1
|
Dilworth J, Million WC, Ruggeri M, Hall ER, Dungan AM, Muller EM, Kenkel CD. Synergistic response to climate stressors in coral is associated with genotypic variation in baseline expression. Proc Biol Sci 2024; 291:20232447. [PMID: 38531406 DOI: 10.1098/rspb.2023.2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardened Acropora cervicornis to explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios.
Collapse
Affiliation(s)
| | | | - Maria Ruggeri
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
2
|
Staikou A, Sagonas K, Spanoudi O, Savvidou K, Nazli Z, Feidantsis K, Michaelidis B. Activities of antioxidant enzymes and Hsp levels in response to elevated temperature in land snail species with varied latitudinal distribution. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110908. [PMID: 37832630 DOI: 10.1016/j.cbpb.2023.110908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Land snails occupy a variety of habitats, with differing temperature and humidity regimes and exhibit a wide span of adaptations, to withstand abiotic condition changes. The present work's aim was to examine the correlation of habitat's thermal adversity in different Mediterranean type habitats with the land snail's antioxidant and heat shock responses. For this purpose, snails of different species from populations along a north-south axis from the islands and mainland of Greece were exposed to elevated temperature and antioxidant enzyme activities, and Hsp70 and Hsp90 levels were determined in their tissues. The ATP, ADP, and AMP levels and the adenylate energy charge (AEC) were also determined. The comparison of protein levels and enzymatic activities across time intervals revealed significant differences for all factors examined. While the gradation pattern over time for a given factor was similar in all populations the absolute values over time differed. Catalase activity and the Hsp90 protein levels had the higher contribution in separating the different species and populations, followed by the activity of glutathione reductase and Hsp70 protein levels which contributed to a lesser degree. In general, populations from the southern part of their distribution in Greece tend to display a faster increase than northern populations in induction levels of all factors examined. Our data seem to be in line with the concept of preparation for oxidative stress (POS) while the changes in the AEC indicate an early preparation to cover the energy demand for the induction and synthesis of antioxidant enzymes and Hsps.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Konstantinos Sagonas
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Olga Spanoudi
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Katerina Savvidou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Zoumboul Nazli
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | | | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece.
| |
Collapse
|
3
|
Staikou A, Feidantsis K, Gkanatsiou O, Bibos MN, Hatziioannou M, Storey KB, Michaelidis B. Seasonal cellular stress phenomena and phenotypic plasticity in land snail Helix lucorum populations from different altitudes. J Exp Biol 2021; 224:273728. [PMID: 34796901 DOI: 10.1242/jeb.243298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Temperature, a major abiotic environmental factor, regulates various physiological functions in land snails and therefore determines their biogeographical distribution. Thus, species with different distributions may present different thermal tolerance limits. Additionally, the intense reactivation of snail metabolic rate upon arousal from hibernation or estivation may provoke stress. Land snails, Helix lucorum, display a wide altitudinal distribution resulting in populations being exposed to different seasonal temperature variations. The aim of the present study was to investigate the expression of heat shock proteins (Hsps), mitogen activated protein kinases (MAPKs) and proteins that are related to apoptosis (Bcl-2, ubiquitin), that have 'cytoprotective' roles and are also considered to be reliable indicators of stress because of their crucial role in maintaining cellular homeostasis. These proteins were assessed in H. lucorum individuals from two different populations, one at Axios (sea level, 0 m) and the other at Kokkinopilos (Olympus, 1250 m), as well as after mutual population exchanges, in order to find out whether the different responses of these stress-related proteins depend solely on the environmental temperature. The results showed seasonally altered levels in all studied proteins in the hepatopancreas and foot of snails, both among different populations and between the same populations exposed to varying altitudes. However, individuals of the same population in their native habitat or acclimatized to a different habitat showed a relatively similar pattern of expression, supporting the induction of the specific proteins according to the life history of each species.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ourania Gkanatsiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Modestos Nakos Bibos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Marianthi Hatziioannou
