Soladoye OP, Zhang Y, Fu Y. Toward the high-efficient utilization of poultry blood: Insights into functionality, bioactivity and functional components. Crit Rev Food Sci Nutr 2023; 64:10069-10088. [PMID: 37366175 DOI: 10.1080/10408398.2023.2220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A large amount of poultry blood is annually generated, and currently underutilized or largely disposed of as waste, resulting in environmental pollution and waste of protein resources. As one of the main by-products during the poultry slaughter process, the produced poultry blood can serve as a promising food ingredient due to its excellent functional properties and abundant source of essential amino acids, bioactive peptides and functional components. This work provides a comprehensive summary of recent research progress in the composition, functional and bioactive properties, as well as the functional components of poultry blood. Furthermore, the main preparation methods of poultry blood-derived peptides and their bioactivities were reviewed. In addition, their potential applications in the food industry were discussed. Overall, poultry blood is characterized by excellent functionalities, including solubility, gelation, foaming, and emulsifying properties. The major preparation methods for poultry blood-derived peptides include enzymatic hydrolysis, ultrasound-assisted enzymatic methods, macroporous adsorbent resins, and subcritical water hydrolysis. Poultry blood-derived peptides exhibit diverse bioactivities. Their metallic off-flavors and bitterness can be improved by exopeptidase treatment, Maillard reaction, and plastein reaction. In addition, poultry blood is also abundant in functional components such as hemoglobin, superoxide dismutase, immunoglobulin, and thrombin.
Collapse
Affiliation(s)
- Hanyuan Zheng
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Shulei Zhao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
9
|
Hu G, Li X, Su R, Corazzin M, Liu X, Dou L, Sun L, Zhao L, Su L, Tian J, Jin Y. Effects of ultrasound on the structural and functional properties of sheep bone collagen. ULTRASONICS SONOCHEMISTRY 2023; 95:106366. [PMID: 36965310 PMCID: PMC10074209 DOI: 10.1016/j.ultsonch.2023.106366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
The study evaluated the effect of an ultrasound-assisted treatment on the structural and functional properties of sheep bone collagen (SBC). The type and distribution of SBC were analyzed by proteome (shotgun) technology combined with liquid chromatography-tandem mass spectrometry. Compared with pepsin extraction, the ultrasound-assisted treatment significantly increased the collagen extraction rate by 17.4 pp (P < 0.05). The characteristic functional groups and structural integrity of collagen extracted by both methods were determined via Fourier transform infrared spectroscopy, ultraviolet absorption spectroscopy, and fluorescence spectroscopy. Circular dichroism spectra revealed that the ultrasound-assisted pretreatment reduced α-helix content by 1.6 pp, β-sheet content by 21.9 pp, and random coils content by 28.4 pp, whereas it increased β-turn content by 51.9 pp (P < 0.05), compared with pepsin extraction. Moreover, ultrasound-assisted treatment collagen had superior functional properties (e.g., solubility, water absorption, and oil absorption capacity) and foaming and emulsion properties, compared with pepsin extraction. Furthermore, the relative content of type I collagen in ultrasound-assisted extracted SBC was highest at 79.66%; only small proportions of type II, VI, X, and XI collagen were present. Peptide activity analysis showed that SBC had potential antioxidant activity, dipeptidyl peptidase 4 inhibitory activity, and angiotensin-converting enzyme inhibitory activity; it also had anticancer, antihypertensive, anti-inflammatory, and immunomodulatory effects.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaotong Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010010, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Xuemin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
10
|
Kamal H, Ali A, Manickam S, Le CF. Impact of cavitation on the structure and functional quality of extracted protein from food sources - An overview. Food Chem 2023; 407:135071. [PMID: 36493478 DOI: 10.1016/j.foodchem.2022.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Increasing protein demands directly require additional resources to those presently and recurrently available. Emerging green technologies have witnessed an escalating interest in "Cavitation Processing" (CP) to ensure a non-invasive, non-ionizing and non-polluting extraction. The main intent of this review is to present an integrated summary of cavitation extraction methods specifically applied to food protein sources. Along with a comparative assessment carried out for each type of cavitation model, protein extraction yield and implications on the extracted protein's structural and functional properties. The basic principle of cavitation is due to the pressure shift in the liquid flow within milliseconds. Hence, cavitation emerges similar to boiling; however, unlike boiling (temperature change), cavitation occurs due to pressure change. Characterization and classification of sample type is also a prime candidate when considering the applications of cavitation models in food processing. Generally, acoustic and hydrodynamic cavitation is applied in food applications including extraction, brewing, microbial cell disruption, dairy processing, emulsification, fermentation, waste processing, crystallisation, mass transfer and production of bioactive peptides. Micro structural studies indicate that shear stress causes disintegration of hydrogen bonds and Van der Waals interactions result in the unfolding of the protein's secondary and/or tertiary structures. A change in the structure is not targeted but rather holistic and affects the physicochemical, functional, and nutritional properties. Cavitation assisted extraction of protein is typically studied at a laboratory scale. This highlights limitations against the application at an industrial scale to obtain potential commercial gains.
