1
|
Wang D, Zhu Z, Zhao J, Wang L, Wang Y, Wang T, Zhang Q, Fu Y, Huang Y, Wu X, Wang Y, Wen Y, Tao G. Dehydroepiandrosterone ameliorates primary dysmenorrhea by suppressing the SP1/Hsp90ab1/COX-2 signaling pathway. Bioorg Chem 2025; 156:108235. [PMID: 39914036 DOI: 10.1016/j.bioorg.2025.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/28/2025]
Abstract
Androgens play a protective role in alleviating chronic pain in women, including pelvic pain; however, their specific role and underlying mechanism in the treatment of primary dysmenorrhea (PD) remain unclear. In this study, clinical data revealed that women with PD exhibited reduced serum testosterone levels, which were inversely correlated with the severity of dysmenorrhea compared to healthy controls. Using a mouse model of PD, we observed significant upregulation of Hsp90ab1 and the PD markers COX-2 in the uterus. Treatment with dehydroepiandrosterone (DHEA), an androgen precursor, suppressed the uterine expression of Hsp90ab1 and COX-2, alleviating pain symptoms. Notably, pharmacological inhibition of Hsp90ab1 with geldanamycin reduced COX-2 expression by inactivating the p-p38 and p-JNK signaling pathways, and effectively mitigated PD. Further analysis identified specificity protein 1 (SP1) as a key driver of Hsp90ab1 transcription through its binding to the promoter region. Inhibition of SP1 using plicamycin reduced Hsp90ab1 expression, alleviated pain, and decreased uterine edema in the mouse model. Conversely, lentiviral overexpression of Hsp90ab1 reversed the therapeutic effects of DHEA, including nociception relief, reduction of uterine edema, and suppression of COX-2 expression. These findings suggest that androgen deficiency triggers SP1-mediated upregulation of Hsp90ab1 and COX-2, forming a critical regulatory loop that exacerbates menstrual cramps. Targeting this pathway represents a promising therapeutic strategy for managing PD.
Collapse
Affiliation(s)
- Daojuan Wang
- Department of Pain Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China; State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China
| | - Juan Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 China
| | - Lei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028 China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China
| | - Tingyu Wang
- Department of Pain Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002 China
| | - Yu Fu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China
| | - Ying Huang
- Department of Pain Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040 China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China.
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210008 China.
| | - Gaojian Tao
- Department of Pain Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China.
| |
Collapse
|
2
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
3
|
Yang J, Jiao C, Liu N, Liu W, Wang Y, Pan Y, Kong L, Guo W, Xu Q. Polydatin-Mediated Inhibition of HSP90α Disrupts NLRP3 Complexes and Alleviates Acute Pancreatitis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0551. [PMID: 39691768 PMCID: PMC11651664 DOI: 10.34133/research.0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
The NLRP3 inflammasome plays a critical role in various inflammatory conditions. However, despite extensive research in targeted drug development for NLRP3, including MCC950, clinical success remains elusive. Here, we discovered that the activated NLRP3 inflammasome complex (disc-NLRP3) and the activating mutation L351P exhibited resistance to MCC950. Through investigations using the small-molecule compound polydatin, HSP90α was found to stabilize both the resting (cage-NLRP3) and activated state (disc-NLRP3) of NLRP3 complexes, sustaining its activation. Our mechanistic studies revealed that polydatin specifically targets HSP90α, binding to it directly and subsequently interfering with the HSP90α-NLRP3 interaction. This disruption leads to the dissipation of cage-NLRP3, disc-NLRP3 complexes and NLRP3 L351P. Importantly, genetic and pharmacological inactivation of HSP90α effectively reduced NLRP3 inflammasome activation and alleviated cerulein-induced acute pancreatitis. These therapeutic effects highlight the clinical potential of HSP90α inhibition. Our findings demonstrate that HSP90α is crucial for the stability of both the resting and activated states of the NLRP3 inflammasome during its sustained activation, and targeting HSP90α represents a promising therapeutic strategy for diseases driven by the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiashu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Nannan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Yueyao Wang
- School of Pharmacy,
Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences,
Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Ying C, Hua Z, Ma F, Yang Y, Wang Y, Liu K, Yin G. Hepatic immune response of Coilia nasus infected with Anisakidae during ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101261. [PMID: 38897035 DOI: 10.1016/j.cbd.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
5
|
Yang L, Zhu JC, Li SJ, Zeng X, Xue XR, Dai Y, Wei ZF. HSP90β shapes the fate of Th17 cells with the help of glycolysis-controlled methylation modification. Br J Pharmacol 2024; 181:3886-3907. [PMID: 38881036 DOI: 10.1111/bph.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the β but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90β would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90β. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS The selective pharmacological inhibitor (HSP90βi) and shHSP90β significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90βi or shHSP90β were able to inhibit lymphocyte proliferation and colitis in mice. HSP90βi and shHSP90β selectively weakened glycolysis by stopping the direct association of HSP90β and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS HSP90β shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.
Collapse
Affiliation(s)
- Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing-Chao Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jia Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Ru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Bioactive components in prunella vulgaris for treating Hashimoto's disease via regulation of innate immune response in human thyrocytes. Heliyon 2024; 10:e36103. [PMID: 39253271 PMCID: PMC11382315 DOI: 10.1016/j.heliyon.2024.e36103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a thyroid autoimmune disease characterized by lymphocytic infiltration and thyroid destruction. Prunella vulgaris (PV) is a traditional Chinese herbal medicine with documented clinical efficacy in treating HT. We previously reported an immunoregulatory effect of PV in thyrocytes; however, the bioactive components of PV remained unclear. This study aimed to elucidate key components of PV for treating HT and their acting mechanisms. Methods Network pharmacology was used to predict key PV components for HT. The predicted components were tested to determine whether they could exert an immunoregulatory effect of PV in human thyrocytes. Limited proteolysis-mass spectrometry (Lip-MS) was used to explore interacting proteins with PV components in human thyrocytes. Microscale thermophoresis binding assay was used to evaluate the affinity of PV components with the target protein. Results Eleven PV components with 192 component targets and 3415 HT-related genes were gathered from public databases. With network pharmacology, a 'component-target-disease' network was established wherein four flavonoids including quercetin, luteolin, kaempferol, morin, and a phytosterol, β-sitosterol were predicted as key components in PV for HT. In stimulated primary human thyrocytes or Nthy-ori-31 cells, key components inhibited gene expressions of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interferon-β (IFN-β), cellular apoptosis, and activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3). Heat shock protein 90 alpha, class A, member 1 (HSP90AA1), was identified to interact with flavonoids in PV by Lip-MS. Morin had the highest affinity with HSP90AA1 (KD = 122.74 μM), followed by kaempferol (KD = 168.53 μM), luteolin (KD = 293.94 μM), and quercetin (KD = 356.86 μM). Conclusion Quercetin, luteolin, kaempferol, morin, and β-sitosterol reproduced an anti-inflammatory and anti-apoptosis effect of PV in stimulated human thyrocytes, which potentially contributed to the treatment efficacy of PV in HT.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, 210008, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| |
Collapse
|
7
|
Cruz KP, Petersen ALOA, Amorim MF, Pinho AGSF, Palma LC, Dantas DAS, Silveira MRG, Silva CSA, Cordeiro ALJ, Oliveira IG, Pita GB, Souza BCA, Bomfim GC, Brodskyn CI, Fraga DBM, Lima IS, de_Santana MBR, Teixeira HMP, de_Menezes JPB, Santos WLC, Veras PST. Intraperitoneal Administration of 17-DMAG as an Effective Treatment against Leishmania braziliensis Infection in BALB/c Mice: A Preclinical Study. Pathogens 2024; 13:630. [PMID: 39204231 PMCID: PMC11357173 DOI: 10.3390/pathogens13080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Antonio L. O. A. Petersen
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Baiano Federal Institute of Education, Science and Technology—Santa Inês Campus, BR 420, Santa Inês Road, Rural Zone, Ubaíra 45320-000, Bahia, Brazil
| | - Marina F. Amorim
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Alan G. S. F. Pinho
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Luana C. Palma
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Diana A. S. Dantas
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Mariana R. G. Silveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Carine S. A. Silva
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Ana Luiza J. Cordeiro
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Izabella G. Oliveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Gabriella B. Pita
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Bianca C. A. Souza
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Gilberto C. Bomfim
- Laboratory of Population Genetics and Molecular Evolution, Biology Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil;
| | - Cláudia I. Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Deborah B. M. Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Isadora S. Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Maria B. R. de_Santana
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Helena M. P. Teixeira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Juliana P. B. de_Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Washington L. C. Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