- Department of Ichthyology and Aquatic Environment, Faculty of Agricultural Sciences, University of Thessaly, Fytoko street, GR-38445 Volos, Greece
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 2021; 30:1381-1397. [PMID: 33503298 DOI: 10.1111/mec.15820] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity can serve as a stepping stone towards adaptation. Recently, studies have shown that gene expression contributes to emergent stress responses such as thermal tolerance, with tolerant and susceptible populations showing distinct transcriptional profiles. However, given the dynamic nature of gene expression, interpreting transcriptomic results in a way that elucidates the functional connection between gene expression and the observed stress response is challenging. Here, we present a conceptual framework to guide interpretation of gene expression reaction norms in the context of stress tolerance. We consider the evolutionary and adaptive potential of gene expression reaction norms and discuss the influence of sampling timing, transcriptomic resilience, as well as complexities related to life history when interpreting gene expression dynamics and how these patterns relate to host tolerance. We highlight corals as a case study to demonstrate the value of this framework for non-model systems. As species face rapidly changing environmental conditions, modulating gene expression can serve as a mechanistic link from genetic and cellular processes to the physiological responses that allow organisms to thrive under novel conditions. Interpreting how or whether a species can employ gene expression plasticity to ensure short-term survival will be critical for understanding the global impacts of climate change across diverse taxa.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA, USA
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Sara J S Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.,FAS Informatics, Harvard University, Cambridge, MA, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Köhler H, Capowiez Y, Mazzia C, Eckstein H, Kaczmarek N, Bilton MC, Burmester JKY, Capowiez L, Chueca LJ, Favilli L, Florit Gomila J, Manganelli G, Mazzuca S, Moreno‐Rueda G, Peschke K, Piro A, Quintana Cardona J, Sawallich L, Staikou AE, Thomassen HA, Triebskorn R. Experimental simulation of environmental warming selects against pigmented morphs of land snails. Ecol Evol 2021; 11:1111-1130. [PMID: 33598118 PMCID: PMC7863387 DOI: 10.1002/ece3.7002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
In terrestrial snails, thermal selection acts on shell coloration. However, the biological relevance of small differences in the intensity of shell pigmentation and the associated thermodynamic, physiological, and evolutionary consequences for snail diversity within the course of environmental warming are still insufficiently understood. To relate temperature-driven internal heating, protein and membrane integrity impairment, escape behavior, place of residence selection, water loss, and mortality, we used experimentally warmed open-top chambers and field observations with a total of >11,000 naturally or experimentally colored individuals of the highly polymorphic species Theba pisana (O.F. MÜller, 1774). We show that solar radiation in their natural Mediterranean habitat in Southern France poses intensifying thermal stress on increasingly pigmented snails that cannot be compensated for by behavioral responses. Individuals of all morphs acted neither jointly nor actively competed in climbing behavior, but acted similarly regardless of neighbor pigmentation intensity. Consequently, dark morphs progressively suffered from high internal temperatures, oxidative stress, and a breakdown of the chaperone system. Concomitant with increasing water loss, mortality increased with more intense pigmentation under simulated global warming conditions. In parallel with an increase in mean ambient temperature of 1.34°C over the past 30 years, the mortality rate of pigmented individuals in the field is, currently, about 50% higher than that of white morphs. A further increase of 1.12°C, as experimentally simulated in our study, would elevate this rate by another 26%. For 34 T. pisana populations from locations that are up to 2.7°C warmer than our experimental site, we show that both the frequency of pigmented morphs and overall pigmentation intensity decrease with an increase in average summer temperatures. We therefore predict a continuing strong decline in the frequency of pigmented morphs and a decrease in overall pigmentation intensity with ongoing global change in areas with strong solar radiation.