Collapse
Affiliation(s)
- Hina Kamal
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Leaders Institute, 76 Park Road, Woolloongabba, Queensland 4102, Australia.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, University Technology Brunei, Jalan Tungku Link Gadong BE1410, Brunei Darussalam
| | - Cheng Foh Le
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| |
Collapse
|
11
|
Chen Y, Jing H, Xiong S, Manyande A, Du H. Comparative Study on Hydrolysis, Physicochemical and Antioxidant Properties in Simulated Digestion System between Cooked Pork and Fish Meat. Foods 2023; 12:foods12091757. [PMID: 37174296 PMCID: PMC10178021 DOI: 10.3390/foods12091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Pork and grass carp are commonly consumed animal protein sources, classified as red meat and white meat, respectively. This study aimed to better understand the differences in digestive behavior, nutrition, and functionality during digestion between these two types of meat after fat removal. The results showed that grass carp was more easily digested than pork, with a higher degree of hydrolysis, a smaller protein particle size, and a greater release of oligopeptides and amino acids (p < 0.05). During gastric digestion, all α-helix structures were destroyed, and the effect of the whole digestion process on the secondary and tertiary structure of pork protein was greater than that of grass carp. The antioxidant properties of the digestive fluids from the two types of meat showed different strengths in various assays, but the correlation analysis revealed that TCA-soluble peptides, random coil content, and particle size significantly influenced both types of meat. These findings provide new insights into the structural state and antioxidant properties of protein in meat digestion, which contribute to our understanding of the nutritional value of pork and grass carp.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hanzhi Jing
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
13
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
14
|
Wang Y, Zhang L, Liao W, Tong Z, Yuan F, Mao L, Liu J, Gao Y. The concentration-, pH- and temperature-responsive self-assembly of undenatured type II collagen: Kinetics, thermodynamics, nanostructure and molecular mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
16
|
|
17
|
van Raamsdonk LWD, Genouel C, Weiner A, Prins TW, Jardy N, Vonsovic S, Barbu IM, Bescond M, Paprocka I, Kwiatek K. Development and application of criteria for classification of hydrolysed proteins in the framework of feed safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1674-1690. [PMID: 35997510 DOI: 10.1080/19440049.2022.2102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In the view of a circular economy, there is an increasing need for (re-)using animal by-products that have a wide range of applications and sufficient safety. Hydrolysates of animal proteins (HPs) are frequently used as feed ingredients. Nevertheless, clear criteria for legal use and methods for monitoring feed applications are not available. Here, a range of methods have been used and evaluated for characterizing a set of 26 samples of hydrolysed proteins, 'hydrolysed' feather meals and processed animal proteins (PAPs), with verification based on an additional set of eight samples. Methods included determination of ash content, sediment (mineral fraction) content, protein content, species identity, solubility, protein solubility, size exclusion chromatography and polyacrylamide gel electrophoresis (SDS-PAGE). After a comparison of results obtained with water and SDS, water was chosen as the solvent for environmental and occupational reasons. Typical HP samples have a protein content higher than 60%, a solubility exceeding 50% and a virtual absence of a mineral fraction. The first discrimination between HPs and PAPs could be based on the absence or presence, respectively, of a mineral fraction. An approach for HP characterization is designed using a Hydrolysation Index (HI) based on the fraction of peptides smaller than 10 kDa, the solubility of the sample and the fraction of soluble proteins. A simplified version (HIs), exclusively based on the fraction of peptides smaller than 10 kDa and the solubility of the sample, shows a trend among the samples highly comparable to HI. Values for HI and HIs exceeding 60% would characterise HPs. Feather meals, which are heat treated instead of treatment by a chemical process of hydrolysation, range among the PAPs and should not be indicated as "hydrolysed." The HIs can be used as an easy parameter for classifying HPs and for legal enforcement.
