1
|
Kurokawa N, Ogawa M, Midorikawa R, Kanno A, Naka W, Noguchi K, Morishima K, Inoue R, Sugiyama M, Yohda M. A Study on the Temperature-Dependent Behavior of Small Heat Shock Proteins from Methanogens. Int J Mol Sci 2025; 26:5748. [PMID: 40565211 PMCID: PMC12193508 DOI: 10.3390/ijms26125748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 06/10/2025] [Accepted: 06/11/2025] [Indexed: 06/28/2025] Open
Abstract
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stress conditions. In the absence of stress, they assemble into large oligomers. In response to stress, such as elevated temperatures, they undergo conformational changes that expose hydrophobic surfaces, allowing them to interact with denatured proteins. At heat shock temperatures in bacteria, large sHsp oligomers disassemble into smaller oligomeric forms. Methanogens are a diverse group of microorganisms, ranging from thermophilic to psychrophilic and halophilic species. Accordingly, their sHsps exhibit markedly different temperature dependencies based on their optimal growth temperatures. In this study, we characterized sHsps from both hyperthermophilic and mesophilic methanogens to investigate the mechanisms underlying their temperature-dependent behavior. Using analytical ultracentrifugation, we observed the dissociation of sHsps from a mesophilic methanogen into dimers. The dissociation equilibrium of these oligomers was found to be dependent not only on temperature but also on protein concentration. Furthermore, by generating various mutants, we identified the specific amino acid residues responsible for the temperature dependency observed. The C-terminal region containing the IXI/V motif and the α-crystallin domain were found to be the primary determinants of oligomer stability and its temperature dependence.
Collapse
Affiliation(s)
- Nina Kurokawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| | - Mima Ogawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| | - Rio Midorikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| | - Arisa Kanno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| | - Wakaba Naka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (N.K.); (M.O.); (R.M.); (A.K.); (W.N.)
| |
Collapse
|
2
|
Chen Y, Li M, Wu Y. Heat shock protein 22: A new direction for cardiovascular disease (Review). Mol Med Rep 2025; 31:82. [PMID: 39886946 PMCID: PMC11800183 DOI: 10.3892/mmr.2025.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Small heat shock proteins (sHSPs) are common molecular chaperone proteins that function in various biological processes, and serve indispensable roles in maintaining cellular protein homeostasis and regulating the hydrolysis of unfolded proteins. HSP22 is a member of the sHSP family that is primarily expressed in the heart and skeletal muscle, as well as in various types of cancer. There have been important findings concerning the role of HSP22 in cardiovascular diseases. The aim of the present study was to provide insights into the various molecular mechanisms by which HSP22 functions in the heart, including oxidative stress, autophagy, apoptosis, the subcellular distribution of proteins and the promoting effect of proteasomes. In addition, drugs and cytokines, including geranylgeranylacetone, can exert protective effects on the heart by regulating the expression of HSP22. Based on increasingly abundant research, HSP22 may be considered a potential therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Shi L, Kang Y, Ding L, Xu L, Liu X, Yu A, Liu A, Li P. Comprehensive characterization of poplar HSP20 gene family: genome-wide identification, stress-induced expression profiling, and protein interaction verifications. BMC PLANT BIOLOGY 2025; 25:251. [PMID: 39994524 PMCID: PMC11853715 DOI: 10.1186/s12870-025-06264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Heat shock proteins (HSP20s) are crucial components in plant stress responses, acting as molecular chaperones to safeguard cellular integrity and prevent abnormal protein aggregation. While extensive research has been conducted on HSP20s in various plant species, limited information is available regarding the HSP20 protein family in poplar (Populus yunnanensis), a species of significant ecological and economic importance native to southwestern China. RESULTS To elucidate the distribution, structural features, and functional characteristics of HSP20 proteins in P. yunnanensis, a