Collapse
Affiliation(s)
- Heinz‐R. Köhler
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | | | - Christophe Mazzia
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE) UMR 7263AMU, CNRSUniversité d´AvignonAvignon Cedex 9France
| | - Helene Eckstein
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Nils Kaczmarek
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Mark C. Bilton
- Namibian University of Science and TechnologyWindhoekNamibia
| | - Janne K. Y. Burmester
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | | | - Luis J. Chueca
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Department of Zoology and Animal Cell BiologyFaculty of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Leonardo Favilli
- Dipartimento di Scienze Fisiche, della Terra e dell'AmbienteSezione di Scienze AmbientaliUniversità degli Studi di SienaSienaItaly
| | | | - Giuseppe Manganelli
- Dipartimento di Scienze Fisiche, della Terra e dell'AmbienteSezione di Scienze AmbientaliUniversità degli Studi di SienaSienaItaly
| | - Silvia Mazzuca
- Lab of Plant Biology and Plant ProteomicsDepartment of Chemistry and Chemical TechnologiesUniversity of CalabriaRendeItaly
| | | | - Katharina Peschke
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Amalia Piro
- Lab of Plant Biology and Plant ProteomicsDepartment of Chemistry and Chemical TechnologiesUniversity of CalabriaRendeItaly
| | - Josep Quintana Cardona
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaEdifici ICTA‐ICP, campus de la UABBarcelonaSpain
- Ciutadella de MenorcaIlles BalearsSpain
| | - Lilith Sawallich
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Alexandra E. Staikou
- Department of ZoologySchool of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Henri A. Thomassen
- Comparative ZoologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Rita Triebskorn
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
- Steinbeis‐Transfer Centre for Ecotoxicology and EcophysiologyRottenburgGermany
| |
Collapse
|
6
|
Caixeta MB, Araújo PS, Rodrigues CC, Gonçalves BB, Araújo OA, Bevilaqua GB, Malafaia G, Silva LD, Rocha TL. Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: A case study on Biomphalaria glabrata. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123398. [PMID: 32763694 DOI: 10.1016/j.jhazmat.2020.123398] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) have been applied in several sectors in the environmental field, such as aquatic nanoremediation, due to their unique superparamagnetic and nanospecific properties. However, the knowledge of chronic toxicity of IONPs on aquatic invertebrate remains limited. Thus, the present study aimed to analyze the chronic toxicity of gluconic acid-functionalized IONPs (GLA-IONPs) and their dissolved counterpart (FeCl3) to freshwater snail Biomphalaria glabrata. GLA-IONPs were synthesized and characterized by multiple techniques, and the snails were exposed to both Fe forms at environmentally relevant concentrations (1.0-15.6 mg L-1) for 28 days. The bioaccumulation, mortality rate, behavior impairments, morphological alterations, fecundity and fertility of snails were analyzed. Results showed that GLA-IONPs induced high iron bioaccumulation in the entire soft tissue portion. Chronic exposure to GLA-IONP increased the behavioral impairments of snails compared to iron ions and control groups. Both Fe forms reduced the fecundity, while the mortality and reduced fertility were observed only after the exposure to GLA-IONPs at 15.6 mg L-1. Overall results indicated the behavioral impairments and reproductive toxicity associated, possibly, to bioaccumulation of GLA-IONPs in the B. glabrata. These results can be useful for the development of eco-friendly nanotechnologies.
Collapse
Affiliation(s)
- Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olacir Alves Araújo
- Laboratory of Chemistry and Molecular Modelling, Chemistry Institute, State University of Goiás, Anápolis, Goiás, Brazil
| | - Giovanni Bonatti Bevilaqua
- Laboratory of Chemistry and Molecular Modelling, Chemistry Institute, State University of Goiás, Anápolis, Goiás, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil
| | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Biomarker-based assessment of the muscle maintenance and energy status of anurans from an extremely seasonal semi-arid environment, the Brazilian Caatinga. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110590. [PMID: 31669706 DOI: 10.1016/j.cbpa.2019.110590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Strongly seasonal environments pose challenges for performance and survival of animals, especially when resource abundance seasonally fluctuates. We investigated the seasonal variation of key metabolic biomarkers in the muscles of males from three species (Rhinella jimi, R. granulosa and Pleurodema diplolister) of anurans from the drastically seasonal Brazilian semi-arid area, Caatinga. We examined the expression of proteins regulating energy turnover (AMP-activated protein kinase [AMPK] and protein kinase B [AKT]), protein synthesis and homeostasis (total and phosphorylated eukaryotic initiation factor 2α [eIF2α and p-eIF2α] and chaperone proteins [HSP 60, 70, and 90]) in muscles predominantly related to reproduction and locomotion. Cytochrome c oxidase (COX) activity was also assessed as an index of the muscle aerobic capacity. The expression pattern of metabolic biomarkers indicates that the maintenance of muscular function is regulated in a species-specific manner during the drastic seasonal variation. Rhinella jimi and R. granulosa that remain active during the drought appear to maintain muscles through more energy expensive pathways including elevated protein synthesis, while the aestivating P. diplolister employs energy conservation strategy suppressing protein synthesis, decreasing chaperone expression and increasing expression of AMPK. Two (P. diplolister and R. granulosa) of the three studied species activate cell survival pathways during the drought likely to prevent muscle atrophy, and all three studied species maintain the muscle aerobic capacity throughout the year, despite the resource limitation. These strategies are important considering the unpredictability of the reproductive event and high demand on muscular activity during the reproductive season in these amphibians. SUMMARY STATEMENT: We studied seasonal variation of key metabolic biomarkers in the muscles of anurans that experience drastic variation in environmental conditions and differ in seasonal activity patterns.