Collapse
Affiliation(s)
| | | | - Anna Weiner
- National Veterinary Research Institute, Pulawy, Poland
| | - Theo W Prins
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Nelly Jardy
- Service Commun des Laboratoires, Rennes, France
| | | | - Ioana M Barbu
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Araújo-Rodrigues H, Coscueta ER, Pereira MF, Cunha SA, Almeida A, Rosa A, Martins R, Pereira CD, Pintado conceptualisation ME. Membrane fractionation of Cynara cardunculus swine blood hydrolysate: Ingredients of high nutritional and nutraceutical value. Food Res Int 2022; 158:111549. [DOI: 10.1016/j.foodres.2022.111549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
|
19
|
Abril B, Sánchez-Torres EA, Toldrà M, Benedito J, García-Pérez JV. Physicochemical and Techno-Functional Properties of Dried and Defatted Porcine Liver. Biomolecules 2022; 12:biom12070926. [PMID: 35883483 PMCID: PMC9312803 DOI: 10.3390/biom12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Porcine liver has a high nutritional value and is rich in proteins, minerals, and vitamins, making it an interesting co-product to alleviate the growing global demand for protein. The objective of this study was to analyze how the drying and defatting processes of porcine liver affect the physicochemical and techno-functional properties of its proteins. Two drying temperatures (40 and 70 °C) were studied, and dried samples were defatted using organic solvents. The drying process turned out to be an effective method for the stabilization of the protein fraction; however, when the drying temperature was high (70 °C), greater protein degradation was found compared to drying at a moderate temperature (40 °C). Regarding the defatting stage, it contributed to an improvement in certain techno-functional properties of the liver proteins, such as the foaming capacity (the average of the dried and defatted samples was 397% higher than the dried samples), with the degree of foaming stability in the liver dried at 40 °C and defatted being the highest (13.76 min). Moreover, the emulsifying capacity of the different treatments was not found to vary significantly (p > 0.05). Therefore, the conditions of the drying and defatting processes conducted prior to the extraction of liver proteins must be properly adjusted to maximize the stability, quality, and techno-functional properties of the proteins.
Collapse
Affiliation(s)
- Blanca Abril
- Department of Food Technology, Universitat Politècnica de València, UPV, Camí de Vera, s/n, 46022 Valencia, Spain; (B.A.); (E.A.S.-T.); (J.B.)
| | - Eduardo A. Sánchez-Torres
- Department of Food Technology, Universitat Politècnica de València, UPV, Camí de Vera, s/n, 46022 Valencia, Spain; (B.A.); (E.A.S.-T.); (J.B.)
| | - Mònica Toldrà
- Institute of Food and Agricultural Technology (INTEA), XIA (Catalonian Network on Food Innovation), Escola Politècnica Superior, University of Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain;
| | - Jose Benedito
- Department of Food Technology, Universitat Politècnica de València, UPV, Camí de Vera, s/n, 46022 Valencia, Spain; (B.A.); (E.A.S.-T.); (J.B.)
| | - Jose V. García-Pérez
- Department of Food Technology, Universitat Politècnica de València, UPV, Camí de Vera, s/n, 46022 Valencia, Spain; (B.A.); (E.A.S.-T.); (J.B.)
- Correspondence:
| |
Collapse
|
20
|
Functional and Clean Label Dry Fermented Meat Products: Phytochemicals, Bioactive Peptides, and Conjugated Linoleic Acid. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumer demand for specific dietary and nutritional characteristics in their foods has risen in recent years. This trend in consumer preference has resulted in a strong emphasis in the meat industry and scientific research on activities aimed at improving the nutritional value of fermented meat products. These types of meat products are valued by modern consumers due to their nutritional value resulting, among others, from the method of production. One of the major focuses of the current innovations includes the incorporation of bioactive compounds from plant-based food, in relation to the replacement of additives that may raise concerns among consumers (mainly nitrate and nitrite) as well as the modification of processing conditions in order to increase the content of bioactive compounds. Many efforts have been focused on reducing or eliminating the presence of additives, such as curing agents (nitrite or nitrate) in accordance with the idea of “clean label”. The enrichment of fermented meat products in compounds from the plant kingdom can also be framed in the overall strategies of functional meat products design, so that the meat products may be used as the vehicle to deliver bioactive compounds that may exert benefits to the consumer.
