1
|
Wu Z, Mo S, Huang Z, Zheng B. Identification of Diagnostically Relevant Biomarkers in Patients with Coronary Artery Disease by Comprehensive Analysis. J Inflamm Res 2024; 17:10495-10513. [PMID: 39654862 PMCID: PMC11627109 DOI: 10.2147/jir.s494438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background Peripheral biomarkers are becoming an important method by which to monitor the progression of coronary artery disease (CAD). Not only are they minimally invasive and early detection, but they can also be used for classification and diagnosis of disease as well as prognostic assessment. Currently, this approach is still in the exploratory stage. The purpose of this research is to determine the diagnostic value and therapeutic potential of the endoplasmic reticulum stress (ERS) genes in CAD. Methods The clinical information and RNA sequence data were obtained from the GEO database and subsequently subjected to a series of optimization and visualization processes using various analytical techniques, including WGCNA, LASSO, SVM-RFE feature selection, random forest (RF), and XGBoost, as well as R software and Cytoscape. Finally, immunofluorescence was used to validate the analysis. Results We identify 6 key ERS differentially expressed genes (ERS-DEGs) (UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3) for constructing diagnostic models. They showed qualified diagnostic ability as biomarkers of CAD within training dataset (AUC = 0.803) and validation dataset (AUC = 0.776 and 0.797). Association analyses showed that peripheral immune cells, immune checkpoint genes and Human Leukocyte Antigen (HLA) genes had characteristic distributions in CAD and were closely related to specific ERS genes. Meanwhile, we found that HSPA1A may involve the MAPK signaling pathway in CAD. Conclusion We constructed an efficient diagnostic model based on 6 key ERS-DEGs and explored their regulatory networks and effects on the CAD immune microenvironment. UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3 are expected to be biomarkers for CAD.
Collapse
Affiliation(s)
- Zimin Wu
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Sisi Mo
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zuyuan Huang
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
2
|
Jayashree K, Senthilkumar GP, Parameswaran S, Vadivelan M. Association of elevated extracellular HSP72 in albuminuria with systemic inflammation and disease progression in type 2 diabetic kidney disease. Clin Biochem 2023; 121-122:110682. [PMID: 37926404 DOI: 10.1016/j.clinbiochem.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Sub-clinical inflammation in hyperglycemia is tied to the pathogenesis of diabetic kidney disease (DKD). Though well known for its immunostimulatory function, the significance of extracellular heat shock protein 72 (eHSP72) in DKD is not well studied. We aimed to determine the association of extracellular HSP72 with systemic inflammation and the progression of DKD, and explore its possible clinical significance in DKD. METHODS 160 type 2 diabetic individuals were enrolled in the study. Their anthropometric data, routine biochemical parameters, urinary renal function parameters, and blood count parameters were estimated. Plasma from patients' blood samples were used to estimate HSP72 and interleukin 1β (IL-1β) using sandwich immunoassays. RESULTS Plasma eHSP72 is elevated in DKD. Pairwise comparisons showed the drastic elevation of eHSP72 in the presence of albuminuria. A significant positive relationship was observed between plasma levels of eHSP72 and IL-1β. eHSP72 levels did not statistically differ between micro and macro-albuminuric DKD. However, it was inversely associated with estimated glomerular filtration rate, the index of disease severity, independent of age, gender, diabetes duration and absolute monocyte count. At a cutoff of 0.52 ng/ml, with sensitivity of 64.1 % and specificity of 69.2 %, plasma eHSP72 differentiated the presence of DKD in type 2 diabetics with statistical significance. CONCLUSION The positive relationship of eHSP72 and IL-1β with worsening DKD likely indicates their participation in immunostimulatory pathways of renal fibrosis. eHSP72 may be closely linked to albuminuria-induced tubular injury and likely contributes to fibrotic changes in the progression of DKD. From our study, we infer the possible clinical significance of eHSP72 as a marker of sub-clinical renal damage in DKD, and the implication of IL-1β-associated mechanisms in DKD progression.
Collapse
Affiliation(s)
- Kuppuswami Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Mehalingam Vadivelan
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
3
|
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D, Agostinelli E. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 2023; 52:106. [PMID: 37772383 PMCID: PMC10558216 DOI: 10.3892/ijmm.2023.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
Collapse
Affiliation(s)
| | | | - Anna Ryabinina
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | | | - Sergey Syatkin
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Sergey Chibisov
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Karina Akhmetova
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Daniil Prokofiev
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation, ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
4
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
5
|
Estébanez B, Amaro-Gahete FJ, Gil-González C, González-Gallego J, Cuevas MJ, Jiménez-Pavón D. Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity. Nutrients 2023; 15:3069. [PMID: 37447395 DOI: 10.3390/nu15133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Exosome release varies depending on the physiological state of the cell, so they could play a fundamental role in obesity, the biggest pandemic in today's societies. The beneficial effects that physical activity has both on weight and cardiovascular parameters may be mediated by exosomes released in response to exercise. Thus, we aimed (I) to study the influence of a 12-week CT intervention on exosome cargo modifications in men with obesity and (II) to determine whether changes in exosomes after the intervention were related to changes in cardiometabolic health parameters in our cohorts. An experimental, controlled design was performed in twelve (nine with valid data) adult male obese patients (mean values: 41.6 years old, 97.6 kg and 32.4 kg/m2) who were randomly divided into a control group (n = 4) and a training group (n = 5), which completed 36 sessions of CT (concurrent training) for 12 weeks. Before and after the training period, cardiometabolic health parameters were evaluated and blood samples to measure exosomes and proteins were drawn. No changes were observed in the levels of any exosomal markers and proteins; however, associations of changes between CD81 and both fat mass and weight, Flot-1 and VO2max, HSP70 and both CRP and left ventricle diastolic diameter or CD14 and leptin were found (all p ≤ 0.05). Although the current CT was not able to clearly modify the exosome cargo, a certain medium to large clinical effect was manifested considering the nature of this study. Moreover, the associations found between the promoted changes in cardiometabolic parameters and exosome-carried proteins could indicate a relationship to be considered for future treatments in patients with obesity.
Collapse
Affiliation(s)
- Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| | - Francisco J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), 18016 Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Cristina Gil-González
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), 11519 Cádiz, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| | - David Jiménez-Pavón
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), 11519 Cádiz, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| |
Collapse
|
6
|
Nagai M, Kaji H. Thermal Effect on Heat Shock Protein 70 Family to Prevent Atherosclerotic Cardiovascular Disease. Biomolecules 2023; 13:biom13050867. [PMID: 37238736 DOI: 10.3390/biom13050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Heat shock protein 70 (HSP70) is a chaperone protein induced by various stresses on cells and is involved in various disease mechanisms. In recent years, the expression of HSP70 in skeletal muscle has attracted attention for its use as a prevention of atherosclerotic cardiovascular disease (ASCVD) and as a disease marker. We have previously reported the effect of thermal stimulation targeted to skeletal muscles and skeletal muscle-derived cells. In this article, we reported review articles including our research results. HSP70 contributes to the improvement of insulin resistance as well as chronic inflammation which are underlying pathologies of type 2 diabetes, obesity, and atherosclerosis. Thus, induction of HSP70 expression by external stimulation such as heat and exercise may be useful for ASCVD prevention. It may be possible to induce HSP70 by thermal stimulus in those who have difficulty in exercise because of obesity or locomotive syndrome. It requires further investigation to determine whether monitoring serum HSP70 concentration is useful for ASCVD prevention.