8
|
Tukaj S. Dual role of autoantibodies to heat shock proteins in autoimmune diseases. Front Immunol 2024; 15:1421528. [PMID: 38903496 PMCID: PMC11187000 DOI: 10.3389/fimmu.2024.1421528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens (autoantigens) by immune system cells. Loss of immunological tolerance may lead to the generation of autoantibodies and, consequently, tissue damage. It has already been proven that highly immunogenic bacterial and autologous extracellular heat shock proteins (eHsps) interact with immune cells of the innate and adaptive arms of the immune system. The latter interactions may stimulate a humoral (auto)immune response and lead to the generation of anti-Hsps (auto)antibodies. Although circulating levels of anti-Hsps autoantibodies are often elevated in patients suffering from multiple inflammatory and autoimmune diseases, their role in the development of pathological conditions is not fully established. This mini-review presents the dual role of anti-Hsps autoantibodies - protective or pathogenic - in the context of the development of selected autoimmune diseases.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Teixeira Alves LG, Baumgardt M, Langner C, Fischer M, Maria Adler J, Bushe J, Firsching TC, Mastrobuoni G, Grobe J, Hoenzke K, Kempa S, Gruber AD, Hocke AC, Trimpert J, Wyler E, Landthaler M. Protective role of the HSP90 inhibitor, STA-9090, in lungs of SARS-CoV-2-infected Syrian golden hamsters. BMJ Open Respir Res 2024; 11:e001762. [PMID: 38423952 PMCID: PMC10910676 DOI: 10.1136/bmjresp-2023-001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The emergence of new SARS-CoV-2 variants, capable of escaping the humoral immunity acquired by the available vaccines, together with waning immunity and vaccine hesitancy, challenges the efficacy of the vaccination strategy in fighting COVID-19. Improved therapeutic strategies are urgently needed to better intervene particularly in severe cases of the disease. They should aim at controlling the hyperinflammatory state generated on infection, reducing lung tissue pathology and inhibiting viral replication. Previous research has pointed to a possible role for the chaperone HSP90 in SARS-CoV-2 replication and COVID-19 pathogenesis. Pharmacological intervention through HSP90 inhibitors was shown to be beneficial in the treatment of inflammatory diseases, infections and reducing replication of diverse viruses. METHODS In this study, we investigated the effects of the potent HSP90 inhibitor Ganetespib (STA-9090) in vitro on alveolar epithelial cells and alveolar macrophages to characterise its effects on cell activation and viral replication. Additionally, the Syrian hamster animal model was used to evaluate its efficacy in controlling systemic inflammation and viral burden after infection. RESULTS In vitro, STA-9090 reduced viral replication on alveolar epithelial cells in a dose-dependent manner and lowered significantly the expression of proinflammatory genes, in both alveolar epithelial cells and alveolar macrophages. In vivo, although no reduction in viral load was observed, administration of STA-9090 led to an overall improvement of the clinical condition of infected animals, with reduced oedema formation and lung tissue pathology. CONCLUSION Altogether, we show that HSP90 inhibition could serve as a potential treatment option for moderate and severe cases of COVID-19.
Collapse
Affiliation(s)
- Luiz Gustavo Teixeira Alves
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Morris Baumgardt
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mara Fischer
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Judith Bushe
- Research Unit Analytical Pathology, Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Guido Mastrobuoni
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jenny Grobe
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katja Hoenzke
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Kempa
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Achim Dieter Gruber
- Department of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Andreas Christian Hocke
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Emanuel Wyler
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Lechuga S, Marino-Melendez A, Naydenov NG, Zafar A, Braga-Neto MB, Ivanov AI. Regulation of Epithelial and Endothelial Barriers by Molecular Chaperones. Cells 2024; 13:370. [PMID: 38474334 PMCID: PMC10931179 DOI: 10.3390/cells13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Atif Zafar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Manuel B. Braga-Neto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| |
Collapse
|
11
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Ben Abdallah H, Bregnhøj A, Ghatnekar G, Iversen L, Johansen C. Heat shock protein 90 inhibition attenuates inflammation in models of atopic dermatitis: a novel mechanism of action. Front Immunol 2024; 14:1289788. [PMID: 38274815 PMCID: PMC10808526 DOI: 10.3389/fimmu.2023.1289788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Background Heat shock protein 90 (HSP90) is an important chaperone supporting the function of many proinflammatory client proteins. Recent studies indicate HSP90 inhibition may be a novel mechanism of action for inflammatory skin diseases; however, this has not been explored in atopic dermatitis (AD). Objectives Our study aimed to investigate HSP90 as a novel target to treat AD. Methods Experimental models of AD were used including primary human keratinocytes stimulated with cytokines (TNF/IFNγ or TNF/IL-4) and a mouse model established by MC903 applications. Results In primary human keratinocytes using RT-qPCR, the HSP90 inhibitor RGRN-305 strongly suppressed the gene expression of Th1- (TNF, IL1B, IL6) and Th2-associated (CCL17, CCL22, TSLP) cytokines and chemokines related to AD. We next demonstrated that topical and oral RGRN-305 robustly suppressed MC903-induced AD-like inflammation in mice by reducing clinical signs of dermatitis (oedema and erythema) and immune cell infiltration into the skin (T cells, neutrophils, mast cells). Interestingly, topical RGRN-305 exhibited similar or slightly inferior efficacy but less weight loss compared with topical dexamethasone. Furthermore, RNA sequencing of skin biopsies revealed that RGRN-305 attenuated MC903-induced transcriptome alterations, suppressing genes implicated in inflammation including AD-associated cytokines (Il1b, Il4, Il6, Il13), which was confirmed by RT-qPCR. Lastly, we discovered using Western blot that RGRN-305 disrupted JAK-STAT signaling by suppressing the activity of STAT3 and STAT6 in primary human keratinocytes, which was consistent with enrichment analyses from the mouse model. Conclusion HSP90 inhibition by RGRN-305 robustly suppressed inflammation in experimental models mimicking AD, proving that HSP90 inhibition may be a novel mechanism of action in treating AD.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Sitko K, Starke M, Tukaj S. Heat shock protein 90 (Hsp90) inhibitor STA-9090 (Ganetespib) ameliorates inflammation in a mouse model of atopic dermatitis. Cell Stress Chaperones 2023; 28:935-942. [PMID: 37851180 PMCID: PMC10746637 DOI: 10.1007/s12192-023-01387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Molecular chaperones belonging to the heat shock protein 90 (Hsp90) family are implicated in inflammatory processes and described as potential novel therapeutic targets in autoimmune/inflammatory skin diseases. While the pathological role of circulating Hsp90 has been recently proposed in patients with atopic dermatitis (AD), a chronic inflammatory skin disease characterized by intense itching and recurrent skin lesions, studies aimed at investigating the role of Hsp90 as a potential target of AD therapy have not yet been conducted. Here, the effects of the Hsp90 blocker STA-9090 (Ganetespib) applied systemically or topically were determined in an experimental mouse model of dinitrochlorobenzene (DNCB)-induced AD. Intraperitoneal administration of STA-9090 ameliorated clinical disease severity, histological epidermal thickness, and dermal leukocyte infiltration in AD mice which was associated with reducing the scratching behavior in DNCB-treated animals. Additionally, topically applied STA-9090 led to lowered disease activity in AD mice, reduced serum levels of IgE, and up-regulated filaggrin expression in lesional skin samples. Our observations suggest that Hsp90 may be a promising therapeutic target in atopic dermatitis and potentially other inflammatory or autoimmune dermatoses.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Starke
- Department of Plant Cytology and Embryology Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
15
|
Zhong L, Wu Y, Huang C, Liu K, Ye CF, Ren Z, Wang Y. Acute toxicological evaluation of AT-533 and AT-533 gel in Sprague-Dawley rats. BMC Pharmacol Toxicol 2023; 24:54. [PMID: 37833798 PMCID: PMC10576390 DOI: 10.1186/s40360-023-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND AT-533 is a novel heat shock protein 90 inhibitor that exerting anti-inflammatory, antiviral, and antitumor efficacy. Furthermore, the gel made of AT-533 as raw material named AT-533 gel has the function of repairing keratitis and dermatitis caused by herpes virus infection. However, the acute safety evaluation of AT-533 and AT-533 gel has not been conducted. METHODS AND RESULTS Herein, we performed acute toxicological studies of AT-533 and AT-533 gel in Sprague-Dawley rats. Fifteen-day acute toxicity study of AT-533 was conducted in both male and female Sprague-Dawley rats at doses of 5, 50, 250 and 500 mg/kg and AT-533 gel at 5 g/kg in the study. During experiment, food consumption and mortality were observed and body weight, hematology, serum biochemistry and histopathological assessment of rats were carried out. No abnormal changes were observed in rats percutaneously treated with AT-533 at 5 mg/kg and 50 mg/kg and AT-533 gel. However, loss of appetite and body weight, adverse reactions, toxicologically relevant alterations in hematology and biochemistry were found in rats percutaneously treated with AT-533 at 250 mg/kg and 500 mg/kg during 15-day acute dermic toxicity study. CONCLUSIONS The aforementioned results suggested that the LD50 of AT-533 is 228.382 mg/kg and the LD50 of AT-533 gel is greater than 5 g/kg. These findings indicated that AT-533 is non-toxic in rats when the dose less than 50 mg/kg and AT-533 gel can be considered a gel with no toxicity at doses less than 5 g/kg.