Collapse
|
21
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Investigation of Microbial Hydrolysis of Hen Combs with Bacterial Concentrates. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
When slaughtering and processing poultry, large quantities of meat by-products are generated; therefore, the development of the newest methods for processing secondary raw materials is an urgent problem. Animal proteins have relevant technological applications and are also considered as a potential source of bioactive peptides. Current technologies suggested that protein substances can be isolated from meat co-products through microbial hydrolysis. The purpose of the study was to optimize the technological parameters of microbial hydrolysis of hen combs and to analyze the modification of the microstructure and properties of hydrolyzed by-products under the action of bacterial enzymes. Hen’s combs were hydrolyzed by bifidobacteria and concentrated Propionix liquid. A multifactorial experiment was used to determine the optimal conditions for the hydrolysis process. As a result of the study, multiple regression equations and response surfaces were obtained, which describe the process of hydrolysis of hen combs to identify the optimal hydrolysis parameters. Temperature, amount of bacterial concentrate and hydrolysis period are factors that have a significant impact on the degree of hydrolysis. The results of microscopic and dispersed analysis confirm the good hydrolyzability of combs due to changes in structural components and an increase in the amount of smaller protein particles.
Collapse
|
23
|
Soladoye PO, Juárez M, Estévez M, Fu Y, Álvarez C. Exploring the prospects of the fifth quarter in the 21st century. Compr Rev Food Sci Food Saf 2022; 21:1439-1461. [PMID: 35029308 DOI: 10.1111/1541-4337.12879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
A variable proportion of slaughtered livestock, generally referred to as the fifth quarter, is not part of the edible dressed meat and regarded as animal byproduct. In order for the fifth quarter to play a significant role in the current effort toward a circular bio-based economy, it has to successfully support food security, social inclusivity, environmental sustainability, and a viable economy. The high volume of these low-value streams and their nutrient-dense nature can facilitate their position as a very important candidate to explore within the context of a circular bio-based economy to achieve some of the United Nations Sustainable Development Goals (UN-SDGs). While these sources have been traditionally used for various applications across different cultures and industries, it seems evident that their full potential has not yet been exploited, leaving these products more like an environmental burden rather than valuable resources. With innovation and well-targeted interdisciplinary collaborations, the potential of the fifth quarter can be fully realized. The present review intends to explore these low-value streams, their current utilization, and their potential to tackle the global challenges of increasing protein demands while preventing environmental degradation. Factors that limit widespread applications of the fifth quarter across industries and cultures will also be discussed.
Collapse
Affiliation(s)
- Philip O Soladoye
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
24
|
ZININA O, MERENKOVA S, REBEZOV M. Analysis of modern approaches to the processing of poultry waste and by-products: prospects for use in industrial sectors. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Maksim REBEZOV
- Vasily Matveyevich Gorbatov Federal Research Center for Food Systems, Russian Federation
| |
Collapse
|
25
|
Borrajo P, Pateiro M, Munekata PE, Franco D, Domínguez R, Mahgoub M, Lorenzo JM. Pork liver protein hydrolysates as extenders of pork patties shelf‐life. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Paula Borrajo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
| | - Paulo E.S. Munekata
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
| | - Mohamed Mahgoub
- Department of Engineering Applied Science University Al Ekar Bahrain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Avd. Galicia n° 4 San Cibrao das Viñas Ourense 32900 Spain
- Área de Tecnología de los Alimentos Facultad de Ciencias de Ourense Universidad de Vigo Ourense 32004 Spain
| |
Collapse
|
26
|
Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M. Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments. PLoS One 2021; 16:e0258445. [PMID: 34695136 PMCID: PMC8544860 DOI: 10.1371/journal.pone.0258445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
Collapse
Affiliation(s)
- Phanthipha Laosam
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Worawan Panpipat
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Manat Chaijan
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
27
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
28
|
Socas-Rodríguez B, Álvarez-Rivera G, Valdés A, Ibáñez E, Cifuentes A. Food by-products and food wastes: are they safe enough for their valorization? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
30
|
Domínguez R, Pateiro M, Munekata PES, McClements DJ, Lorenzo JM. Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules 2021; 26:3984. [PMID: 34210093 PMCID: PMC8272106 DOI: 10.3390/molecules26133984] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/01/2022] Open
Abstract
The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 100 Holdsworth Way, Amherst, MA 01003, USA
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
31
|
Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci 2021; 181:108608. [PMID: 34171788 DOI: 10.1016/j.meatsci.2021.108608] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Large amounts of meat by- and co-products are generated during slaughtering and meat processing, and require rational management of these products for an ecological disposal. Efficient solutions are very important for sustainability and innovative developments create high added-value from meat by-products with the least environmental impact, handling and disposal costs, in its transition to bioeconomy. Some proteins have relevant technological uses for gelation, foaming and emulsification while protein hydrolyzates may contribute to a better digestibility and palatability. Protein hydrolysis generate added-value products such as bioactive peptides with relevant physiological effects of interest for applications in the food, pet food, pharmaceutical and cosmetics industry. Inedible fats are increasingly used as raw material for the generation of biodiesel. Other applications are focused on the development of new biodegradable plastics that can constitute an alternative to petroleum-based plastics. This manuscript presents the latest developments for adding value to meat by- and co-products and discusses opportunities for making meat production and processing more sustainable.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Milagro Reig
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
32
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
33
|
Hemmati F, Bahrami A, Esfanjani AF, Hosseini H, McClements DJ, Williams L. Electrospun antimicrobial materials: Advanced packaging materials for food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Ali AMM, Gullo M, Rai AK, Bavisetty SCB. Bioconservation of iron and enhancement of antioxidant and antibacterial properties of chicken gizzard protein hydrolysate fermented by Pediococcus acidilactici ATTC 8042. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2718-2726. [PMID: 33124041 DOI: 10.1002/jsfa.10898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The poultry industry is one of the fastest growing sectors, and it generates considerable quantities of chicken gizzards (CG) every day. However, due to their hard texture and high microbial load, and due to cultural beliefs, they are not preferred by consumers. Chicken gizzards are a substantial source of proteins, iron, and other nutrients, which can be used effectively to produce nutraceuticals, rich in peptides (antioxidants and antibacterial), bio-iron, essential free amino acids, and fatty acids vital for human health. RESULTS Lactic acid fermentation of CG by Pediococcus acidilactici ATTC 8042 increased the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), azino-bis (3-ethylbenzothiaziline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) by up to 26 times compared with unfermented CG (P < 0.05). The amount of hydrolysis and solvents (ethanol and water) used for extracting protein hydrolysates significantly affected the antioxidant properties. Moreover, fermented CG showed a negligible reduction in bio-iron (2-3%) compared with heat-processed CG (85 °C for 15 min), in which bio-iron was reduced by up to 20.3% (P < 0.05). The presence of unsaturated fatty acids such as C20:4 and C22:4 n-6 indicated a low level of lipid oxidation. CONCLUSION Fermented CG, with its reasonably high antioxidant and antibacterial activity, together with a substantial amount of bio-iron and other nutritional components can serve as a functional food or feed additive to reduce oxidative stress and to treat iron deficiency. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Science, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Sri Charan Bindu Bavisetty
- Department of Fermentation Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
35
|
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules 2021; 11:631. [PMID: 33922830 PMCID: PMC8145060 DOI: 10.3390/biom11050631] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Food-derived bioactive peptides are being used as important functional ingredients for health-promoting foods and nutraceuticals in recent times in order to prevent and manage several diseases thanks to their biological activities. Bioactive peptides are specific protein fractions, which show broad applications in cosmetics, food additives, nutraceuticals, and pharmaceuticals as antimicrobial, antioxidant, antithrombotic, and angiotensin-I-converting enzyme (ACE)-inhibitory ingredients. These peptides can preserve consumer health by retarding chronic diseases owing to modulation or improvement of the physiological functions of human body. They can also affect functional characteristics of different foods such as dairy products, fermented beverages, and plant and marine proteins. This manuscript reviews different aspects of bioactive peptides concerning their biological (antihypertensive, antioxidative, antiobesity, and hypocholesterolemic) and functional (water holding capacity, solubility, emulsifying, and foaming) properties. Moreover, the properties of several bioactive peptides extracted from different foods as potential ingredients to formulate health promoting foods are described. Thus, multifunctional properties of bioactive peptides provide the possibility to formulate or develop novel healthy food products.
Collapse
Affiliation(s)
| | - Zohreh Karami
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
36
|
Kamal H, Le CF, Salter AM, Ali A. Extraction of protein from food waste: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2021; 20:2455-2475. [PMID: 33819382 DOI: 10.1111/1541-4337.12739] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.