Collapse
|
8
|
Schweizer M, Triebskorn R, Köhler H. Snails in the sun: Strategies of terrestrial gastropods to cope with hot and dry conditions. Ecol Evol 2019; 9:12940-12960. [PMID: 31788227 PMCID: PMC6875674 DOI: 10.1002/ece3.5607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022] Open
Abstract
Terrestrial gastropods do not only inhabit humid and cool environments but also habitat in which hot and dry conditions prevail. Snail species that are able to cope with such climatic conditions are thus expected to having developed multifaceted strategies and mechanisms to ensure their survival and reproduction under heat and desiccation stress. This review paper aims to provide an integrative overview of the numerous adaptation strategies terrestrial snails have evolved to persist in hot and dry environments as well as their mutual interconnections and feedbacks, but also to outline research gaps and questions that remained unanswered. We extracted relevant information from more than 140 publications in order to show how biochemical, cellular, physiological, morphological, ecological, thermodynamic, and evolutionary parameters contribute to provide an overall picture of this classical example in stress ecology. These mechanisms range from behavioral and metabolic adaptations, including estivation, to the induction of chaperones and antioxidant enzymes, mucocyte and digestive gland cell responses and the modification and frequency of morphological features, particularly shell pigmentation. In this context, thermodynamic constraints call for processes of complex adaptation at varying levels of biological organization that are mutually interwoven. We were able to assemble extensive, mostly narrowly focused information from the literature into a web of network parameters, showing that future work on this subject requires multicausal thinking to account for the complexity of relationships involved in snails' adaptation to insolation, heat, and drought.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Rita Triebskorn
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
- Steinbeis Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany
| | - Heinz‐R. Köhler
- Animal Physiological EcologyInstitute of Evolution and EcologyUniversity of TübingenTübingenGermany
| |
Collapse
|
9
|
Staikou A, Kesidou E, Garefalaki ME, Michaelidis B. Laboratory studies on the thermal tolerance and response of enzymes of intermediate metabolism in different land snail species. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:262-272. [PMID: 27746363 DOI: 10.1016/j.cbpa.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
Abstract
Land snails species occur in a range of habitats from humid to semi-arid and arid ones and seasonal variations in their physiology and biochemical composition have been linked to annual cycles of photoperiod, temperature, humidity and water availability. In an effort to understand the thermal tolerance and the impact of temperature elevation on tissue metabolism of land snails we determined the mortality, heamolymph PO2 and the activities of enzymes of intermediary metabolism in three land snail species (Helix lucorum, Helix pomatia and Cornu aspersum) differing in their geographical distribution and inhabiting areas with different climatic characteristics. No mortality was observed in both population of Cornu aspersum, while Helix pomatia exhibited higher mortality than Helix lucorum. PO2 dropped within the first 10days of exposure to elevated temperature in all species, although in Cornu aspersum this decrease was significantly lower. No significant reduction in the enzymatic activities of all glycolytic enzymes studied, as well as of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HOAD) was observed in the more thermal tolerant species C. aspersum from both populations studied. Significant reductions of enzymatic activity of the glycolytic enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and d-Lactate dehydrogenase (d-LDH) was observed in Helix lucorum and Helix pomatia. The observed inter-specific differences seem to be in accordance with the life cycle characteristics of each species and may be attributed to climatic differences among habitats within their distribution range.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Evagelia Kesidou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Marina-Elena Garefalaki
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece.