Collapse
Affiliation(s)
- Masayo Nagai
- Central Research Facility, Aino University, Osaka 567-0012, Japan
| | - Hidesuke Kaji
- Division of Physiology and Metabolism, University of Hyogo, Kobe 651-2197, Japan
| |
Collapse
|
7
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
8
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
9
|
Costa-Beber LC, Hirsch GE, Heck TG, Ludwig MS. Chaperone duality: the role of extracellular and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis. Arch Physiol Biochem 2022; 128:1016-1023. [PMID: 32293198 DOI: 10.1080/13813455.2020.1745850] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 70-kDa heat shock proteins (HSP70) may provide relevant information about the endothelial dysfunction in cardiovascular diseases. Located in the intracellular milieu (iHSP70), they are essential chaperones that inhibit nuclear factor kappa B activation, stimulate nitric oxide production and superoxide dismutase activity, and inhibit apoptosis. However, under stressful conditions, HSP70 can be released into the extracellular medium (eHSP70) and act as an inflammatory mediator. Although studies have reported the vasoprotective role of iHSP70, the evidence regarding eHSP70 is contradictory. eHSP70 can activate NFκB and activator protein-1, thus stimulating the release of inflammatory cytokines and production of reactive oxygen species. Due to the antagonistic nature of HSP70 according to its location, the eHSP70/iHSP70 ratio (Heck index) has been proposed as a better marker of inflammatory status; however, more studies are required to confirm this hypothesis. Therefore, this review summarises studies that, together, describe the role of HSP70 in endothelial dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| |
Collapse
|
10
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
11
|
Tanguay RM, Hightower LE. Former CSSI President Tangchun Wu elected to the Chinese Academy of Engineering. Cell Stress Chaperones 2022; 27:1-2. [PMID: 34985715 PMCID: PMC8821756 DOI: 10.1007/s12192-021-01250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/03/2022] Open
|
12
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
13
|
Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. Heat Shock Proteins: Connectors between Heart and Kidney. Cells 2021; 10:cells10081939. [PMID: 34440708 PMCID: PMC8391307 DOI: 10.3390/cells10081939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney–heart axis.
Collapse
Affiliation(s)
- Carolina Victória Cruz Junho
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| | - Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ainhoa Rodriguez de Yurre
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| |
Collapse
|
14
|
Patients with Coronary Artery Disease Have Lower Levels of Antibody to Heat-Stressed Fibroblast Derived Proteins, versus Normal Subjects. Cardiovasc Ther 2021; 2021:5577218. [PMID: 34239605 PMCID: PMC8225444 DOI: 10.1155/2021/5577218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cellular stress response plays an important role in the pathophysiology of coronary artery disease (CAD). Inhibition of cellular stress may provide a novel clinical approach regarding the diagnosis and treatment of CAD. Fibroblasts constitute 60-70% of cardiac cells and have a crucial role in cardiovascular function. Hence, the aim of this study was to show a potential therapeutic application of proteins derived from heat-stressed fibroblast in CAD patients. Fibroblasts were isolated from the foreskin and cultured under heat stress conditions. Surprisingly, 1.06% of the cells exhibited a necrotic death pattern. Furthermore, heat-stressed fibroblasts produced higher level of total proteins than control cells. In SDS-PAGE analysis, a 70 kDa protein band was observed in stressed cell culture supernatants which appeared as two acidic spots with close pI in the two-dimensional electrophoresis. To evaluate the immunogenic properties of fibroblast-derived heat shock proteins (HSPs), the serum immunoglobulin-G (IgG) was measured by ELISA in 50 CAD patients and 50 normal subjects who had been diagnosed through angiography. Interestingly, the level of anti-HSP antibody was significantly higher in non-CAD individuals in comparison with the patient's group (p < 0.05). The odds ratio for CAD was 5.06 (95%CI = 2.15‐11.91) in cut-off value of 30 AU/mL of anti-HSP antibody. Moreover, ROC analysis showed that anti-HSP antibodies had a specificity of 74% and a sensitivity of 64%, which is almost equal to 66% sensitivity of exercise stress test (EST) as a CAD diagnostic method. These data revealed that fibroblast-derived HSPs are suitable for the diagnosis and management of CAD through antibody production.
Collapse
|
15
|
Liu S, Jiang H, Chang C, Rui Y, Zuo Z, Liu T, Song Y, Zhao F, Chen Q, Geng J. Effects and Mechanism of Noninvasive Positive-Pressure Ventilation in a Rat Model of Heart Failure Due to Myocardial Infarction. Med Sci Monit 2021; 27:e928476. [PMID: 33609350 PMCID: PMC7903847 DOI: 10.12659/msm.928476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Impaired heart function induced by myocardial infarction is a leading cause of chronic heart failure (HF). This study aimed to investigate the effects and mechanism of noninvasive positive-pressure ventilation (NIPPV) in a rat model of HF due to myocardial infarction. MATERIAL AND METHODS To explore the therapeutic effect and mechanism of NIPPV on acute myocardial infarction-induced HF, we established a rat model of HF by ligating the anterior descending branch of the left coronary artery and confirmed by ultrasonic cardiography and brain natriuretic peptide 45 detection. RESULTS The levels of heat-shock protein (HSP)-70 increased and matrix metalloproteinase (MMP)-2, MMP-9, and tumor necrosis factor (TNF)-alpha decreased in the group that received NIPPV treatment compared with the control group. In addition, the histopathologic results showed less severe inflammatory infiltration and a smaller area of myocardial fibrosis in the NIPPV treatment group. CONCLUSIONS In a rat model of HF due to myocardial infarction, NIPPV resulted in increased levels of HSP70 and reduced expression of MMP2, MMP9, and TNF-alpha and reduced myocardial neutrophil infiltration and fibrosis. Taken together, we showed that NIPPV is an effective treatment for HF induced by myocardial infarction by inhibiting the release of inflammatory factors and preventing microvascular embolism.
Collapse
Affiliation(s)
- Shan Liu
- Tianjin Cardiovascular Diseases Institute, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - He Jiang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Chao Chang
- Cardiac Surgery Intensive Care Unit, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Yuhua Rui
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Zhigang Zuo
- Department of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Ting Liu
- Tianjin Cardiovascular Diseases Institute, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Yanqiu Song
- Tianjin Cardiovascular Diseases Institute, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Fumei Zhao
- Tianjin Cardiovascular Diseases Institute, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Jie Geng
- Cardiac Intensive Care Unit, Tianjin Chest Hospital, Tianjin, China (mainland)
| |
Collapse
|
16
|
Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res 2020; 160:105162. [DOI: 10.1016/j.phrs.2020.105162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
17
|
Takai H, Furuse N, Ogata Y. Anti-heat shock protein 70 levels in gingival crevicular fluid of Japanese patients with chronic periodontitis. J Oral Sci 2020; 62:281-284. [PMID: 32493865 DOI: 10.2334/josnusd.19-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Periodontitis is an inflammatory disease involving complex tripartite cross-interactions among bacterial, host and environment factors. Heat shock proteins (Hsps) are a protein family produced in response to stress conditions. Hsps protect cells under adverse circumstances such as infection, inflammation and disease. One of the causes of periodontal disease is thought to be an imbalance in the expression of Hsps and anti-Hsp antibodies. Hsps are classified according to their molecular weight, and one of the major ones is Hsp70. In the present study, enzyme-linked immunosorbent assay was used to measure the levels of anti-Hsp70 antibody in gingival crevicular fluid (GCF) from two gingival sulci in each of nine patients with chronic periodontitis (CP): one healthy control (HC) site with a probing pocket depth (PPD) of ≤3 mm and one CP site with a PPD of >5 mm. Anti-Hsp70 antibody levels in GCF were higher at HC sites than at CP sites. Moreover, the anti-Hsp70 antibody levels were found to increase after initial periodontal therapy at both HC and CP sites. These results suggest an association of anti-Hsp70 antibody with periodontitis.