Collapse
Affiliation(s)
- Hina Kamal
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| | - Cheng Foh Le
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| | - Andrew M Salter
- School of Biosciences, Faculty of Science, University of Nottingham, Loughborough, LE 12 5RD, United Kingdom
| | - Asgar Ali
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| |
Collapse
|
37
|
|
38
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
39
|
Nakamura A, Takahashi H, Sulaiman S, Phraephaisarn C, Keeratipibul S, Kuda T, Kimura B. Evaluation of peptones from chicken waste as a nitrogen source for micro-organisms. Lett Appl Microbiol 2020; 72:408-414. [PMID: 33188703 DOI: 10.1111/lam.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
In this study, chicken peptone was produced by hydrolysing inedible parts derived from chickens using endo-protease and exo-protease. The usefulness of chicken peptone as a nutrient source for bacteria was evaluated in comparison with other commercially produced peptones (animal, soy and casein-derived peptone). Escherichia coli and Bacillus subtilis were used as test strains to determine the effect of peptones from different sources on their growth ability. Both bacteria were successfully cultured in chicken peptone solution, which is similar to peptone solution containing commercial peptones apart from animal peptone. In chemical analysis, chicken peptone contained 12·0% nitrogen; this was similar to the nitrogen content from other commercial peptone sources, except for the 9·0% nitrogen found in soy peptones. The molecular weight of the peptone was determined by gel filtration chromatography, and those of all peptone, except animal-derived peptone, were found to be <5000 Da. In addition, when B. subtilis was cultured in a medium containing chicken peptone, it was shown that the protease activity was highest as compared with other commercial peptones. From these results, it is suggested that chicken peptone can be utilized for microbial culture, and this is an effective method to reuse chicken waste.
Collapse
Affiliation(s)
- A Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - H Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - S Sulaiman
- Research and Development Center, Betagro Group, Klong Luang, Pathumthani, Thailand
| | - C Phraephaisarn
- Research and Development Center, Betagro Group, Klong Luang, Pathumthani, Thailand
| | - S Keeratipibul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - T Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - B Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
40
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12842-12855. [PMID: 32157886 DOI: 10.1021/acs.jafc.9b08297] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, or antithrombotic activity, among others. This manuscript is reviewing the recent advances on enzymatic mechanisms for the hydrolysis of proteins from foods of animal origin, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive peptides through advanced proteomic tools, and the assessment of bioactivity and its beneficial effects. Specific applications in fermented and/or ripened foods where a significant number of bioactive peptides have been reported with relevant in vivo physiological effects on laboratory rats and humans as well as the hydrolysis of animal food proteins for the production of bioactive peptides are also reviewed.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Marta Gallego
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Milagro Reig
- Instituto de Ingenierı́a de Alimentos para el Desarrollo, Universitat Politècnica de Valencia, 46022 Valencia, Valencia, Spain
| | - María-Concepción Aristoy
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| |
Collapse
|
41
|
López-Pedrouso M, Borrajo P, Amarowicz R, Lorenzo JM, Franco D. Peptidomic analysis of antioxidant peptides from porcine liver hydrolysates using SWATH-MS. J Proteomics 2020; 232:104037. [PMID: 33152503 DOI: 10.1016/j.jprot.2020.104037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/20/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
There is a growing interest in the production and identification of bioactive peptides as health-promoting agents. A relevant method to produce biopeptides is enzymatic hydrolysis from protein-rich meat by-products. Pork liver proved to be a good source of protein (18.54%) with a low-fat content (3.38%). After hydrolysis at different times (4,6,8 and 10 h) with Alcalase, relevant amino acids such as hydrophobic (leucine, valine and isoleucine) and aromatic (tyrosine and phenylalanine) involved in antioxidant capacity were strongly increased. For the peptidomic analysis, a novel technique called sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used. Regarding the effect of hydrolysis time, PCA demonstrated a great differentiation among the peptidomic pattern. Fifty-one peptides were correlated with antioxidant activity measured by DPPH, ABTS, FRAP and ORAC assays. SWATH-MS allowed the identification and quantification of six peptides from trypsinogen, ferritin, keratin, carboxylic ester hydrolase and globin domain-containing protein as potential antioxidant compounds. SIGNIFICANCE: The pork liver tissue contains a substantial amount of proteins whose enzymatic hydrolysis might generate antioxidant peptides. The bioactive peptides from pork liver would contribute to harnessing by-products of the swine industry as well as added-value products will be produced. The antioxidant activity of the mixtures revealed potential antioxidant peptides which could be used in the development of nutraceutical and functional food products.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Paula Borrajo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-468, Poland
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain.