Collapse
Affiliation(s)
- Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
- Guangzhou (Jinan) Biomedical Research and Development Center Co. Ltd, Guangzhou, China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
- Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Cui-Fang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China.
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China.
- Guangzhou (Jinan) Biomedical Research and Development Center Co. Ltd, Guangzhou, China.
| |
Collapse
|
16
|
Gao W, Wang Z, Li W, Li Y, Liu M. Biomarkers and biologics related with psoriasis and psoriatic arthritis. Int Immunopharmacol 2023; 122:110646. [PMID: 37454633 DOI: 10.1016/j.intimp.2023.110646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Over the past half century, psoriasis is considered as an immune-mediated inflammatory skin disease with the combined hallmarks of autoimmunity and autoinflammation, according to growing volumes of clinical and experimental findings. There is currently no cure for psoriasis, current treatment strategies focus on symptom control, disease minimization, and patient's quality of life enhancement. To meet these challenges, it keeps imperative to discover potential biomarkers, so that not only can they be used for the prediction and monitoring of psoriasis disease in clinic, but also can provide novel therapeutic targets or treatment strategies for psoriasis sufferers. This review systematically demonstrates the research progress of psoriasis-related biomarkers and elaborates their related mechanisms in the pathological development of psoriasis and psoriatic arthritis. In addition, we summarize the development of biologic therapies for psoriasis and psoriatic arthritis in order to drive the broader discussion of psoriasis as an autoimmune-mediated inflammatory skin disease.
Collapse
Affiliation(s)
- Weize Gao
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhan Wang
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshuai Li
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yongxin Li
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingjun Liu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
17
|
Li S, Wu X, Ma Y, Zhang H, Chen W. Prediction and verification of the active ingredients and potential targets of Erhuang Quzhi Granules on non-alcoholic fatty liver disease based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116435. [PMID: 37023836 DOI: 10.1016/j.jep.2023.116435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erhuang Quzhi Granules (EQG) is a compound composed of 13 traditional Chinese medicines developed by the First Affiliated Hospital of Shihezi University. In clinical practice, EQG has been applied to the treatment of hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), and could significantly improve the serum biochemical indicators of NAFLD patients. AIM OF THE STUDY This study aims to explore the bioactive compounds, potential targets, and molecular mechanisms of EQG against NAFLD through network pharmacology, molecular docking, and experimental verification. MATERIALS AND METHODS The chemical components of EQG came from the literature and quality standard. Bioactive compounds were screened based on the absorption, distribution, metabolism, and excretion (ADME) feature, and their potential targets were predicted using the substructure-drug-target network-based inference (SDTNBI). The core targets and signaling pathways were obtained through the analysis of protein-protein interaction (PPI), gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The results were further confirmed by literature retrieval, molecular docking, and in vivo experiments. RESULTS The results of network pharmacology showed 12 active ingredients and 10 core targets for EQG in treating NAFLD. And EQG mainly regulates lipid and atherosclerosis-related pathways to improve NAFLD. The collected literature verified the regulatory effect of the active components of EQG on core targets TP53, PPARG, EGFR, HIF1A, PPARA, and MTOR. Molecular docking results showed that Aloe-Emodin (AE), Emodin, Physcion, and Rhein (RH) had stable binding structures with the core targets HSP90AA1. In vivo experiment showed that AE and RH reduced aspartate transaminase (AST), alanine aminotransferase (ALT), interleukin (IL)-1β, IL-6, IL18, and tumor necrosis factor α (TNF-α) in the serum or liver of NAFLD mice, improved liver lipid deposition and fibrosis, and inhibit gene expression of nuclear factor kappa B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), IL-1β, TNF-α and protein expression of HSP90, NF-κB and Cleaved caspase-1. CONCLUSIONS This study comprehensively revealed the biological compounds, potential targets, and molecular mechanisms of EQG in the treatment of NAFLD, providing a reference basis for the promotion of EQG in the clinic.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Xi Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yue Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
18
|
Radhakrishnan A, Mukherjee T, Mahish C, Kumar PS, Goswami C, Chattopadhyay S. TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunol 2023; 24:16. [PMID: 37391696 PMCID: PMC10314470 DOI: 10.1186/s12865-023-00549-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
Collapse
Affiliation(s)
- Anukrishna Radhakrishnan
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Chandan Mahish
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - P Sanjai Kumar
- Institute of Life Sciences, Nalco Nagar Rd, NALCO Square, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| | - Chandan Goswami
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| |
Collapse
|
19
|
Son H, Choi HS, Baek SE, Kim YH, Hur J, Han JH, Moon JH, Lee GS, Park SG, Woo CH, Eo SK, Yoon S, Kim BS, Lee D, Kim K. Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother 2023; 161:114566. [PMID: 36963359 DOI: 10.1016/j.biopha.2023.114566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
The loss of endothelial cells is associated with the accumulation of monocytes/macrophages underneath the surface of the arteries, where cells are prone to mechanical stimulation, such as shear stress. However, the impact of mechanical stimuli on monocytic cells remains unclear. To assess whether mechanical stress affects monocytic cell function, we examined the expression of inflammatory molecules and surface proteins, whose levels changed following shear stress in human THP-1 cells. Shear stress increased the inflammatory chemokine CCL2, which enhanced the migration of monocytic cells and tumor necrosis factor (TNF)-α and interleukin (IL)- 1β at transcriptional and protein levels. We identified that the surface levels of heat shock protein 70 (HSP70), HSP90, and HSP105 increased using mass spectrometry-based proteomics, which was confirmed by western blot analysis, flow cytometry, and immunofluorescence. Treatment with HSP70/HSP105 and HSP90 inhibitors suppressed the expression and secretion of CCL2 and monocytic cell migration, suggesting an association between HSPs and inflammatory responses. We also demonstrated the coexistence and colocalization of increased HSP90 immunoreactivity and CD68 positive cells in atherosclerotic plaques of ApoE deficient mice fed a high-fat diet and human femoral artery endarterectomy specimens. These results suggest that monocytes/macrophages affected by shear stress polarize to a pro-inflammatory phenotype and increase surface protein levels involved in inflammatory responses. The regulation of the abovementioned HSPs upregulated on the monocytes/macrophages surface may serve as a novel therapeutic target for inflammation due to shear stress.