combination of bioinformatics tools and experimental validation was utilized. A total of 53 PyHSP20s were identified within the P. yunnanensis genome and classified into 12 subfamilies: CI, CII, CIII, CIV, CV, CVI, CVII, MI, MII, ER, CP, and Px containing 24, 1, 1, 1, 2, 2, 14, 3, 1, 1, 2, and 1 HSP20 proteins, respectively. Classification was based on subcellular localization and phylogenetic relationships, revealing subfamilies with varying exon-intron structures and conserved motifs. The 3D structures analysis showed significant differentiation, with the CI subfamily PyHSP20s exhibiting 8 β-sheets, compared to 7 β-sheets in other subfamilies. Additionally, the N-terminal arms displayed heterogeneity in length and sequence. The 53 PyHSP20s were unevenly distributed across 15 chromosomes, with tandem segmental duplications explaining the expansion of subfamilies, particularly CI, CV, CVI, and CVII. The analysis of cis-elements associated with stress response and hormone regulation underscored the critical role of PyHSP20 in stress adaptation. Expression profiling via database analysis and qRT-PCR confirmed the responsiveness of PyHSP20s to multiple stressors, including salt, mannitol, drought, heat, and abscisic acid (ABA). Furthermore, Yeast Two-Hybrid (Y2H) assays demonstrated potential regulatory interactions between PyHSP20s and other functional proteins involved in stress responses. CONCLUSIONS These findings provide a comprehensive understanding of the classification, structural differentiation, and functional roles of PyHSP20s in P. yunnanensis, thereby establishing a foundation for future functional investigations into this protein family.
Collapse
Affiliation(s)
- Lincui Shi
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Yude Kang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of in-Forest Resource, Southwest Forestry University, Kunming, Yunnan, China
| | - Ling Ding
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Liejia Xu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Xiaojiao Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Anmin Yu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.
| | - Ping Li
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.
| |
Collapse
|
4
|
Zhu D, Wang Z, Li Y, Chen S, Kang X. Humanin reduces nucleus pulposus cells ferroptosis to alleviate intervertebral disc degeneration: An in vitro and in vivo study. J Orthop Translat 2025; 50:274-294. [PMID: 39902261 PMCID: PMC11788685 DOI: 10.1016/j.jot.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a prevalent etiology of low back pain in the global adult population, leading to considerable morbidity and healthcare costs. Existing therapeutic modalities for IDD remain constrained. Ferroptosis in the nucleus pulposus (NP) cells emerges as a pivotal contributor to IDD. Humanin (HN), a mitochondrial-secreted peptide, is intricately linked to age-related maladies and showcases antioxidant, anti-inflammatory, and anti-apoptotic properties. Nonetheless, its precise involvement in IDD remains enigmatic. Methods The expression profile of HN in IDD was scrutinized utilizing human NP cell cultures and an IDD rat model (n = 5). The therapeutic efficacy of HN in rats was assessed via MRI and histological evaluation, alongside an exploration of the molecular underpinnings of HN's therapeutic actions in IDD management. Results This pioneering study unveiled a downregulation of HN expression in IDD patients, a finding corroborated through cell and rat IDD models. Furthermore, it was ascertained that exogenous HN could trigger endogenous HN expression, impede the JAK2/STAT3 and NF-κB pathways, thereby mitigating erastin-induced ferroptosis in NP cells, contingent upon the upregulation of HSP27 expression. Moreover, the study validated the role of HN in preserving mitochondrial homeostasis, curbing mitochondrial reactive oxygen species (mtROS) generation and mtDNA leakage, consequently hindering mtDNA binding to TLR9 and subsequent activation of the NF-κB pathway. Notably, in vivo rat experiments underscored the efficacy of HN treatment in ameliorating IDD progression induced by annulus fibrosus puncture. Conclusion By assuaging ferroptosis in NP cells, HN exhibits promise as a viable candidate for IDD treatment, capable of impeding disease advancement. The translational potential of this article: This study highlights the importance and effectiveness of HN in alleviating IDD by inhibiting ferroptosis in NP cells. The addition of exogenous HN may represent a potential therapeutic strategy for treating IDD.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, 730030, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, 730030, PR China