| |
Collapse
|
42
|
Optimization of Ultrafiltration Membrane Separation Technology and Characterization of Peptides from Bovine Bone Marrow. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. BIORESOURCE TECHNOLOGY 2020; 312:123575. [PMID: 32521468 DOI: 10.1016/j.biortech.2020.123575] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 05/15/2023]
Abstract
The need to increase circularity of industrial systems to address limited resources availability and climate change has triggered the development of the food waste biorefinery concept. However, for the development of future sustainable industrial processes focused on the valorisation of food waste, critical aspects such as (i) the technical feasibility of the processes at industrial scale, (ii) the analysis of their techno-economic potential, including available quantities of waste, and (iii) a life cycle-based environmental assessment of benefits and burdens need to be considered. The goal of this review is to provide an overview of food waste valorisation pathways and to analyse to which extent these aspects have been considered in the literature. Although a plethora of food waste valorisation pathways exist, they are mainly developed at lab-scale. Further research is necessary to assess upscaled performance, feedstock security, and economic and environmental assessment of food waste valorisation processes.
Collapse
Affiliation(s)
- Carla Caldeira
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Anestis Vlysidis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Gianluca Fiore
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Valeria De Laurentiis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Giuseppe Vignali
- University of Parma, Department of Engineering and Architecture, Viale delle Scienze 181/A, 43124 Parma, Italy
| | - Serenella Sala
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy.
| |
Collapse
|
44
|
Anzani C, Boukid F, Drummond L, Mullen AM, Álvarez C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Res Int 2020; 137:109575. [PMID: 33233187 DOI: 10.1016/j.foodres.2020.109575] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
An exponential growth in the global demand for high quality proteins over the next 20 years is expected, mainly due to global population growth and the increasing awareness toward protein rich foods for more nutritive diets. Coupled with this, is the pressing need for more sustainable approaches within a bio-economy mindset. Although meat production is expected to increase to address this rising demand, a better use of the currently available resources provided by the food, and specially, the meat industry is required. In this regard, despite the high-quality proteins and other nutrients found in meat co-products; they are currently underused and their valorisation needs to be revisited. Also, emerging protein sources need to be investigated to alleviate the environmental pressure coming from the meat industry. In this review, the main focus was attributed to (i) the current and forthcoming challenges for the use of meat co-products as meat replacers to produce a new range of meat derived products (with high nutritional value, improved technological properties and better consumer acceptance); (ii) their performance regarding to the non-animal origin proteins currently used as meat protein replacers; and (iii) the allergenicity of the proteins that might fall into the category of novel protein sources.
Collapse
Affiliation(s)
- Cecilia Anzani
- Ashtown Teagasc Food Research Centre, Dept. of Sensory Science and Food Quality, Dublin 15, Ireland
| | - Fatma Boukid
- Food and Drug Department, University of Parma, via Parco Area delle Scienze 49/a, 43124 Parma, Italy
| | - Liana Drummond
- Ashtown Teagasc Food Research Centre, Dept. of Sensory Science and Food Quality, Dublin 15, Ireland
| | - Anne Maria Mullen
- Ashtown Teagasc Food Research Centre, Dept. of Sensory Science and Food Quality, Dublin 15, Ireland
| | - Carlos Álvarez
- Ashtown Teagasc Food Research Centre, Dept. of Sensory Science and Food Quality, Dublin 15, Ireland.
| |
Collapse
|
45
|
Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
López-Pedrouso M, Borrajo P, Pateiro M, Lorenzo JM, Franco D. Antioxidant activity and peptidomic analysis of porcine liver hydrolysates using alcalase, bromelain, flavourzyme and papain enzymes. Food Res Int 2020; 137:109389. [PMID: 33233091 DOI: 10.1016/j.foodres.2020.109389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Antioxidant peptides are increasingly being recognized as food additives due to their effects on body human, regulating in vivo oxidative stress against oxidation of lipids and proteins. Meat by-products are rich sources of protein that can be employed for this purpose. Specifically, porcine liver can be used to prepare hydrolysates with antioxidant activity employing proteolytic enzymes such as alcalase, bromelain, papain and flavourzyme. In this study, the antioxidant activity of these four porcine liver hydrolysates was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ((2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonate) (ABTS), Ferric reducing antioxidant power assay (FRAP) and Oxygen radical absorbance capacity assay (ORAC) assays and the identification of bioactive peptides was carried out by SWATH-MS technology. According to the SDS-PAGE pattern, the proteolysis index and the free amino acids amount, the protein degradation was clearly different among the studied enzymes. Indeed, alcalase enzyme produced the release of small peptides, meanwhile flavourzyme produced higher level of free amino acids. The heatmap analysis showed a peptidomic pattern more differentiated for alcalase than for the other enzymes. The peptides most abundant and correlated with antioxidant capacity were APAAIGPYSQAVLVDR from uncharacterized protein, GLNQALVDLHALGSAR, ALFQDVQKPSQDEWGK and LSGPQAGLGEYLFER from ferritin and LGEHNIDVLEGNEQFINAAK from trypsinogen. The production and characterization of biopeptides is a new merging challenge of meat industry.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Paula Borrajo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
47
|
Chicken Combs and Wattles as Sources of Bioactive Peptides: Optimization of Hydrolysis, Identification by LC-ESI-MS 2 and Bioactivity Assessment. Molecules 2020; 25:molecules25071698. [PMID: 32272799 PMCID: PMC7181024 DOI: 10.3390/molecules25071698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2′-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.