Collapse
Affiliation(s)
- Hyojae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Bioinformatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 49415, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
20
|
Status Quo and Future Perspectives of Molecular and Genomic Studies on the Genus Biomphalaria-The Intermediate Snail Host of Schistosoma mansoni. Int J Mol Sci 2023; 24:ijms24054895. [PMID: 36902324 PMCID: PMC10003693 DOI: 10.3390/ijms24054895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Schistosomiasis, or also generally known as bilharzia or snail fever, is a parasitic disease that is caused by trematode flatworms of the genus Schistosoma. It is considered by the World Health Organisation as the second most prevalent parasitic disease after malaria and affects more than 230 million people in over 70 countries. People are infected via a variety of activities ranging from agricultural, domestic, occupational to recreational activities, where the freshwater snails Biomphalaria release Schistosoma cercariae larvae that penetrate the skin of humans when exposed in water. Understanding the biology of the intermediate host snail Biomphalaria is thus important to reveal the potential spread of schistosomiasis. In this article, we present an overview of the latest molecular studies focused on the snail Biomphalaria, including its ecology, evolution, and immune response; and propose using genomics as a foundation to further understand and control this disease vector and thus the transmission of schistosomiasis.
Collapse
|
21
|
Ben Abdallah H, Seeler S, Bregnhøj A, Ghatnekar G, Kristensen LS, Iversen L, Johansen C. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol 2023; 14:1128897. [PMID: 36825010 PMCID: PMC9941631 DOI: 10.3389/fimmu.2023.1128897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Chronic inflammatory skin diseases may have a profound negative impact on the quality of life. Current treatment options may be inadequate, offering an unsatisfactory response or side effects. Therefore, ongoing efforts exist to identify novel effective and safe treatments. Heat shock protein (HSP) 90 is a chaperone that promotes the activity of a wide range of client proteins including key proinflammatory molecules involved in aberrant inflammation. Recently, a proof-of-concept clinical trial of 13 patients suggested that RGRN-305 (an HSP90 inhibitor) may be an oral treatment for psoriasis. However, HSP90 inhibition may be a novel therapeutic approach extending beyond psoriasis to include multiple immune-mediated inflammatory skin diseases. Methods This study aimed to investigate (i) the anti-inflammatory effects and mechanisms of HSP90 inhibition and (ii) the feasibility of topical RGRN-305 administration (new route of administration) in models of inflammation elicited by 12-O-tetradecanoylphorbol-13-acetate (TPA) in primary human keratinocytes and mice (irritative dermatitis murine model). Results/Discussion In primary human keratinocytes stimulated with TPA, a Nanostring® nCounter gene expression assay demonstrated that HSP90 inhibition with RGRN-305 suppressed many proinflammatory genes. Furthermore, when measured by quantitative real-time polymerase chain reaction (RT-qPCR), RGRN-305 significantly reduced the gene expression of TNF, IL1B, IL6 and CXCL8. We next demonstrated that topical RGRN-305 application significantly ameliorated TPA-induced skin inflammation in mice. The increase in ear thickness (a marker of inflammation) was significantly reduced (up to 89% inhibition). In accordance, RT-qPCR of the ear tissue demonstrated that RGRN-305 robustly reduced the gene expression of proinflammatory markers (Tnf, Il1b, Il6, Il17A and Defb4). Moreover, RNA sequencing revealed that RGRN-305 mitigated TPA-induced alterations in gene expression and suppressed genes implicated in inflammation. Lastly, we discovered that the anti-inflammatory effects were mediated, at least partly, by suppressing the activity of NF-κB, ERK1/2, p38 MAPK and c-Jun signaling pathways, which are consistent with previous findings in other experimental models beyond skin inflammation. In summary, HSP90 inhibition robustly suppressed TPA-induced inflammation by targeting key proinflammatory cytokines and signaling pathways. Our findings suggest that HSP90 inhibition may be a novel mechanism of action for treating immune-mediated skin disease beyond psoriasis, and it may be a topical treatment option.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark,*Correspondence: Hakim Ben Abdallah,
| | - Sabine Seeler
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Tukaj S. Circulating heat shock protein 90 (Hsp90) in atopic dermatitis and bullous pemphigoid: is there a link? Cell Stress Chaperones 2022; 27:601-602. [PMID: 36161584 PMCID: PMC9672208 DOI: 10.1007/s12192-022-01298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
23
|
Hsp90 as a Myokine: Its Association with Systemic Inflammation after Exercise Interventions in Patients with Myositis and Healthy Subjects. Int J Mol Sci 2022; 23:ijms231911451. [PMID: 36232755 PMCID: PMC9569475 DOI: 10.3390/ijms231911451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Compelling evidence supports the health benefits of physical exercise on the immune system, possibly through the molecules secreted by the skeletal muscles known as myokines. Herein, we assessed the impact of exercise interventions on plasma Heat shock protein 90 (Hsp90) levels in 27 patients with idiopathic inflammatory myopathies (IIM) compared with 23 IIM patients treated with standard-of-care immunosuppressive therapy only, and in 18 healthy subjects undergoing strenuous eccentric exercise, and their associations with the traditional serum markers of muscle damage and inflammation. In contrast to IIM patients treated with pharmacotherapy only, in whom we demonstrated a significant decrease in Hsp90 over 24 weeks, the 24-week exercise program resulted in a stabilization of Hsp90 levels. These changes in Hsp90 levels were associated with changes in several inflammatory cytokines/chemokines involved in the pathogenesis of IIM or muscle regeneration in general. Strenuous eccentric exercise in healthy volunteers induced a brief increase in Hsp90 levels with a subsequent return to baseline levels at 14 days after the exercise, with less pronounced correlations to systemic inflammation. In this study, we identified Hsp90 as a potential myokine and mediator for exercise-induced immune response and as a potential biomarker predicting improvement after physiotherapy in muscle endurance in IIM.
Collapse
|
24
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
25
|
Todurga Seven ZG, Çakır Gündoğdu A, Ozyurt R, Özyazgan S. The Effects of Cannabinoid Agonist, Heat Shock Protein 90 and Nitric Oxide Synthase Inhibitors on Increasing IL-13 and IL-31 Levels in Chronic Pruritus. Immunol Invest 2022; 51:1938-1949. [PMID: 35675220 DOI: 10.1080/08820139.2022.2083973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) inhibitor and cannabinoid agonists ameliorate dry skin-induced chronic itch. We have recently reported that cannabinoids, hsp90 and nitric oxide (NO) are involved in dry skin-induced itch. Here, we investigated the contribution of the Th2 cell signaling pathway to the antipruritic effect of the hsp90 inhibitor 17-Alilamino-17-demethoxygeldanamycin (17-AAG), nitric oxide synthase (NOS) inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and cannabinoid agonist WIN 55,212-2 on a dry skin-induced scratch. METHODS Dry skin-induced chronic itching was created by topical application of AEW (acetone/diethyl ether/water). WIN 55,212-2 (1 mg/kg, i.p.), L-NAME (1 mg/kg, i.p.) and increasing doses of 17-AAG (1, 3 and 5 mg/kg,i.p.) were administered to Balb/c mice (for each group, n = 6). After these applications, skin tissues were taken from the nape region of all of the mice. Gene and protein expressions of IL-13 and IL-31 were evaluated in skin tissues by RT-PCR and immunohistochemistry, respectively. RESULTS IL-13 and IL-31 mRNA expressions and immune positive cell counts were increased in the AEW applied groups. WIN 55,212-2 reduced both of the increased cytokines levels, while L-NAME decreased only the IL-13. 17-AAG dose-dependently reduced the increased cytokine levels. IL-13 and IL-31 levels significantly decreased following the co-administration of these agents. CONCLUSION These results show that increased levels of IL-13 and IL-31 are associated with pruritus. Hsp90 inhibition and cannabinoid system activation may induce antipruritic effects through down-regulation of these cytokines.