Collapse
Affiliation(s)
- Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Nobuhisa Furuse
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
18
|
Zhang Y, Zhao H, Liu B, Li L, Zhang L, Bao M, Ji X, He X, Yi J, Chen P, Lu C, Lu A. Low Level Antibodies Against Alpha-Tropomyosin Are Associated With Increased Risk of Coronary Heart Disease. Front Pharmacol 2020; 11:195. [PMID: 32174839 PMCID: PMC7056748 DOI: 10.3389/fphar.2020.00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Natural autoantibodies have been implicated to play a key role in the pathogenesis of coronary heart disease (CHD) because they augment autoimmune activation. The aim of this study was to identify novel specific autoantibodies of CHD, and analyze the relationship between their levels and CHD risk indicators. Approach and Results First, clinical data and sera from CHD patients were collected. Then, one protein microarray containing 37 proteins that represent candidate autoantigens was developed. The arrays were used to profile autoantibodies in randomly selected sera from 35 samples (20 CHD patients, and 15 healthy controls). After that, microarray data were analyzed and autoantibodies for CHD were screened out. Then, ELISA detection was conducted to validate the differentiable autoantibodies using larger numbers of serum samples (131 CHD patients, and 131 healthy controls). Finally, the associations of antibodies with CHD risk indicator parameters were assessed. Inter-group comparison by microarray indicated that three CHD novel autoantibodies, including glucose-6-phosphate isomerase (G6PI), alpha-tropomyosin (TPM1), and heterogeneous nuclear ribonucleoprotein D-like (HnRNPDL), were significantly (P < 0.05) increased when compared with the healthy controls. Moreover, a significant increase of IgG autoantibodies for these three autoantigens was confirmed in CHD patients by ELISA (P < 0.0001). The correction analysis revealed a negative correlation of anti-TPM1 antibody levels and total cholesterol (P = 0.0034), and low-density lipoprotein cholesterol (P = 0.0086), respectively. Conclusion G6PI, TPM1, and HnRNPDL were CHD natural autoantigens, and serum anti-TPM1 antibody could be used as a potential marker to predict the risk for CHD patients.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heru Zhao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
19
|
Hammad MM, Abu-Farha M, Hebbar P, Cherian P, Al Khairi I, Melhem M, Alkayal F, Alsmadi O, Thanaraj TA, Al-Mulla F, Abubaker J. MC4R Variant rs17782313 Associates With Increased Levels of DNAJC27, Ghrelin, and Visfatin and Correlates With Obesity and Hypertension in a Kuwaiti Cohort. Front Endocrinol (Lausanne) 2020; 11:437. [PMID: 32733386 PMCID: PMC7358550 DOI: 10.3389/fendo.2020.00437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Melanocortin 4 receptor (MC4R), a notable component of the melanocortin system, regulates appetite, body weight, and energy homeostasis. Genome-wide association studies have identified several MC4R variants associated with adiposity; of these, rs17782313, which is associated with increased body mass index (BMI) and overeating behavior, is of particular interest. Another gene associated with increased adiposity in global genome-wide association studies is DNAJC27, a heat shock protein known to be elevated in obesity. The detailed mechanisms underlying the role of MC4R variants in the biological pathways underlying metabolic disorders are not well-understood. To address this, we assessed variations of rs17782313 in a cohort of 282 Arab individuals from Kuwait, who are deeply phenotyped for anthropometric and metabolic traits and various biomarkers, including DNAJC27. Association tests showed that the rs17782313_C allele was associated with BMI and DNAJC27 levels. Increased levels of DNAJC27 reduced the MC4R-mediated formation of cAMP in MC4R ACTOne stable cells. In conclusion, this study demonstrated an association between the rs17782313 variant near MC4R and increased BMI and DNAJC27 levels and established a link between increased DNAJC27 levels and lower cAMP levels. We propose that regulation of MC4R activity by DNAJC27 enhances appetite through its effect on cAMP, thereby regulating obesity.
Collapse
Affiliation(s)
- Maha M. Hammad
- Research Division, Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Research Division, Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Prashantha Hebbar
- Research Division, Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Research Division, Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al Khairi
- Research Division, Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Motasem Melhem
- Research Division, Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fadi Alkayal
- Research Division, Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Thangavel Alphonse Thanaraj
- Research Division, Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Thangavel Alphonse Thanaraj
| | - Fahd Al-Mulla
- Research Division, Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Fahd Al-Mulla
| | - Jehad Abubaker
- Research Division, Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Jehad Abubaker
| |
Collapse
|
20
|
Konstantinova EV, Chipigina NS, Shurdumova MH, Kovalenko E, Sapozhnikov AM. Heat Shock Protein 70 kDa as a Target for Diagnostics and Therapy of Cardiovascular and Cerebrovascular Diseases. Curr Pharm Des 2019; 25:710-714. [DOI: 10.2174/1381612825666190329123924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
Acute focal ischemia is a main factor of pathogenesis of a number of widespread cardiovascular and
cerebrovascular diseases, in particular, myocardial infarction and ischemic stroke. It is known that under the
conditions of ischemia expression of intracellular heat shock proteins (HSPs), especially HSP70, grows greatly
irrespective of the cell type. This stress-induced cell response is connected with cytoprotective properties of
HSP70. The protective functions of HSP70 contribute to the cell survival under adverse conditions and inhibit
development of programmed cell death. It was shown, that the level of HSP70 increases in cardiomyocytes and
brain cells in response to ischemia, that was connected with cardioprotective and neuroprotective effects. Besides,
in recent years, clinical studies of HSP70 have demonstrated elevated level of HSP70 in peripheral blood lymphocytes
in groups of patients with ischemic stroke and myocardial infarction. This review indicates that HSP70
can serve as a target for developing new approaches to diagnostics and therapy of cardiovascular and cerebrovascular
diseases.
Collapse
Affiliation(s)
- Ekaterina V. Konstantinova
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - Natalia S. Chipigina
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - Marina H. Shurdumova
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - E.I. Kovalenko
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
| | | |
Collapse
|
21
|
Impact of a Heat Shock Protein Impurity on the Immunogenicity of Biotherapeutic Monoclonal Antibodies. Pharm Res 2019; 36:51. [PMID: 30771015 PMCID: PMC6394513 DOI: 10.1007/s11095-019-2586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 11/04/2022]
Abstract
Purpose Anti-drug antibodies can impair the efficacy of therapeutic proteins and, in some circumstances, induce adverse health effects. Immunogenicity can be promoted by aggregation; here we examined the ability of recombinant mouse heat shock protein 70 (rmHSP70) - a common host cell impurity - to modulate the immune responses to aggregates of two therapeutic mAbs in mice. Methods Heat and shaking stress methods were used to generate aggregates in the sub-micron size range from two human mAbs, and immunogenicity assessed by intraperitoneal exposure in BALB/c mice. Results rmHSP70 was shown to bind preferentially to aggregates of both mAbs, but not to the native, monomeric proteins. Aggregates supplemented with 0.1% rmHSP70 induced significantly enhanced IgG2a antibody responses compared with aggregates alone but the effect was not observed for monomeric mAbs. Dendritic cells pulsed with mAb aggregate showed enhanced IFNγ production on co-culture with T cells in the presence of rmHSP70. Conclusion The results indicate a Th1-skewing of the immune response by aggregates and show that murine rmHSP70 selectively modulates the immune response to mAb aggregates, but not monomer. These data suggest that heat shock protein impurities can selectively accumulate by binding to mAb aggregates and thus influence immunogenic responses to therapeutic proteins. Electronic supplementary material The online version of this article (10.1007/s11095-019-2586-7) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Araujo TLS, Venturini G, Moretti AIS, Tanaka LY, Pereira AC, Laurindo FRM. Cell-surface HSP70 associates with thrombomodulin in endothelial cells. Cell Stress Chaperones 2019; 24:273-282. [PMID: 30645756 PMCID: PMC6363626 DOI: 10.1007/s12192-018-00964-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/26/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
Heat shock protein-70 (HSP70) is crucial for proteostasis and displays cell-protective effects. Meanwhile, enhanced levels of cell-surface (cs) and secreted HSP70 paradoxically associate with pathologic cardiovascular conditions. However, mechanisms regulating csHSP70 pool are unknown. We hypothesized that total and csHSP70 expressions are modulated by hemodynamic forces, major contributors to endothelial pathophysiology. We also investigated whether thrombomodulin, a crucial thromboresistance cell-surface protein, is a csHSP70 target. We used proteomic/western analysis, confocal microscopy, and cs-biotinylation to analyze the pattern and specific characteristics of intracellular and csHSP70. HSP70 interaction with thrombomodulin was investigated by confocal colocalization, en face immunofluorescence, proximity assay, and immunoprecipitation. Thrombomodulin activity was assessed by measured protein C activation two-step assay. Our results show that csHSP70 pool in endothelial cells (EC) exhibits a peculiar cluster-like pattern and undergoes enhanced expression by physiological arterial-level laminar shear stress. Conversely, total and csHSP70 expressions were diminished under low shear stress, a known proatherogenic hemodynamic pattern. Furthermore, total HSP70 levels were decreased in aortic arch (associated with proatherogenic turbulent flow) compared with thoracic aorta (associated with atheroprotective laminar flow). Importantly, csHSP70 co-localized with thrombomodulin in cultured EC and aorta endothelium; proximity ligation assays and immunoprecipitation confirmed their physical interaction in EC. Remarkably, immunoneutralization of csHSP70 enhanced thrombomodulin activity in EC and aorta ex vivo. Overall, proatherogenic hemodynamic forces promote reduced total HSP70 expression, which might implicate in disturbed proteostasis; meanwhile, the associated decrease in cs-HSP70 pool associates with thromboresistance signaling. Cell-surface HSP70 (csHSP70) expression regulation and csHSP70 targets in vascular cells are unknown. We showed that HSP70 levels are shear stress-modulated and decreased under proatherogenic conditions. Remarkably, csHSP70 binds thrombomodulin and inhibits its activity in endothelial cells. This mechanism can potentially explain some deleterious effects previously associated with high extracellular HSP70 levels, as csHSP70 potentially could restrict thromboresistance and support thrombosis/inflammation in stress situations.