| |
Collapse
|
10
|
Mizrahi T, Goldenberg S, Heller J, Arad Z. Geographic variation in thermal tolerance and strategies of heat shock protein expression in the land snail Theba pisana in relation to genetic structure. Cell Stress Chaperones 2016; 21:219-38. [PMID: 26503612 PMCID: PMC4786534 DOI: 10.1007/s12192-015-0652-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023] Open
Abstract
Land snails are exposed to conditions of high ambient temperature and low humidity, and their survival depends on a suite of morphological, behavioral, physiological, and molecular adaptations to the specific microhabitat. We tested in six populations of the land snail Theba pisana whether adaptations to different habitats affect their ability to cope with thermal stress and their strategies of heat shock protein (HSP) expression. Levels of Hsp70 and Hsp90 in the foot tissue were measured in field-collected snails and after acclimation to laboratory conditions. Snails were also exposed to various temperatures (32 up to 54 °C) for 2 h and HSP messenger RNA (mRNA) levels were measured in the foot tissue and survival was determined. To test whether the physiological and molecular data are related to genetic parameters, we analyzed T. pisana populations using partial sequences of nuclear and mitochondrial DNA ribosomal RNA genes. We show that populations collected from warmer habitats were more thermotolerant and had higher constitutive levels of Hsp70 isoforms in the foot tissue. Quantitative real-time polymerase chain reaction (PCR) analysis indicated that hsp70 and hsp90 mRNA levels increased significantly in response to thermal stress, although the increase in hsp70 mRNA was larger compared to hsp90 and its induction continued up to higher temperatures. Generally, warm-adapted populations had higher temperatures of maximal induction of hsp70 mRNA synthesis and higher upper thermal limits to HSP mRNA synthesis. Our study suggests that Hsp70 in the foot tissue of T. pisana snails may have important roles in determining stress resistance, while Hsp90 is more likely implicated in signal transduction processes that are activated by stress. In the phylogenetic analysis, T. pisana haplotypes were principally divided into two major clades largely corresponding to the physiological ability to withstand stress, thus pointing to genetically fixed tolerance.
Collapse
Affiliation(s)
- Tal Mizrahi
- Department of Biology, Technion, Haifa, 32000, Israel
| | | | - Joseph Heller
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zeev Arad
- Department of Biology, Technion, Haifa, 32000, Israel.
| |
Collapse
|
11
|
Yang C, Wang L, Liu C, Zhou Z, Zhao X, Song L. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress Chaperones 2015; 20:297-308. [PMID: 25261233 PMCID: PMC4326393 DOI: 10.1007/s12192-014-0546-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
The heat shock protein 90 (HSP90) is a highly abundant and ubiquitous molecular chaperone which plays essential roles in many cellular processes. In the present study, the messenger RNA (mRNA) expressions of HSP90 after acute heat stress were investigated in two bay scallop populations (Argopecten irradians irradians and Argopecten irradians concentricus). The heat-resistant scallop A. i. concentricus, which is distributed in Zhanjiang, China, exhibited significantly higher induction of HSP90 compared with that of the heat-sensitive scallop A. i. irradians, which is distributed in Qinhuangdao, China. The promoter sequence of HSP90 gene from bay scallop (AiHSP90) was cloned, and the polymorphisms within this region were investigated by sequencing to analyze their association with heat tolerance. A total of six single nucleotide polymorphisms (SNPs), including -1167 T-C, -1023 A-C, -799 C-T, -774 A-G, -686 C-T, and -682 A-C, were identified in the amplified promoter region, and most of them affected the putative transcription factor binding sites except for locus -1167. All the six SNP sites were found to be associated with heat tolerance after Hardy-Weinberg equilibrium (HWE) and association analysis. Moreover, haplotypes CACACC and TCTATC were also found to be associated with heat tolerance based on the result of linkage disequilibrium and association analysis. The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP90. Meanwhile, the six genotypes (-1167 TT, -1023 CC, -799 TT, -774 GG, -686 CC, and -682 AA) and two haplotypes (CACACC and TCTATC) could be used as potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Lingling Wang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Conghui Liu
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi Zhou
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Xin Zhao
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Linsheng Song
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| |
Collapse
|
12
|
Mizrahi T, Goldenberg S, Heller J, Arad Z. Natural variation in resistance to desiccation and heat shock protein expression in the land snail Theba pisana along a climatic gradient. Physiol Biochem Zool 2014; 88:66-80. [PMID: 25590594 DOI: 10.1086/679485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Land snails frequently encounter desiccating conditions, and their survival depends on a suite of morphological, physiological, and molecular adaptations to the specific microhabitat. Strategies of survival can be determined by integrating information from various levels of biological organization. In this study, we used a combination of physiological parameters related to water economy and molecular factors (stress protein expression) to investigate the strategies of survival adopted by seven populations of the Mediterranean-type land snail Theba pisana from different habitats. We analyzed water compartmentalization during aestivation and used experimental desiccation to compare desiccation resistance. We also measured the endogenous levels of heat shock proteins (HSPs) Hsp72, Hsp74, and Hsp90 under nonstress conditions and analyzed the HSP response to desiccation in two populations that differed mostly in their resistance to desiccation. We revealed significant intraspecific differences in resistance to desiccation that seem to be determined by the speed of recruitment of the water-preserving mechanisms. The ability to cope with desiccating conditions was correlated with habitat temperature but not with the rainfall gradient, implying that in the coastal region, temperature is likely to have a major impact on desiccation resistance rather than precipitation. Also, higher desiccation resistance was correlated with higher constitutive levels of Hsp74 in the foot tissue. HSPs were upregulated during desiccation, but the response was delayed and was milder in the most resistant population compared to the most susceptible one. Our study suggests that T. pisana populations from warmer habitats were more resistant to desiccation and developed distinct strategies of HSP expression for survival, namely, the maintenance of high constitutive levels of Hsp70 together with a delayed and limited response to stress.