Collapse
Affiliation(s)
- Zeynep Gizem Todurga Seven
- Department of Medical Pharmacology, Faculty of Medicine, Haliç University, Istanbul, Turkey.,Department of Medical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayse Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Rumeysa Ozyurt
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sibel Özyazgan
- Department of Medical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
26
|
Karabulut S, Gürsoy Gürgen D, Kutlu P, Keskin İ. The Role of TNF-α and Its Target HSP-70 in Triggering Apoptosis in Normozoospermic and Non-Normozoospermic Samples. Biopreserv Biobank 2022; 20:485-492. [PMID: 35652686 DOI: 10.1089/bio.2021.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Semen analysis is performed as one of the screening tests for infertility, including motility, morphology, and concentration observation. We aimed to investigate the expression rates of tumor necrosis factor-α (TNF-α) and heat shock protein (HSP)-70 as two opposite affectors of apoptosis in men with normal semen parameters and abnormal parameters to find the possible effect of this pathway on sperm parameters. We also aimed to investigate the apoptotic markers (DNA fragmentation and Caspase-3 expression) to observe the correlation of this pathway with apoptosis. Materials and Methods: A total of 32 men who applied for infertility evaluation were included in the study. Semen analysis was performed according to WHO criteria. Liquefaction time, appearance, volume, pH, viscosity, sperm concentration, total motility rate, sperm motility, and percentage of spermatozoa with normal morphology were determined. TNF-α, HSP-70, and Caspase-3 immunolocalization were scored histologically. A sperm chromatin dispersion test was used to observe DNA fragmentation. Results: There was no significant difference in TNF-α protein expression rate (mild level). The HSP-70 expression rate was lower, especially in the head region of normo. Caspase-3 was higher totally in non-normo. DNA fragmentation levels were similar in both the groups. Conclusion: From TNF-α protein expression at the mild level in both the groups, it may be hypothesized that the apoptotic pathway might not be triggered by the extrinsic pathway. We found a negative correlation between HSP-70 and Caspase-3 expressions, providing further evidence that HSP-70 works as an inhibitor to apoptosis. This, particularly on specific points, made us think the communication might begin in the anterior chamber, then flow through the cell body to the tail. HSP-70 expression was lower in normo than in non-normo, indicating the possible role of HSP-70 as an answer to any type of stressor in non-normozoospermic patients. Correspondingly, it may be concluded that HSP has an antiapoptotic effect, causing inhibition in the elimination of abnormal sperm cells impairing sperm parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Gürsoy Gürgen
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Pelin Kutlu
- Fertility Center, Çamlıca Medicana Hospital, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
27
|
Bonura A, Giacomarra M, Montana G. The Keap1 signaling in the regulation of HSP90 pathway. Cell Stress Chaperones 2022; 27:197-204. [PMID: 35362892 PMCID: PMC9106781 DOI: 10.1007/s12192-022-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
The Keap1 protein is the master modulator of Nrf2 pathway; moreover, it is the hub of such important processes as cancer, cell stress, inflammation, and chemio- and radio-resistance. That is why Keap1 has become an intriguing pharmacological target. Many recent data show that Keap1 interacts with HSP90 protein. In this study, we use ferulic acid (FA) as antioxidant and anti-inflammatory agent, able to relieve inflammatory response. It is known that treatment with 100 μg of FA can significantly decrease the oxidative stress, so it turns to be useful to study the antioxidant regulation. The RAW 264.7 cells transfected with si-Keap1 and LPS treated are the in vitro model used to study the effects of Keap1 silencing on HSP90 activities and the FA antioxidant modulation. Immunoblot data and qPCR analysis show that Keap1 is involved in HSP90 modulation and on anti-oxidative response. Keap1 silencing affects negatively COX2 activation; in fact western blot and qPCR analysis conducted on RAW 264.7 cells Keap1silenced highlight that LPS treatment does not induce COX2 activation. In addition, the FA anti-oxidative and modulatory effect is abolished in COX2 pathway. The same results are point out using human A549 cell line with an allelic mutation on Keap1 gene, and the protein results are partially inactive. This preliminary study points out that Keap1protein is involved in HSP90 and anti-oxidative pathway regulation.
Collapse
Affiliation(s)
- Angela Bonura
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy
| | - Miriam Giacomarra
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giovanna Montana
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy.
| |
Collapse
|
28
|
Heat Shock Proteins Alterations in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23052806. [PMID: 35269948 PMCID: PMC8911505 DOI: 10.3390/ijms23052806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body's healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.
Collapse
|
29
|
Zhang S, Wang P, Hu B, Liu W, Lv X, Chen S, Shao Z. HSP90 Inhibitor 17-AAG Attenuates Nucleus Pulposus Inflammation and Catabolism Induced by M1-Polarized Macrophages. Front Cell Dev Biol 2022; 9:796974. [PMID: 35059401 PMCID: PMC8763810 DOI: 10.3389/fcell.2021.796974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Overactivated inflammation and catabolism induced by proinflammatory macrophages are involved in the pathological processes of intervertebral disc (IVD) degeneration (IVDD). Our previous study suggested the protective role of inhibiting heat shock protein 90 (HSP90) in IVDD, while the underlying mechanisms need advanced research. The current study investigated the effects of HSP90 inhibitor 17-AAG on nucleus pulposus (NP) inflammation and catabolism induced by M1-polarized macrophages. Immunohistochemical staining of degenerated human IVD samples showed massive infiltration of macrophages, especially M1 phenotype, as well as elevated levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)13. The conditioned medium (CM) of inflamed NP cells (NPCs) enhanced M1 polarization of macrophages, while the CM of M1 macrophages but not M2 macrophages promoted the expression of inflammatory factors and matrix proteases in NPCs. Additionally, we found that 17-AAG could represent anti-inflammatory and anti-catabolic effects by modulating both macrophages and NPCs. On the one hand, 17-AAG attenuated the pro-inflammatory activity of M1 macrophages via inhibiting nuclear factor-κB (NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathways. On the other hand, 17-AAG dampened M1-CM-induced inflammation and catabolism in NPCs by upregulating HSP70 and suppressing the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, both in vitro IVD culture models and murine disc puncture models supported that 17-AAG treatment decreased the levels of inflammatory factors and matrix proteases in IVD tissues. In conclusion, HSP90 inhibitor 17-AAG attenuates NP inflammation and catabolism induced by M1 macrophages, suggesting 17-AAG as a promising candidate for IVDD treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Jiao S, Bai C, Qi C, Wu H, Hu L, Li F, Yang K, Zhao C, Ouyang H, Pang D, Tang X, Xie Z. Identification and Functional Analysis of the Regulatory Elements in the pHSPA6 Promoter. Genes (Basel) 2022; 13:genes13020189. [PMID: 35205234 PMCID: PMC8872561 DOI: 10.3390/genes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA member, the stress-sensitive sites in porcine HSPA6 (pHSPA6) were investigated following different stresses. Here, two heat shock elements (HSEs) and a conserved region (CR) were identified in the pHSPA6 promoter by a CRISPR/Cas9-mediated precise gene editing strategy. Gene expression data showed that sequence disruption of these regions could significantly reduce the expression of pHSPA6 under heat stress. Stimulation studies indicated that these regions responded not only to heat stress but also to copper sulfate, MG132, and curcumin. Further mechanism studies showed that downregulated pHSPA6 could significantly affect some important members of the HSP family that are involved in HSP40, HSP70, and HSP90. Overall, our results provide a new approach for investigating gene expression and regulation that may contribute to gene regulatory mechanisms, drug target selection, and breeding stock selection.