Collapse
Affiliation(s)
- Thaís L S Araujo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil.
| | - Gabriela Venturini
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Ana I S Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| |
Collapse
|
23
|
Chen Q, Xiang J, Gong R, Fang HY, Xu CC, Zhang HZ, Wu YQ. Atorvastatin downregulates HSP22 expression in an atherosclerotic model in vitro and in vivo. Int J Mol Med 2018; 43:821-829. [PMID: 30535427 PMCID: PMC6317682 DOI: 10.3892/ijmm.2018.4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
One of the pathological functions of heat shock protein 22 (HSP22) is the association with inflammatory diseases and atherosclerosis. However, the effects of a high-fat diet (HFD) or oxidized low-density lipoprotein (ox-LDL) combined with atorvastatin (ATV) on HSP22 expression are entirely unknown. The present study investigated the effects of ATV on HSP22 expression in HFD-induced atherosclerotic apolipoprotein E-deficient (ApoE−/−) mice and in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Furthermore, the influence of HSP22-knockdown on the HFD- or ox-LDL-induced atherosclerotic model was also examined. It was found that HFD or ox-LDL treatment significantly increased HSP22 expression in the serum and aorta, accompanied by decreased phosphorylated (p)-endothelial nitric oxide synthase (p-eNOS) activity and activated p38 mitogen-activated protein kinase (MAPK). However, these effects were suppressed by treatment with ATV. Furthermore, HSP22-knockdown showed reduced ox-LDL-induced lesions, evidenced by increased p-eNOS activity and inactivated p38 MAPK, while suppression of cell proliferation inhibition and cell cycle arrest were also observed. Taken together, the results of this study suggest that HFD or ox-LDL increased the expression of HSP22 and p-p38 MAPK, and decreased the p-eNOS activity in vitro and in vivo, and ATV could reduce the effects by downregulating HSP22 expression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Xiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hai-Yang Fang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cong-Cong Xu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong-Zhou Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan-Qing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Mehramiz M, Hassanian SM, Mardan-Nik M, Pasdar A, Jamialahmadi K, Fiuji H, Moetamani-Ahmadi M, Parizadeh SMR, Moohebati M, Heidari-Bakavoli A, Ebrahimi M, Ferns GA, Ghayour-Mobarhan M, Avan A. The interaction between a HSP-70 gene variant with dietary calories in determining serum markers of inflammation and cardiovascular risk. Clin Nutr 2018; 37:2122-2126. [PMID: 29128340 DOI: 10.1016/j.clnu.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The high prevalence of cardiovascular disease (CVD) globally is attributable to an interaction between environmental and genetic factors. Gene × diet interaction studies aim to explore how a modifiable factor interacts with genetic predispositions. Here we have explored the interaction of a heat shock protein (HSP70) gene polymorphism (+1267A > G) with dietary intake and their possible association with serum C-reactive protein (CRP), an inflammatory marker, that is a major component of CVD risk. METHODS HSP70 genotype was determined using a TaqMan real time PCR based method.Dietary intake was assessed using a dietary questionnaire. Serum high sensitivity (Hs) CRP and other cardiovascular risk factors were assessed by routine methods. This included coronary angioplasty to determine the presence of coronary artery stenosis. RESULTS There were significant differences between serum lipid profile and Hs-CRP across the genotypes for Hsp70. The carriers of G allele had higher serum hs-CRP concentrations, compared with the AA homozygotes, with the wild genotype. Interaction analysis showed the association was modulated by total energy intake; the interaction of high energy intake with GG genotype: RERI = 0.77, AP = 0.26, S = 1.6. CONCLUSION We have found a significant association between the +1267A > G variant of the HSP70 gene with cardiovascular risk factors and serum hs-CRP concentrations. It is possible that a low energy diet could ameliorate the unfavorable effects of G allele of HSP70.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mardan-Nik
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohsen Moohebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Heidari-Bakavoli
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ebrahimi
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Ten Caten Martins E, Dos Santos RZ, Dos Santos AB, Fiorin PBG, Sandri YP, Frizzo MN, Ludwig MS, Heck TG, Benetti M. Detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Cell Stress Chaperones 2018; 23:1319-1327. [PMID: 30238325 PMCID: PMC6237681 DOI: 10.1007/s12192-018-0939-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023] Open
Abstract
Previous studies reported that extracellular HSP72 (eHSP72) correlates with poor prognosis, markers of vascular dysfunction, and the severity of cardiovascular diseases, associated with a systemic oxidative and inflammatory profile. On the other hand, eHSP72 may represent immune-regulatory signaling that is related to exercise benefits, but the association between physical activity levels and eHSP72 levels is not established. Thus, since regular physical activity may avoid oxidative stress and inflammation, we investigate whether detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Physical activity levels of hypertensive subjects (n = 140) were measured by tri-axial movement sensor pedometer for 24 h during 5 consecutive days. One day after, blood was collected into heparinized tubes for oxidative stress analyses (catalase-CAT and superoxide dismutase-SOD activities and malondialdehyde levels) or in disodium EDTA tubes for eHSP72 assays. Thus, hypertensive subjects were classified as physically inactive (< 10,000 footsteps/day) or active (> than 10,000 footsteps/day) and according detectable or not detectable eHSP72 levels in plasma, performing the inactive/eHSP72-, active/eHSP72-, inactive/eHSP72+, and active/eHSP72+ groups. We found that detectable levels of eHSP72 in plasma were associated with physical activity levels and low oxidative stress profile (Higher CAT and SOD activities and low malondialdehyde levels). eHSP72 levels can be used as a biomarker of the amount of physical activity necessary to improve antioxidant defense and thus cardiovascular health in hypertensive subjects.
Collapse
Affiliation(s)
- Eliara Ten Caten Martins
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Rafaella Zulianello Dos Santos
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Analu Bender Dos Santos
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Yana Picinin Sandri
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil.
| | - Magnus Benetti
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| |
Collapse
|
26
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
27
|
Speziali G, Liesinger L, Gindlhuber J, Leopold C, Pucher B, Brandi J, Castagna A, Tomin T, Krenn P, Thallinger GG, Olivieri O, Martinelli N, Kratky D, Schittmayer M, Birner-Gruenberger R, Cecconi D. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. J Proteomics 2018; 181:118-130. [PMID: 29654920 DOI: 10.1016/j.jprot.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), is associated to an increased cardiovascular disease risk. Since it is found in low concentration in cells, its specific properties have not been fully analyzed. The aim of this study was to explore the cell response to this fatty acid to help explaining clinical findings on the relationship between C14:0 and cardiovascular disease. The human liver HepG2 cell line was used to investigate the hepatic response to C14:0 in a combined proteomic and secretomic approach. A total of 47 intracellular and 32 secreted proteins were deregulated after treatments with different concentrations of C14:0. Data are available via ProteomeXchange (PXD007902). In addition, C14:0 treatment of primary murine hepatocytes confirmed that C14:0 induces lipid droplet accumulation and elevates perilipin-2 levels. Functional enrichment analysis revealed that C14:0 modulates lipid droplet formation and cytoskeleton organization, induce ER stress, changes in exosome and extracellular miRNA sorting in HepG2cells. Our data provide for the first time a proteomic profiling of the effects of C14:0 in human hepatoma cells and contribute to the elucidation of molecular mechanisms through which this fatty acid may cause adverse health effects. BIOLOGICAL SIGNIFICANCE Myristic acid is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. This study is the first example of an integration of proteomic and secretomic analysis of HepG2 cells to investigate the specific properties and functional roles of myristic acid on hepatic cells. Our analyses will lead to a better understanding of the myristic acid induced effects and can elicit new diagnostic and treatment strategies based on altered proteins.