Collapse
|
48
|
Evaluation of the Antioxidant and Antimicrobial Activities of Porcine Liver Protein Hydrolysates Obtained Using Alcalase, Bromelain, and Papain. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to make the by-products generated from the porcine industry more valuable, pig livers were used in this trial to obtain protein hydrolysates. Three proteases (alcalase, bromelain, and papain) were utilized for enzymatic hydrolysis with two different durations, 4 and 8 hours. Ultrafiltration process was used for the recovery of the extracts, employing three different membrane pore sizes (30, 10, and 5 kDa). The porcine livers contained considerable amounts of protein (19.0%), considering they are almost composed of water (74.1%). The antioxidant activity of the obtained hydrolysates was investigated using four antioxidant methods (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2-2′-Azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS) radical scavenging activity, ferric reducing antioxidant power assay (FRAP), and oxygen radical absorbance capacity assay (ORAC)). Antibacterial properties were also measured against Gram-negative and Gram-positive bacteria. Results indicated that the three studied factors (type of enzyme, membrane pore size, and time) significantly affected the parameters evaluated. Hydrolysates obtained at 8 hours with alcalase had the best antioxidant properties. The 30 kDa alcalase extracts exhibited the highest DPPH (562 µg Trolox/g), FRAP (82.9 µmol Fe2+/100 g), and ORAC (53.2 mg Trolox/g) activities, while for ABTS the 10 kDa alcalase showed the higher values (1068 mg ascorbic acid/100 g). Concerning the antibacterial activity, 30 kDa hydrolysates obtained with bromelain for 4 hours exhibited the highest antimicrobial capacity, providing an inhibition of 91.7%.
Collapse
|
49
|
Munekata PES, Rocchetti G, Pateiro M, Lucini L, Domínguez R, Lorenzo JM. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Franco D, Munekata PES, Agregán R, Bermúdez R, López-Pedrouso M, Pateiro M, Lorenzo JM. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants (Basel) 2020; 9:E90. [PMID: 31973157 PMCID: PMC7070792 DOI: 10.3390/antiox9020090] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 11/17/2022] Open
Abstract
Fish processing has serious economic and environmental costs in the food supply chain. It is necessary to find new ways to convert fish residue to added-value products, especially for main aquaculture species. In this study, a pulsed electric field (PEF) process for antioxidant extract production from three residues (gills, bones, and heads) of two commercial species (sea bream and sea bass) was tested. Three methods of extraction using two solvents (water and methanol) and a water extraction assisted by PEF were assessed. Chemical and mineral compositions, as well as amino acid profile of the by-products, were determined. In addition, four in vitro antioxidant methods, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), 2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonate radical (ABTS), ferric reducing antioxidant power assay (FRAP), and oxygen radical absorbance capacity assay (ORAC), were used to evaluate the extracts. Antioxidant activity was confirmed by DPPH and ABTS and FRAP tests, obtaining the highest values for residues from the sea bream species. ORAC values were higher in methanol than in water solvent. In general, gills were the residues with the greatest antioxidant activity for the four antioxidant assays employed. For DPPH assay, the extracts of water assisted by PEF from heads, bones, and gills yielded significant increases of 35.8%, 68.6%, and 33.8% for sea bream and 60.7%, 71.8%, and 22.1% for sea bass, respectively, with respect to water extracts. Our results suggest that PEF would be an environmentally friendly and economic choice for antioxidant-extract production from low-value by-products from fish processing.
Collapse
Affiliation(s)
- Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| | - Paulo E. S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| | - Rubén Agregán
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| | - Roberto Bermúdez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (D.F.); (P.E.S.M.); (R.A.); (R.B.); (M.P.)
| |
Collapse
|