Collapse
Affiliation(s)
- Shuyu Jiao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyun Qi
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Heyong Wu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Lanxin Hu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Feng Li
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Kang Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chuheng Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Hongsheng Ouyang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Daxin Pang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Correspondence: (X.T.); (Z.X.)
| | - Zicong Xie
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Correspondence: (X.T.); (Z.X.)
| |
Collapse
|
31
|
Bregnhøj A, Thuesen KKH, Emmanuel T, Litman T, Grek CL, Ghatnekar GS, Johansen C, Iversen L. HSP90 inhibitor RGRN-305 for oral treatment of plaque type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol 2021; 186:861-874. [PMID: 34748646 DOI: 10.1111/bjd.20880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND HSP90 is a downstream regulator of tumor necrosis factor α (TNFα) and interleukin (IL)-17A signaling and may therefore serve as a novel target in the treatment of psoriasis. OBJECTIVE This phase 1b proof-of-concept study was undertaken to evaluate the safety and efficacy of a novel HSP90 inhibitor (RGRN-305) in the treatment of plaque psoriasis. METHODS An open-label, single-arm, dose-selection, single-center proof-of-concept study. Patients with plaque psoriasis were treated with 250 mg or 500 mg RGRN-305 daily for 12 weeks. Efficacy was evaluated clinically using Psoriasis Area and Severity Index (PASI), body surface area (BSA), and Physician Global Assessment (PGA) scores and by Dermatology Life Quality Index (DLQI). Skin biopsies collected at baseline and at 4, 8, and 12 weeks after treatment start were used for immunohistochemical staining and for gene expression analysis. Safety was monitored via laboratory tests, vital signs, ECG, and physical examinations. RESULTS Six of the eleven patients completing the study responded to RGRN-305 with a PASI improvement between 71% and 94%, whereas five patients were considered nonresponders with a PASI response < 50%. No severe adverse events were reported. Four of seven patients treated with 500 mg RGRN-305 daily experienced a mild to moderate exanthematous drug induced eruption due to study treatment. Two patients chose to discontinue the study due to this exanthematous eruption. RGRN-305 treatment resulted in pronounced inhibition of the IL-23, TNFα, and IL-17A signaling pathways and normalization of both histological changes and psoriatic lesion gene expression profiles in patients responding to treatment. CONCLUSION Treatment with RGRN-305 showed an acceptable safety, especially in the low-dose group, and was associated with clinically meaningful improvement in a subset of patients with plaque psoriasis, indicating that HSP90 may serve as a novel future target in psoriasis treatment.
Collapse
Affiliation(s)
- A Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - K K H Thuesen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Litman
- Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C L Grek
- FirstString Research, Mount Pleasant, SC, 29464, USA
| | | | - C Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - L Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Tukaj S, Mantej J, Sitko K, Bednarek M, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Evidence for a role of extracellular heat shock protein 70 in epidermolysis bullosa acquisita. Exp Dermatol 2021; 31:528-534. [PMID: 34741567 DOI: 10.1111/exd.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Heat shock protein 90 (Hsp90) and Hsp70 are chaperones implicated in different inflammatory disorders, given their property to impact innate and adaptive immune responses. Here, we determined the so far unknown role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated blistering dermatosis. The in vivo pathophysiological relevance of extracellular Hsp70 was demonstrated in an anti-type VII collagen antibody transfer-induced EBA mouse model in which elevated blood levels of this chaperone were recorded. We found that Hsp70-treated mice had a more intense clinical disease severity compared to controls that were paralleled by increased levels of cutaneous matrix metalloproteinase 9 and plasma hydrogen peroxide. The latter finding was confirmed in an independent reactive oxygen species release assay using EBA-specific immune complexes combined with recombinant Hsp70. Finally, cell culture experiments using human naive peripheral blood mononuclear cells (PBMC) revealed that extracellular Hsp70 stimulated the secretion of the T cell-derived pro-inflammatory cytokines IL-6 and IL-8. This work extends knowledge about the role of Hsps in autoimmune bullous diseases, suggesting that extracellular Hsp70 represents a pathophysiological factor and potential treatment target in EBA.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Sitko K, Bednarek M, Mantej J, Trzeciak M, Tukaj S. Circulating heat shock protein 90 (Hsp90) and autoantibodies to Hsp90 are increased in patients with atopic dermatitis. Cell Stress Chaperones 2021; 26:1001-1007. [PMID: 34532820 PMCID: PMC8578264 DOI: 10.1007/s12192-021-01238-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody-related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venerology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
34
|
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int J Mol Sci 2021; 22:ijms22179366. [PMID: 34502274 PMCID: PMC8430838 DOI: 10.3390/ijms22179366] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
- Correspondence:
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
| | - Aleksandra Strońska
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Alicja Lalko
- Student Research at the Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland;
| |
Collapse
|
35
|
Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms22179316. [PMID: 34502225 PMCID: PMC8430559 DOI: 10.3390/ijms22179316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.
Collapse
|
36
|
Dughbaj MA, Jayne JG, Park AYJ, Bensman TJ, Algorri M, Ouellette AJ, Selsted ME, Beringer PM. Anti-Inflammatory Effects of RTD-1 in a Murine Model of Chronic Pseudomonas aeruginosa Lung Infection: Inhibition of NF-κB, Inflammasome Gene Expression, and Pro-IL-1β Biosynthesis. Antibiotics (Basel) 2021; 10:1043. [PMID: 34572625 PMCID: PMC8466744 DOI: 10.3390/antibiotics10091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
Vicious cycles of chronic airway obstruction, lung infections with Pseudomonas aeruginosa, and neutrophil-dominated inflammation contribute to morbidity and mortality in cystic fibrosis (CF) patients. Rhesus theta defensin-1 (RTD-1) is an antimicrobial macrocyclic peptide with immunomodulatory properties. Our objective was to investigate the anti-inflammatory effect of RTD-1 in a murine model of chronic P. aeruginosa lung infection. Mice received nebulized RTD-1 daily for 6 days. Bacterial burden, leukocyte counts, and cytokine concentrations were evaluated. Microarray analysis was performed on bronchoalveolar lavage fluid (BALF) cells and lung tissue homogenates. In vitro effects of RTD-1 in THP-1 cells were assessed using quantitative reverse transcription PCR, enzyme-linked immunosorbent assays, immunoblots, confocal microscopy, enzymatic activity assays, and NF-κB-reporter assays. RTD-1 significantly reduced lung white blood cell counts on days 3 (-54.95%; p = 0.0003) and 7 (-31.71%; p = 0.0097). Microarray analysis of lung tissue homogenates and BALF cells revealed that RTD-1 significantly reduced proinflammatory gene expression, particularly inflammasome-related genes (nod-like receptor protein 3, Mediterranean fever gene, interleukin (IL)-1α, and IL-1β) relative to the control. In vitro studies demonstrated NF-κB activation was reduced two-fold (p ≤ 0.0001) by RTD-1 treatment. Immunoblots revealed that RTD-1 treatment inhibited proIL-1β biosynthesis. Additionally, RTD-1 treatment was associated with a reduction in caspase-1 activation (FC = -1.79; p = 0.0052). RTD-1 exhibited potent anti-inflammatory activity in chronically infected mice. Importantly, RTD-1 inhibits inflammasome activity, which is possibly a downstream effect of NF-κB modulation. These findings support that this immunomodulatory peptide may be a promising therapeutic for CF-associated lung disease.