Collapse
Affiliation(s)
- Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Laura Liesinger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Juergen Gindlhuber
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Bettina Pucher
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Tamara Tomin
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Petra Krenn
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Gerhard G Thallinger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy.
| |
Collapse
|
28
|
Suzuki H, Kosuge Y, Kobayashi K, Kurosaki Y, Ishii N, Aoyama N, Ishihara K, Ichikawa T. Heat-shock protein 72 promotes platelet aggregation induced by various platelet activators in rats. Biomed Res 2018. [PMID: 28637952 DOI: 10.2220/biomedres.38.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increase of thrombus in the coronary arteries is positively correlated with the level of heat-shock protein 72 (HSP72) in the blood of patients with acute myocardial infarction (AMI). Platelet aggregation participates in thrombus formation on ruptured plaque in AMI. In this study, we aimed to clarify the role of HSP72 in thrombus formation by evaluating the effects of HSP72 on platelet aggregation. Platelet aggregation activities were measured in platelet-rich plasma obtained from male Sprague-Dawley rats with or without the platelet activators, such as adenosine diphosphate (ADP), collagen, thrombin receptor-activating peptide-6 (TRAP-6), ristocetin, and arachidonic acid. Changes in aggregation were estimated by the co-addition of recombinant HSP72 and anti-HSP72 antibodies. Our results showed that addition of HSP72 increased platelet aggregation in the presence of low concentrations of ADP, collagen, TRAP-6, ristocetin, and arachidonic acid. Increased platelet aggregation stimulated by ADP and HSP72 was reduced by the co-addition of anti-HSP72 antibodies. Thus, these findings suggested that HSP72 was released extracellularly in response to stress, promoting thrombus formation and AMI. Additionally, treatment with anti-HSP72 antibodies may control platelet aggregation induced by extracellular HSP72.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Yuuko Kosuge
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Koji Kobayashi
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Yoshifumi Kurosaki
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| | - Naohito Ishii
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| | - Naoyoshi Aoyama
- Research and Development Center for New Medical Frontiers, Department of Comprehensive Medicine, Division of Internal and Emergency Medicine, Kitasato University School of Medicine
| | - Kazuhiko Ishihara
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| |
Collapse
|
29
|
Ratanji KD, Derrick JP, Kimber I, Thorpe R, Wadhwa M, Dearman RJ. Influence of Escherichia coli chaperone DnaK on protein immunogenicity. Immunology 2017; 150:343-355. [PMID: 27859059 PMCID: PMC5290234 DOI: 10.1111/imm.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/30/2016] [Accepted: 11/05/2016] [Indexed: 01/11/2023] Open
Abstract
The production of anti-drug antibodies can impact significantly upon the safety and efficacy of biotherapeutics. It is known that various factors, including aggregation and the presence of process-related impurities, can modify and augment the immunogenic potential of proteins. The purpose of the investigations reported here was to characterize in mice the influence of aggregation and host cell protein impurities on the immunogenicity of a humanized single-chain antibody variable fragment (scFv), and mouse albumin. Host cell protein impurities within an scFv preparation purified from Escherichia coli displayed adjuvant-like activity for responses to the scFv in BALB/c strain mice. The 70 000 MW E. coli chaperone protein DnaK was identified as a key contaminant of scFv by mass spectrometric analysis. Preparations of scFv lacking detectable DnaK were spiked with recombinant E. coli DnaK to mimic the process-related impurity. Mice were immunized with monomeric and aggregated preparations, with and without 0·1% DnaK by mass. Aggregation alone enhanced IgM and IgG2a antibody responses, but had no significant effect on total IgG or IgG1 responses. The addition of DnaK further enhanced IgG and IgG2a antibody responses, but only in the presence of aggregated protein. DnaK was shown to be associated with the aggregated scFv by Western blot analysis. Experiments with mouse albumin showed an overall increase in immunogenicity with protein aggregation alone, and the presence of DnaK increased the vigour of the IgG2a antibody response further. Collectively these data reveal that DnaK has the potential to modify and enhance immunogenicity when associated with aggregated protein.
Collapse
Affiliation(s)
- Kirsty D. Ratanji
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Ian Kimber
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Robin Thorpe
- National Institute for Biological Standards and ControlPotters BarHertfordshireUK
| | - Meenu Wadhwa
- National Institute for Biological Standards and ControlPotters BarHertfordshireUK
| | - Rebecca J. Dearman
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
30
|
Hsu SF, Chao CM, Chang CP, Lin MT, Cheng BC. Heat shock protein 72 may improve hypotension by increasing cardiac mechanical efficiency and arterial elastance in heatstroke rats. Int J Cardiol 2016; 219:63-9. [PMID: 27288968 DOI: 10.1016/j.ijcard.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/22/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We attempted to test the hypothesis that preinduction of heat shock protein (HSP) 72 in the heart would improve left ventricular performance in rat heatstroke. METHODS Cardiac expression of HSP 72 was quantitatively evaluated by western blot analysis in rats 0h, 12h, or 72h after mild heat preconditioning (MHP; 43°C for 30min). They were subjected to severe heat stress (SHS; 43°C for 70min) to induce heatstroke. A 1.2F catheter-tip pressure transducer was inserted into the left ventricle of these group rats under general anesthesia to record hemodynamic in the closed chest with a pressure-volume loop module data recording and analysis system. RESULTS At the time point of heatstroke onset, compared with normothermic controls, group rats with 12h post-MHP had significantly increased cardiac HSP 72, decreased hyperthermia, decreased hypotension, decreased bradycardia, increased end-systolic pressure, increased end-diastolic pressure, increased stroke volume, decreased end-systolic volume, decreased end-diastolic pressure, increased cardiac output, increased ejection fraction, increased stroke work, increased arterial elastance, and decreased time constant of fall in ventricular pressure by Glantz-methods. With the loss of cardiac HSP 72 expression observed at 72h in post-MHP group rats, an insignificant protection against left ventricular performance was observed. CONCLUSION Preinduction of cardiac HSP 72 may improve hypotension in heatstroke rats by increasing both cardiac mechanical efficiency and arterial elastance.
Collapse
Affiliation(s)
- Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan; Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan.
| |
Collapse
|
31
|
Heat shock protein 70 and antibodies to heat shock protein 60 are associated with cerebrovascular atherosclerosis. Clin Biochem 2016; 49:66-9. [DOI: 10.1016/j.clinbiochem.2015.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/05/2015] [Accepted: 10/17/2015] [Indexed: 11/24/2022]
|
32
|
Significant relationship between preoperative serum concentration of anti-heat shock protein 70 antibody and postoperative morbidity in patients with esophageal cancer. Eur Surg 2015. [DOI: 10.1007/s10353-015-0317-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Cui X, Xing J, Liu Y, Zhou Y, Luo X, Zhang Z, Han W, Wu T, Chen W. COPD and levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes among coal workers: a case-control study. Cell Stress Chaperones 2015; 20:473-81. [PMID: 25620081 PMCID: PMC4406932 DOI: 10.1007/s12192-015-0572-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/17/2022] Open
Abstract
This case-control study aimed to investigate whether the levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes were associated with the risk of chronic obstructive pulmonary disease (COPD) among coal workers. A total of 76 COPD cases and 48 age-matched healthy controls from a group of coal workers were included. The case group consisted of 35 COPD patients whose condition was complicated with coal workers' pneumoconiosis (CWP) and 41 COPD patients without CWP. Heat shock proteins (Hsps) in plasma and lymphocytes were detected by ELISA and flow cytometry, respectively. Multiple logistic regression models were applied to estimate the association between Hsp levels and COPD risk. Our results showed that plasma Hsp70 and lymphocyte Hsp27 levels were significantly higher and plasma Hsp27 levels were significantly lower in COPD cases than in controls (p < 0.01). No significant differences in lymphocyte Hsp70 levels were found between COPD cases and the matched subjects. Higher plasma Hsp70 levels (odds ratio (OR) = 13.8, 95 % confidence interval (CI) = 5.7-33.5) and lower plasma Hsp27 levels (OR = 4.6, 95 % CI = 2.0-10.5) were significantly associated with an increased risk of COPD after adjusting for confounders. Higher lymphocyte Hsp27 levels were only associated with an increased risk of COPD with CWP (OR = 6.6, 95 % CI = 2.0-22.1) but not with an increased risk of COPD without CWP (OR = 3.0, 95 % CI = 0.9-8.9). Additionally, there were strong joint effects of different Hsps on COPD risk. These results showed that higher levels of plasma Hsp70 and lower levels of plasma Hsp27 might be associated with an increased risk of COPD among coal workers. They may have the potential to serve as monitoring markers for COPD in coal workers.