Collapse
Affiliation(s)
- Tal Mizrahi
- Department of Biology, Technion, Haifa 32000, Israel; 2Department of Evolution, Systematics, and Ecology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
13
|
Troschinski S, Dieterich A, Krais S, Triebskorn R, Köhler HR. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina. ACTA ACUST UNITED AC 2014; 217:4399-405. [PMID: 25394630 DOI: 10.1242/jeb.113167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures.
Collapse
Affiliation(s)
- Sandra Troschinski
- Animal Physiological Ecology, Institute of Evolution and Ecology, Tübingen University, 72072 Tübingen, Germany.
| | - Andreas Dieterich
- Animal Physiological Ecology, Institute of Evolution and Ecology, Tübingen University, 72072 Tübingen, Germany
| | - Stefanie Krais
- Animal Physiological Ecology, Institute of Evolution and Ecology, Tübingen University, 72072 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, Institute of Evolution and Ecology, Tübingen University, 72072 Tübingen, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, Tübingen University, 72072 Tübingen, Germany
| |
Collapse
|
14
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
15
|
Loi P, Iuso D, Czernik M, Zacchini F, Ptak G. Towards storage of cells and gametes in dry form. Trends Biotechnol 2013; 31:688-95. [DOI: 10.1016/j.tibtech.2013.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
16
|
Axenov-Gribanov DV, Bedulina DS, Shatilina ZM, Lubyaga YA, Vereshchagina KP, Timofeyev MA. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp Biochem Physiol B Biochem Mol Biol 2013; 167:16-22. [PMID: 24076104 DOI: 10.1016/j.cbpb.2013.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/24/2023]
Abstract
Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge.
Collapse
|
17
|
Barker NP, Fearon JL, Herbert DG. Moisture variables, and not temperature, are responsible for climate filtering and genetic bottlenecks in the South African endemic terrestrial mollusc Prestonella (Orthalicoidea). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0496-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Bedulina DS, Evgen'ev MB, Timofeyev MA, Protopopova MV, Garbuz DG, Pavlichenko VV, Luckenbach T, Shatilina ZM, Axenov-Gribanov DV, Gurkov AN, Sokolova IM, Zatsepina OG. Expression patterns and organization of thehsp70genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneusandE. verrucosus) from Lake Baikal. Mol Ecol 2013; 22:1416-30. [DOI: 10.1111/mec.12136] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Affiliation(s)
- D. S. Bedulina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. B. Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya str. 3 Pushchino 142290 Russia
| | - M. A. Timofeyev
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. V. Protopopova
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - D. G. Garbuz
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| | - V. V. Pavlichenko
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - T. Luckenbach
- UFZ Helmholtz Centre for Environmental Research; Department of Bioanalytical Ecotoxicology; Permoserstr.15 Leipzig 04318 Germany
| | - Z. M. Shatilina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - D. V. Axenov-Gribanov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - A. N. Gurkov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - I. M. Sokolova
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Blvd. Charlotte NC 28223 USA
| | - O. G. Zatsepina
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| |
Collapse
|