Collapse
Affiliation(s)
- Mansour A Dughbaj
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Jordanna G Jayne
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - A Young J Park
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marquerita Algorri
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Andre J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| |
Collapse
|
37
|
Anand SK, Sahu MR, Mondal AC. Induction of oxidative stress and apoptosis in the injured brain: potential relevance to brain regeneration in zebrafish. Mol Biol Rep 2021; 48:5099-5108. [PMID: 34165768 DOI: 10.1007/s11033-021-06506-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
Recent findings suggest a significant role of the brain-derived neurotrophic factor (BDNF) as a mediator of brain regeneration following a stab injury in zebrafish. Since BDNF has been implicated in many physiological processes, we hypothesized that these processes are affected by brain injury in zebrafish. Hence, we examined the impact of stab injury on oxidative stress and apoptosis in the adult zebrafish brain. Stab wound injury (SWI) was induced in the right telencephalic hemisphere of the adult zebrafish brain and examined at different time points. The biochemical variables of oxidative stress insult and transcript levels of antioxidant genes were assessed to reflect upon the oxidative stress levels in the brain. Immunohistochemistry was performed to detect the levels of early apoptotic marker protein cleaved caspase-3, and the transcript levels of pro-apoptotic and anti-apoptotic genes were examined to determine the effect of SWI on apoptosis. The activity of antioxidant enzymes, the level of lipid peroxidation (LPO) and reduced glutathione (GSH) were significantly increased in the injured fish brain. SWI also enhanced the expression of cleaved caspase-3 protein and apoptosis-related gene transcripts. Our results indicate induction of oxidative stress and apoptosis in the telencephalon of adult zebrafish brain by SWI. These findings contribute to the overall understanding of the pathophysiology of traumatic brain injury and adult neurogenesis in the zebrafish model and raise new questions about the compensatory physiological mechanisms in response to traumatic brain injury in the adult zebrafish brain.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
38
|
The Therapeutic Effect of Ge-Gen Decoction on a Rat Model of Primary Dysmenorrhea: Label-Free Quantitative Proteomics and Bioinformatic Analyses. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5840967. [PMID: 33344642 PMCID: PMC7725571 DOI: 10.1155/2020/5840967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/16/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Ge-Gen decoction (GGD) is widely used for the treatment of primary dysmenorrhea (PD) in China. However, the mechanisms that underlie this effect are unclear. We investigated the protective mechanism of GGD in a rat model of PD using label-free quantitative proteomics. The model was established by the administration of estradiol benzoate and oxytocin. Thirty rats were divided into three groups (ten rats/group): a control group (normal rats), a model group (PD rats), and a treatment group (PD rats treated with GGD). The serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were measured by ELISA. Nanohigh-performance liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS) was used to identify differentially expressed proteins (DEPs), and bioinformatics was used to investigate the protein function. Proteomic data were validated by western blot analysis. Oxytocin-induced writhing responses and abnormal serum levels of PGE2 and PGF2α were reversed following the administration of GGD. A total of 379 DEPs were identified; 276 were identified between the control group and the model group, 144 were identified between the model group and the treatment group, and 41 were identified as DEPs that were common to all groups. Bioinformatics revealed that the DEPs between the control group and the model group were mainly associated with cellular component biogenesis and binding processes. The DEPs between the model group and the treatment group were mainly involved in the protein binding and metabolic process. The expression levels of HSP90AB1 and the phosphorylation levels of ERK, JNK, and P-p38 in the uteri of rats in the three groups were consistent with the proteomic findings; MAP kinases (ERK, JNK, and p38) are known to be involved in the production of inflammatory cytokines and oxytocin signaling while HSP90AB1 is known to be associated with estrogen signaling. Collectively, these data indicate that GGD may exert its protective function on PD by regulating the inflammatory response and signaling pathways associated with oxytocin and estrogen.
Collapse
|
39
|
Jia S, Luo H, Liu X, Fan X, Huang Z, Lu S, Shen L, Guo S, Liu Y, Wang Z, Cao L, Cao Z, Zhang X, Zhou W, Zhang J, Li J, Wu J, Xiao W. Dissecting the novel mechanism of reduning injection in treating Coronavirus Disease 2019 (COVID-19) based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113871. [PMID: 33485971 PMCID: PMC7825842 DOI: 10.1016/j.jep.2021.113871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 μg crude drugs/mL (2.405 μg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.
Collapse
Affiliation(s)
- Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Liangliang Shen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| |
Collapse
|
40
|
Qian L, Li JZ, Sun X, Chen JB, Dai Y, Huang QX, Jin YJ, Duan QN. Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling. Int Immunopharmacol 2021; 96:107712. [PMID: 34162132 DOI: 10.1016/j.intimp.2021.107712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a basal host defense response that eliminates the causes and consequences of infection and tissue injury. Macrophages are the primary immune cells involved in the inflammatory response. When activated by LPS, macrophages release various pro-inflammatory cytokines, chemokines, inflammatory mediators, and MMPs. However, unbridled inflammation causes further damage to tissues. Safinamide is a selective and reversible monoamine oxidase B (MAOB) inhibitor that has been used for the treatment of Parkinson's disease. In this study, we aimed to investigate whether safinamide has effects on LPS-treated macrophages. Our results show that safinamide inhibited the expression of pro-inflammatory cytokines such as IL-1α, TNF-α, and IL-6. Furthermore, safinamide suppressed the production of CXCL1 and CCL2, thereby preventing leukocyte migration. In addition, safinamide reduced iNOS-derived NO, COX-2-derived PGE2, MMP-2, and MMP-9. Importantly, the functions of safinamide mentioned above were found to be dependent on its inhibitory effect on the TLR4/NF-κB signaling pathway. Our data indicates that safinamide may exert a protective effect against inflammatory response.
Collapse
Affiliation(s)
- LuLu Qian
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jun-Zhao Li
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - XueMei Sun
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jie-Bin Chen
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qiu-Xiang Huang
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying-Ji Jin
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qing-Ning Duan
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
41
|
Akhter MS, Uddin MA, Kubra KT, Barabutis N. Elucidation of the Molecular Pathways Involved in the Protective Effects of AUY-922 in LPS-Induced Inflammation in Mouse Lungs. Pharmaceuticals (Basel) 2021; 14:ph14060522. [PMID: 34072430 PMCID: PMC8226636 DOI: 10.3390/ph14060522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) cause thousands of deaths every year and are associated with high mortality rates (~40%) due to the lack of efficient therapies. Understanding the molecular mechanisms associated with those diseases will most probably lead to novel therapeutics. In the present study, we investigated the effects of the Hsp90 inhibitor AUY-922 in the major inflammatory pathways of mouse lungs. Mice were treated with LPS (1.6 mg/kg) via intratracheal instillation for 24 h and were then post-treated intraperitoneally with AUY-922 (10 mg/kg). The animals were examined 48 h after AUY-922 injection. LPS activated the TLR4-mediated signaling pathways, which in turn induced the release of different inflammatory cytokines and chemokines. AUY-922 suppressed the LPS-induced inflammation by inhibiting major pro-inflammatory pathways (e.g., JAK2/STAT3, MAPKs), and downregulated the IL-1β, IL-6, MCP-1 and TNFα. The expression levels of the redox regulator APE1/Ref1, as well as the DNA-damage inducible kinases ATM and ATR, were also increased after LPS treatment. Those effects were counteracted by AUY-922. Interestingly, this Hsp90 inhibitor abolished the LPS-induced pIRE1α suppression, a major component of the unfolded protein response. Our study elucidates the molecular pathways involved in the progression of murine inflammation and supports our efforts on the development of new therapeutics against lung inflammatory diseases and sepsis.
Collapse
|
42
|
Zhang H, Ge F, Shui X, Xiang Y, Wang X, Liao C, Wang J. NIX protein enhances antioxidant capacity of and reduces the apoptosis induced by HSP90 inhibitor luminespib/NVP-AUY922 in PC12 cells. Cell Stress Chaperones 2021; 26:495-504. [PMID: 33629253 PMCID: PMC8065087 DOI: 10.1007/s12192-021-01193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCPGs) are catecholamine-producing neuroendocrine tumors. Accumulating evidences indicate that the blockade of antioxidative pathways might be a novel therapeutic approach to the treatment of PCPG. NIX has been confirmed to play a key role in maintaining redox homeostasis in tumors, while the function of NIX in PCPG remains unclear. In this study, the analyses of the disease-free survival (DFS) showed that high NIX protein level is related to poor prognosis in patients of PCPG. Consistent with this, high level of NIX protein upregulates the level of p-NF-κB and promotes the migration of PC12 cells. In NIX-over-expressing PC12 cells, the level of reactive oxygen species (ROS) is decreased while trolox-equivalent antioxidant capacity (TEAC) increased. But in NIX-silencing cells, ROS level is increased, while TEAC reversely reduced, consequently antioxidase and phase II enzymes of NRF2 signaling were activated, and elevated endoplasmic reticulum (ER) stress was observed. Additionally, the apoptosis induced by luminespib/NVP-AUY922, an inhibitor of heat shock protein 90 (HSP90, a cellular stress response factor), was enhanced in NIX-silencing cells but reduced in the NIX-over-expressing cells. All of these results indicated that high NIX protein level enhances antioxidant capacity of PC12 cells and reduces the apoptosis caused by cell stress, such as induced by luminespib/NVP-AUY922. Therefore, luminespib/NVP-AUY922 might be effective only for PCPG with low NIX level, while targeting NIX could be a further supplement to the therapeutic treatment strategy for PCPG patients with high NIX protein level.