Collapse
Affiliation(s)
- Xiuqing Cui
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingcai Xing
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Respiratory Diseases of the General Hospital of Xishan Coal & Power Group, Co. Ltd., Shanxi, 030053 China
| | - Yuewei Liu
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Luo
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Zhang
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Han
- />Department of Respiratory Diseases of the General Hospital of Xishan Coal & Power Group, Co. Ltd., Shanxi, 030053 China
| | - Tangchun Wu
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- />Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- />Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:803561. [PMID: 25243181 PMCID: PMC4160647 DOI: 10.1155/2014/803561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/24/2014] [Indexed: 12/29/2022]
Abstract
Objective. To evaluate the early heat shock protein (HSP) and hormonal stress response of intensive care unit (ICU) patients with severe sepsis/septic shock (SS) or systemic inflammatory response syndrome (SIRS) compared to healthy subjects (H). Methods. Patients with early (first 48 hrs) SS (n = 29) or SIRS (n = 29) admitted to a university ICU and 16 H were enrolled in the study. Serum prolactin, cortisol, and plasma ACTH were determined using immunoassay analyzers. ELISA was used to evaluate extracellular HSPs (eHSP90α, eHSP72) and interleukins. Mean fluorescence intensity (MFI) values for intracellular HSPs (iHSP72, iHSP90α) were measured using 4-colour flow-cytometry. Results. Prolactin, cortisol, and eHSP90α levels were significantly increased in SS patients compared to SIRS and H (P < 0.003). ACTH and eHSP72 were significantly higher in SS and SIRS compared to H (P < 0.005). SS monocytes expressed lower iHSP72 MFI levels compared to H (P = 0.03). Prolactin was related with SAPS III and APACHE II scores and cortisol with eHSP90α, IL-6, and lactate (P < 0.05). In SS and SIRS eHSP90α was related with eHSP72, IL-6, and IL-10. Conclusion. Prolactin, apart from cortisol, may have a role in the acute stress response in severe sepsis. In this early-onset inflammatory process, cortisol relates to eHSP90α, monocytes suppress iHSP72, and plasma eHSP72 increases.
Collapse
|
36
|
Nahas EAP, Nahas-Neto J, Orsatti CL, Tardivo AP, Uemura G, Peraçoli MTS, Witkin SS. The 60- and 70-kDa heat-shock proteins and their correlation with cardiovascular risk factors in postmenopausal women with metabolic syndrome. Cell Stress Chaperones 2014; 19:559-68. [PMID: 24327239 PMCID: PMC4041947 DOI: 10.1007/s12192-013-0483-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
Abstract
We investigated the association between circulating levels of 60 and 70 kDa heat-shock proteins (HSP60 and 70) and cardiovascular risk factors in postmenopausal women with or without metabolic syndrome (MetS). This cross-sectional study included 311 Brazilian women (age ≥45 years with amenorrhea ≥12 months). Women showing three or more of the following diagnostic criteria were diagnosed with MetS: waist circumference (WC) ≥88 cm, blood pressure ≥130/85 mmHg, triglycerides ≥150 mg/dl, high-density lipoprotein (HDL) <50 mg/dl, and glucose ≥100 mg/dl. Clinical, anthropometric, and biochemical parameters were collected. HSP60, HSP70, antibodies to HSP60 and HSP70, and C-reactive protein (CRP) levels were measured in serum. Student's t test, Kruskal-Wallis test, chi-square test, and Pearson correlation were used for statistical analysis. Of the 311 women, 30.9 % (96/311) were diagnosed with MetS. These women were, on average, obese with abdominal fat deposition and had lower HDL values as well as higher triglycerides and glucose levels. Homeostasis model assessment-insulin resistant (HOMA-IR) test values in these women were compatible with insulin resistance (P < 0.05). CRP and HSP60 concentrations were higher in women with MetS than in women without MetS (P < 0.05). HSP60, anti-HSP70, and CRP concentrations increased with the number of features indicative of MetS (P < 0.05). There was a significant positive correlation between anti-HSP70 and WC, blood pressure and HOMA-IR, and between CRP and WC, blood pressure, glucose, HOMA-IR, and triglycerides (P < 0.05). In postmenopausal women, serum HSP60 and anti-HSP70 concentrations increased with accumulating features of the metabolic syndrome. These results suggest a greater immune activation that is associated with cardiovascular risk in postmenopausal women with metabolic syndrome.
Collapse
Affiliation(s)
- Eliana A P Nahas
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University-UNESP, Distrito de Rubião Júnior s/n, 18618-970, Botucatu, São Paulo, Brazil,
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The expression of heat shock proteins (HSPs) is a basic and well-conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Because these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that HSPs can also be present outside cells where they appear to display a function different than the well-understood chaperone role. Extracellular HSPs act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Because the majority of HSPs do not possess a secretory peptide signal, they are likely to be exported by a nonclassic secretory pathway. Different mechanisms have been proposed to explain the export of HSPs, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular HSPs appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular HSPs suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular HSPs.
Collapse
|
38
|
Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites. PLoS One 2014; 9:e92964. [PMID: 24722336 PMCID: PMC3982957 DOI: 10.1371/journal.pone.0092964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/27/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood. OBJECTIVES We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function. METHODS HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry. RESULTS We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (Ptrend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV. CONCLUSIONS In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.
Collapse
|
39
|
Coordinated Transcriptional Regulation of Hspa1a Gene by Multiple Transcription Factors: Crucial Roles for HSF-1, NF-Y, NF-κB, and CREB. J Mol Biol 2014; 426:116-35. [DOI: 10.1016/j.jmb.2013.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
|
40
|
Giacconi R, Costarelli L, Malavolta M, Piacenza F, Galeazzi R, Gasparini N, Basso A, Mariani E, Fulop T, Rink L, Dedoussis G, Kanoni S, Herbein G, Jajte J, Busco F, Mocchegiani E. Association among 1267 A/G HSP70-2, −308 G/A TNF-α polymorphisms and pro-inflammatory plasma mediators in old ZincAge population. Biogerontology 2013; 15:65-79. [DOI: 10.1007/s10522-013-9480-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/08/2013] [Indexed: 11/30/2022]
|
41
|
Jenei ZM, Gombos T, Förhécz Z, Pozsonyi Z, Karádi I, Jánoskuti L, Prohászka Z. Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones 2013; 18:809-13. [PMID: 23564583 PMCID: PMC3789876 DOI: 10.1007/s12192-013-0425-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
Predicting the survival of a patient with heart failure (HF) is a complex problem in clinical practice. Our previous study reported that extracellular HSP70 (HSPA1A) correlates with markers of heart function and disease severity in HF, but the predictive value of HSP70 is unclear. The goal of this study was to analyze extracellular HSP70 as predictive marker of mortality in HF. One hundred ninety-five patients with systolic heart failure were enrolled and followed up for 60 months. By the end of follow-up, 85 patients were alive (survivors) and 110 died (nonsurvivors). HSP70 (measured by ELISA in the serum) was elevated in nonsurvivors, compared with survivors (0.39 [0.27-0.59] vs. 0.30 [0.24-0.43] ng/ml, respectively, p = 0.0101). In Kaplan-Meier survival analysis higher HSP70 levels above median were associated with a significantly increased mortality. In multivariable survival models, we show that HSP70 level above the median is an age-, sex-, body mass index-, creatinine-, and NT-proBNP-independent predictor of 5-year mortality in HF. Extracellular HSP70 could prove useful for estimating survival in patients with HF.