Collapse
Affiliation(s)
- Hong Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Fanghui Ge
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xindong Shui
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuling Xiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinxin Wang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Chang Liao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jiandong Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
43
|
Behairy A, Mohamed WAM, Ebraheim LLM, Soliman MM, Abd-Elhakim YM, El-Sharkawy NI, Saber TM, El Deib MM. Boldenone Undecylenate-Mediated Hepatorenal Impairment by Oxidative Damage and Dysregulation of Heat Shock Protein 90 and Androgen Receptors Expressions: Vitamin C Preventive Role. Front Pharmacol 2021; 12:651497. [PMID: 33986679 PMCID: PMC8111012 DOI: 10.3389/fphar.2021.651497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Boldenone Undecylenate (BLD) is a synthetic derivative of testosterone and a widely used anabolic androgenic steroid. The health risk of BLD use as a pharmaceutical or dietary supplement is still underestimated and under-reported. Vitamin C (VC) has been recognized as an antioxidant with prominent hepatorenal protective effects. This study investigated the possible preventive activity of VC against BLD-induced hepatorenal damage. Forty adult male Wistar rats were classified into five groups: control, vehicle control, VC (orally given 120 mg/kg b. wt./day), BLD (intramuscularly injected 5 mg/kg b. wt./week), and BLD + VC-treated groups. The experiment continued for eight weeks. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. Serum contents of total protein (TP), albumin (ALB), globulin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and very-low-density lipoprotein-cholesterol (VLDL-C) were also assayed. Urea, creatinine, and uric acid levels were determined together with sodium and potassium electrolytes measuring. Moreover, oxidative stress indicators including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR) as well as malondialdehyde (MDA) levels were measured in both hepatic and renal tissues. Corresponding histological examination of renal and hepatic tissues was conducted. Besides, immunohistochemical evaluations for androgen receptors protein (AR) and heat shock protein 90 (Hsp 90) expressions were performed. BLD caused significant rises in serum ALT, AST, TP, ALB, TC, TG, LDL-C, VLDL-C, urea, creatinine, uric acid, potassium, and MDA levels. Further, BLD-injected rats showed significant declines in the serum levels of HDL-C, sodium, GSH, GPx, GST, and GSR. Besides, distinct histopathological perturbations were detected in renal and hepatic tissues of BLD-injected rats. AR and Hsp 90 immunoexpression were increased in hepatic and renal tissues. In contrast, VC significantly reversed the BLD-induced hepatorenal damage in co-treated rats but not ameliorated AR protein overexpression. VC could be an efficient preventive supplement for mitigating BLD-induced hepatorenal damage, possibly via controlling oxidative stress events.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wafaa A. M. Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L. M. Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I. El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha M. El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
44
|
Barabutis N, Akhter MS, Kubra KT, Uddin MA. Restoring the endothelial barrier function in the elderly. Mech Ageing Dev 2021; 196:111479. [PMID: 33819492 PMCID: PMC8017911 DOI: 10.1016/j.mad.2021.111479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
Endothelial barrier dysfunction in the elderly has been associated with severe disorders, including acute respiratory distress syndrome, sepsis and COVID-19. Herein we deliver an opinion regarding the development of alternative therapeutic avenues to counteract the pathogenesis of the corresponding diseases.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
45
|
Heat shock protein 90 inhibitors suppress pyroptosis in THP-1 cells. Biochem J 2021; 477:3923-3934. [PMID: 32497199 DOI: 10.1042/bcj20200351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Pyroptosis is a recently discovered inflammatory form of programmed cell death which is mostly triggered by infection with intracellular pathogens and critically contributes to inflammation. Mitigating pyroptosis may be a potential therapeutic target in inflammatory diseases. However, small chemicals to reduce pyroptosis is still elusive. In the present study, we screened 155 chemicals from a microbial natural product library and found Geldanamycin, an HSP90 inhibitor, profoundly rescued THP-1 cells from pyroptosis induced by LPS plus Nigericin treatment. Consistently, other HSP90 inhibitors, including Radicicol, 17-DMAG and 17-AAG, all ameliorated pyroptosis in THP-1 cells by suppressing the inflammasome/Caspase-1/GSDMD signal pathway in pyroptosis. HSP90 inhibition compromised the protein stability of NLRP3, a critical component of the inflammasome. Moreover, up-regulated HSP70 may also contribute to this effect. HSP90 inhibition may thus be a potential therapeutic strategy in the treatment of inflammatory diseases in which pyroptosis plays a role.
Collapse
|
46
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Tukaj Z, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Therapeutic Implications of Targeting Heat Shock Protein 70 by Immunization or Antibodies in Experimental Skin Inflammation. Front Immunol 2021; 12:614320. [PMID: 33708208 PMCID: PMC7940535 DOI: 10.3389/fimmu.2021.614320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Tong C, Li J, Lin W, Cen W, Zhang W, Zhu Z, Lu B, Yu J. Inhibition of heat shock protein 90 alleviates cholestatic liver injury by decreasing IL-1β and IL-18 expression. Exp Ther Med 2021; 21:241. [PMID: 33603849 PMCID: PMC7851627 DOI: 10.3892/etm.2021.9672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Severe cholestatic liver injury diseases, such as obstructive jaundice and the subsequent acute obstructive cholangitis, are induced by biliary tract occlusion. Heat shock protein 90 (HSP90) inhibitors have been demonstrated to be protective for various organs. The potential of HSP90 inhibitors in the treatment of cholestatic liver injury, however, remains unclear. In the present study, rat models of bile duct ligation (BDL) were established, the HSP90 inhibitor 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) was administered, and its ability to ameliorate the cholestasis-induced liver injuries was evaluated. In the BDL rat models and clinical samples, increased HSP90 expression was observed to be associated with cholestatic liver injury. Furthermore, 17-DMAG alleviated cholestasis-induced liver injury in the rat models, as revealed by the assessment of pathological changes and liver function. In addition, 17-DMAG protected hepatocytes against cholestatic injury in vitro. Further assays indicated that 17-DMAG administration prevented cholestasis-induced liver injury in the rats by decreasing the expression of interleukin (IL)-1β and IL-18. Moreover, 17-DMAG also decreased the cholestasis-induced upregulation of IL-1β and IL-18 in liver sinusoidal endothelial cells in vitro. In conclusion, the HSP90 inhibitor 17-DMAG is able to prevent liver injury in rats with biliary obstruction, and this phenomenon is associated with the reduction of IL-1β and IL-18 expression.
Collapse
Affiliation(s)
- Chenhao Tong
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Jiandong Li
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Weiguo Lin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China.,Department of Urinary Surgery, Ruian People's Hospital, Wenzhou, Zhejiang 325200, P.R. China
| | - Wenda Cen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhiyang Zhu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
48
|
Khan AQ, Akhtar S, Prabhu KS, Zarif L, Khan R, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int J Mol Sci 2020; 21:9264. [PMID: 33291683 PMCID: PMC7730213 DOI: 10.3390/ijms21239264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest human organ and is continuously exposed to various exogenous and endogenous trigger factors affecting body homeostasis. A number of mechanisms, including genetic, inflammatory and autoimmune ones, have been implicated in the pathogenesis of cutaneous diseases. Recently, there has been considerable interest in the role that extracellular vesicles, particularly exosomes, play in human diseases, through their modulation of multiple signaling pathways. Exosomes are nano-sized vesicles secreted by all cell types. They function as cargo carriers shuttling proteins, nucleic acids, lipids etc., thus impacting the cell-cell communications and transfer of vital information/moieties critical for skin homeostasis and disease pathogenesis. This review summarizes the available knowledge on how exosomes affect pathogenesis of cutaneous diseases, and highlights their potential as future targets for the therapy of various skin diseases.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Sabah Akhtar
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Lubna Zarif
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India;
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
49
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Sitko K. Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis. Cell Stress Chaperones 2020; 25:1105-1110. [PMID: 32358783 PMCID: PMC7591667 DOI: 10.1007/s12192-020-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4+IL-17+ (Th17), CD4+FoxP3+ (Treg), CD4+IFN-γ+ (Th1), and CD4+IL-4+ (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
50
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|