Collapse
Affiliation(s)
- Zsigmond M Jenei
- Third Department of Internal Medicine, Semmelweis University, 1125, Budapest, Kútvölgyi út 4, Hungary,
| | | | | | | | | | | | | |
Collapse
|
42
|
Stiegler P, Sereinigg M, Puntschart A, Bradatsch A, Seifert-Held T, Wiederstein-Grasser I, Leber B, Stadelmeyer E, Dandachi N, Zelzer S, Iberer F, Stadlbauer V. Oxidative stress and apoptosis in a pig model of brain death (BD) and living donation (LD). J Transl Med 2013; 11:244. [PMID: 24088575 PMCID: PMC3850531 DOI: 10.1186/1479-5876-11-244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Background As organ shortage is increasing, the acceptance of marginal donors increases, which might result in poor organ function and patient survival. Mostly, organ damage is caused during brain death (BD), cold ischemic time (CIT) or after reperfusion due to oxidative stress or the induction of apoptosis. The aim of this study was to study a panel of genes involved in oxidative stress and apoptosis and compare these findings with immunohistochemistry from a BD and living donation (LD) pig model and after cold ischemia time (CIT). Methods BD was induced in pigs; after 12 h organ retrieval was performed; heart, liver and kidney tissue specimens were collected in the BD (n = 6) and in a LD model (n = 6). PCR analysis for NFKB1, GSS, SOD2, PPAR-alpha, OXSR1, BAX, BCL2L1, and HSP 70.2 was performed and immunohistochemistry used to show apoptosis and nitrosative stress induced cell damage. Results In heart tissue of BD BAX, BCL2L1 and HSP 70.2 increased significantly after CIT. Only SOD2 was over-expressed after CIT in BD liver tissue. In kidney tissue, BCL2L1, NFKB, OXSR1, SOD2 and HSP 70.2 expression was significantly elevated in LD. Immunohistochemistry showed a significant increase in activated Caspase 3 and nitrotyrosine positive cells after CIT in BD in liver and in kidney tissue but not in heart tissue. Conclusion The up-regulation of protective and apoptotic genes seems to be divergent in the different organs in the BD and LD setting; however, immunohistochemistry revealed more apoptotic and nitrotyrosine positive cells in the BD setting in liver and kidney tissue whereas in heart tissue both BD and LD showed an increase.
Collapse
Affiliation(s)
- Philipp Stiegler
- Division of Surgery, Department of Transplantation Surgery, Medical University, Auenbruggerplatz 29, Graz 8036, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pedicino D, Giglio AF, Galiffa VA, Cialdella P, Trotta F, Graziani F, Liuzzo G. Infections, immunity and atherosclerosis: Pathogenic mechanisms and unsolved questions. Int J Cardiol 2013; 166:572-83. [DOI: 10.1016/j.ijcard.2012.05.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/02/2012] [Accepted: 05/27/2012] [Indexed: 01/19/2023]
|
44
|
Jenei ZM, Széplaki G, Merkely B, Karádi I, Zima E, Prohászka Z. Persistently elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker in post-cardiac-arrest patients. Cell Stress Chaperones 2013; 18:447-54. [PMID: 23321917 PMCID: PMC3682023 DOI: 10.1007/s12192-012-0399-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
Predicting the prognosis of comatose, post-cardiac-arrest patients is a complex problem in clinical practice. There are several established methods to foretell neurological outcome; however, further prognostic markers are needed. HSP70 (HSPA1A), which increases rapidly in response to severe stress (among others after ischemic or hypoxic events), is a biomarker of cell damage in the ischemic brain and spinal cord. We hypothesized that HSP70 might be a reliable predictor of mortality in post-cardiac-arrest patients. The aim of this study was to analyze the role of extracellular HSP70 in the systemic inflammatory response over time, as well as the predictive value in cardiac arrest patients. Here, we show that the elevation of HSP70 levels in resuscitated patients and their persistence is an independent predictor of 30-day mortality after a cardiac arrest. Forty-six cardiac arrest patients were successfully cooled to 32-34 °C for 24 h, and followed up for 30 days. Twenty-four patients (52.2 %) were alive by the end of follow-up, and 22 patients (47.8 %) died. Forty-six patients with stable cardiovascular disease served as controls. Extracellular HSP70 (measured by ELISA in blood samples) was elevated in all resuscitated patients (1.31 [0.76-2.73] and 1.70 [1.20-2.37] ng/ml for survivors and non-survivors, respectively), compared with the controls (0.59 [0.44-0.83] ng/ml). HSP70 level decreased significantly in survivors, but persisted in non-survivors, and predicted 30-day mortality regardless of age, sex, complications, and the APACHE II score. Extracellular HSP70 could prove useful for estimating prognosis in comatose post-cardiac-arrest patients.
Collapse
Affiliation(s)
- Zsigmond M Jenei
- 3rd Department of Internal Medicine, Semmelweis University Budapest, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Gao H, Meng J, Xu M, Zhang S, Ghose B, Liu J, Yao P, Yan H, Wang D, Liu L. Serum Heat Shock Protein 70 Concentration in Relation to Polycystic Ovary Syndrome in a Non-Obese Chinese Population. PLoS One 2013; 8:e67727. [PMID: 23825680 PMCID: PMC3688989 DOI: 10.1371/journal.pone.0067727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) represents the most common cause of anovulatory infertility and affects 6-15% of women of reproductive age. However, the underlying etiology is still poorly understood. In this study, we attempted to examine the association between circulating heat shock protein 70 (Hsp70) concentrations and PCOS in a non-obese Chinese population. Methods and Results Human peripheral blood from 52 patients with PCOS and 57 healthy controls, matched for age and BMI, were analyzed. Women with PCOS were found to have significantly higher fasting insulin (FI) levels, as well as Insulin resistance index (HOMA-IR) (P < 0.05). Identically, markers of oxidative stress (malondialdehyde (MDA), 8-Hydroxy-desoxyguanosine (8-OHdG), Nitric oxide (NO)) and inflammation (tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP)) were markedly increased when compared to controls (P < 0.05). Elevated serum Hsp70 was positively correlated with IR, oxidative stress and inflammation in PCOS, even after adjustment for age, BMI and gynecologic inflammation (GI). The receiver-operating characteristic curve (ROC) analysis yielded notably different discriminative value for PCOS, with or without an addition of Hsp70 (areas under the curves were 0.884 (95% CI 0.822-0.946) vs. 0.822 (95% CI 0.744-0.900); P for difference = 0.015). Conclusions and Significance Increased serum Hsp70 levels are associated with the combination of IR, oxidative stress and low-grade chronic inflammation in PCOS individuals, which provides supportive evidence that Hsp70 plays a key role in the pathogenesis of PCOS. More consequent studies were warranted to confirm the clinical utility of circulating Hsp70, especially in diagnosis and prognosis of PCOS and its long-term health cost.
Collapse
Affiliation(s)
- Hui Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Meng
- Reproductive medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mengjing Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shun Zhang
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bishwajit Ghose
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jun Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Yan
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Di Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Xiangyang Food and Drug Administration, Xiangyang, People’s Republic of China
- * E-mail: (LL); (DW)
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- * E-mail: (LL); (DW)
| |
Collapse
|
46
|
Saban KL, Hoppensteadt D, Bryant FB, DeVon HA. Social determinants and heat shock protein-70 among African American and non-Hispanic white women with atherosclerosis: a pilot study. Biol Res Nurs 2013; 16:258-65. [PMID: 23749050 DOI: 10.1177/1099800413491422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
African American (AA) women are nearly twice as likely as non-Hispanic White (NHW) women to develop atherosclerosis associated with cardiovascular disease. Compelling evidence demonstrates that stress-related biomarkers, such as heat shock protein-70 (HSP70), are associated with increased atherosclerosis risk. Yet little is known about how social factors such as perceived discrimination, subjective social status, and socioeconomic status contribute to the levels of these biomarkers in women with atherosclerosis. The aims of this pilot study were to (1) describe perceived everyday discrimination, subjective social status, perceived stress, and HSP70 level in AA and NHW women diagnosed with coronary or carotid artery disease requiring intervention and (2) determine the extent to which perceived discrimination, subjective social status, and perceived stress are associated with HSP70 level, controlling for age, education, and race. The sample for this cross-sectional, descriptive pilot study consisted of 10 AA and 21 NHW women admitted to the hospital for elective percutaneous cardiac intervention or carotid endarterectomy. Participants completed questionnaires measuring psychosocial variables and provided blood samples for analysis of HSP70. Race, age, education, perceived stress, perceived discrimination, and subjective social status significantly (p = .022) explained 34% of the variance in HSP70 levels. However, only subjective social status (p = .031) and AA race (p = .031) were significant independent predictors of HSP70 levels, with lower subjective social status and AA race associated with higher HSP70. Although larger studies are needed to confirm these results, findings imply that race and subjective social status may play an important role in predicting stress biomarker levels.
Collapse
Affiliation(s)
- Karen L Saban
- Marcella Niehoff School of Nursing, Loyola University, Maywood, IL, USA Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Fred B Bryant
- Department of Psychology, Loyola University, Chicago, IL, USA
| | - Holli A DeVon
- College of Nursing, University of Illinois at Chicago, IL, USA
| |
Collapse
|
47
|
Eapen DJ, Manocha P, Patel RS, Hammadah M, Veledar E, Wassel C, Nanjundappa RA, Sikora S, Malayter D, Wilson PWF, Sperling L, Quyyumi AA, Epstein SE. Aggregate risk score based on markers of inflammation, cell stress, and coagulation is an independent predictor of adverse cardiovascular outcomes. J Am Coll Cardiol 2013; 62:329-37. [PMID: 23665099 DOI: 10.1016/j.jacc.2013.03.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study sought to determine an aggregate, pathway-specific risk score for enhanced prediction of death and myocardial infarction (MI). BACKGROUND Activation of inflammatory, coagulation, and cellular stress pathways contribute to atherosclerotic plaque rupture. We hypothesized that an aggregate risk score comprised of biomarkers involved in these different pathways-high-sensitivity C-reactive protein (CRP), fibrin degradation products (FDP), and heat shock protein 70 (HSP70) levels-would be a powerful predictor of death and MI. METHODS Serum levels of CRP, FDP, and HSP70 were measured in 3,415 consecutive patients with suspected or confirmed coronary artery disease (CAD) undergoing cardiac catheterization. Survival analyses were performed with models adjusted for established risk factors. RESULTS Median follow-up was 2.3 years. Hazard ratios (HRs) for all-cause death and MI based on cutpoints were as follows: CRP ≥3.0 mg/l, HR: 1.61; HSP70 >0.625 ng/ml, HR; 2.26; and FDP ≥1.0 μg/ml, HR: 1.62 (p < 0.0001 for all). An aggregate biomarker score between 0 and 3 was calculated based on these cutpoints. Compared with the group with a 0 score, HRs for all-cause death and MI were 1.83, 3.46, and 4.99 for those with scores of 1, 2, and 3, respectively (p for each: <0.001). Annual event rates were 16.3% for the 4.2% of patients with a score of 3 compared with 2.4% in 36.4% of patients with a score of 0. The C statistic and net reclassification improved (p < 0.0001) with the addition of the biomarker score. CONCLUSIONS An aggregate score based on serum levels of CRP, FDP, and HSP70 is a predictor of future risk of death and MI in patients with suspected or known CAD.
Collapse
Affiliation(s)
- Danny J Eapen
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gruden G, Barutta F, Pinach S, Lorenzati B, Cavallo-Perin P, Giunti S, Bruno G. Circulating anti-Hsp70 levels in nascent metabolic syndrome: the Casale Monferrato Study. Cell Stress Chaperones 2013; 18:353-7. [PMID: 23212539 PMCID: PMC3631095 DOI: 10.1007/s12192-012-0388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome (MetS) confers an increased risk of both type 2 diabetes and cardiovascular diseases (CVD). Heat shock protein 70 (Hsp70), an intracellular polypeptide, can be exposed on the plasma membrane and/or released into the circulation, eliciting both native and immune responses that may contribute to vascular damage. Our aim was to assess if serum anti-Hsp70 antibody levels were cross-sectionally associated with uncomplicated MetS. A cross-sectional case-control study from the nondiabetic cohort of the Casale Monferrato Study was performed. Subjects with established CVD and/or abnormal renal function were excluded. Case subjects (n = 180) were defined as those fulfilling the criteria for the diagnosis of MetS. Control subjects (n = 136) were completely free of any component of the MetS. Serum anti-Hsp70 levels were measured by immunoenzymatic assay. We found that anti-Hsp70 antibody levels were significantly higher in cases than in control subjects [122.6 (89.5-155.6) vs 107.1 (77.3-152.4) μg/ml, p = 0.04], even after age and sex adjustment. In logistic regression analysis, higher levels of log-anti-Hsp70 conferred greater odds ratio (OR) for MetS, independently of age and sex. There was a statistically significant trend of ORs across quartiles of anti-Hsp70 and values greater than 108.0 μg/ml conferred a 77% increased OR of MetS as compared with values in the lower quartiles. The strength of the association slightly decreased after further adjustment for apolipoprotein B, smoking, and albumin excretion rate. In conclusion, our results show that serum anti-Hsp70 antibody levels are independently associated with nascent MetS.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Laskarin G, Persic V, Miškulin R, Ruzic A, Zaputovic L. Can we assess an acute myocardial infarction in patients with acute coronary syndrome according to diagnostic accuracy of heat shock proteins? Med Hypotheses 2012; 79:592-4. [DOI: 10.1016/j.mehy.2012.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022]
|
50
|
Amanvermez R, Acar E, Günay M, Baydın A, Yardan T, Bek Y. Hsp 70, hsCRP and oxidative stress in patients with acute coronary syndromes. Bosn J Basic Med Sci 2012; 12:102-7. [PMID: 22642594 DOI: 10.17305/bjbms.2012.2508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute coronary syndromes (ACS) like unstable angina (UA) and acute myocardial infarction (AMI) can lead to the morbidity and mortality. The diagnosis and management of patients with ACS in the earliest times after symptom onset are considerably important in the emergency service. Study aimed to investigate the serum levels of heat shock protein 70 (Hsp 70), high sensitivity C-reactive protein (hsCRP), total creatine kinase (CK) activity, creatine kinase MB (CK-MB), cardiac troponin I (cTnI), leukocyte count (WBCs) and markers of oxidative stress in the first hours of ACS and to view their diagnostic values. 70 patients with ACS after admission and 20 sex-matched healthy controls were included in this study. Serum Hsp 70, hsCRP, CK, CK-MB, cTnI, protein carbonyls, malondialdehyde as well as whole blood WBCs were measured. The level of hsCRP was statistically higher in patients with AMI and UA than that of control group (p<0.001). WBCs and oxidized protein levels were higher in AMI than in UA and control groups. cTnI was related to CK-MB in AMI and UA groups (r=0.731, r=0.806, p<0.001, respectively) and also related with hsCRP in UA group (r=0.824, p<0.001). The mean Hsp 70 level was higher by 32.2% in AMI and 12.7% in UA patients compared to control subjects. hsCRP may have a role in the inflammatory response after ACS. In addition to cTnI and CK-MB, WBCs and hsCRP may be useful as a marker for the identification of ACS patients with chest pain in early diagnosing.
Collapse
Affiliation(s)
- Ramazan Amanvermez
- Department of Biochemistry, School of Medicine, Ondokuz Mayıs University 55139 Samsun, Turkey
| | | | | | | | | | | |
Collapse
|