| | - Yanhu Li
- Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, 730030, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, 730030, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, 730030, PR China
| |
Collapse
|
5
|
Wang Q, Wei J, He J, Ming S, Li X, Huang X, Hong Z, Wu Y. HSP70 contributes to pathogenesis of fulminant hepatitis induced by coronavirus. Int Immunopharmacol 2024; 141:112963. [PMID: 39159560 DOI: 10.1016/j.intimp.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Fulminant viral hepatitis (FH) represents a significant clinical challenge, with its pathogenesis not yet fully elucidated. Heat shock protein (HSP)70, a molecular chaperone protein with a broad range of cytoprotective functions, is upregulated in response to stress. However, the role of HSP70 in FH remains to be investigated. Notably, HSP70 expression is upregulated in the livers of coronavirus-infected mice and patients. Therefore, we investigated the mechanistic role of HSP70 in coronavirus-associated FH pathogenesis. FH was induced in HSP70-deficient (HSP70 KO) mice or in WT mice treated with the HSP70 inhibitor VER155008 when infected with the mouse hepatitis virus strain A59 (MHV-A59). MHV-A59-infected HSP70 KO mice exhibited significantly reduced liver damage and mortality. This effect was attributed to decreased infiltration of monocyte-macrophages and neutrophils in the liver of HSP70 KO mice, resulting in lower levels of inflammatory cytokines such as IL-1β, TNFα, and IL-6, and a reduced viral load. Moreover, treatment with the HSP70 inhibitor VER155008 protected mice from MHV-A59-induced liver damage and FH mortality. In summary, HSP70 promotes coronavirus-induced FH pathogenesis by enhancing the infiltration of monocyte-macrophages and neutrophils and promoting the secretion of inflammatory cytokines. Therefore, HSP70 is a potential therapeutic target in viral FH intervention.
Collapse
Affiliation(s)
- Qiaohua Wang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Siqi Ming
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province 519015, China
| | - Xingyu Li
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongsi Hong
- Center of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yongjian Wu
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
6
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024; 226:121-135. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
7
|
Ottensmeyer J, Esch A, Baeta H, Sieger S, Gupta Y, Rathmann MF, Jeschke A, Jacko D, Schaaf K, Schiffer T, Rahimi B, Lövenich L, Sisto A, van der Ven PFM, Fürst DO, Haas A, Bloch W, Gehlert S, Hoffmann B, Timmerman V, Huesgen PF, Höhfeld J. Force-induced dephosphorylation activates the cochaperone BAG3 to coordinate protein homeostasis and membrane traffic. Curr Biol 2024; 34:4170-4183.e9. [PMID: 39181128 DOI: 10.1016/j.cub.2024.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA). However, molecular details of the force-dependent regulation of BAG3 have remained elusive so far. Here, we demonstrate that mechanical stress triggers the dephosphorylation of BAG3 in human muscle and in isolated cells. We identify force-regulated phospho-switches in BAG3 that control CASA complex assembly and CASA activity. Differential proteomics reveal RAB GTPases, which organize membrane traffic and fusion, as dephosphorylation-dependent interactors of BAG3. In fact, RAB7A and RAB11B are shown here to be essential for CASA in skeletal muscle cells. Moreover, BAG3 dephosphorylation is also observed upon induction of mitophagy, suggesting an involvement of the cochaperone in the RAB7A-dependent autophagic engulfment of damaged mitochondria in exercised muscle. Cooperation of BAG3 with RAB7A relies on a direct interaction of both proteins, which is regulated by the nucleotide state of the GTPase and by association with the autophagosome membrane protein LC3B. Finally, we provide evidence that BAG3 and RAB7A also cooperate in non-muscle cells and propose that overactivation of CASA in RAB7A-L129F patients contributes to the loss of peripheral neurons in Charcot-Marie-Tooth neuropathy.
Collapse
Affiliation(s)
- Judith Ottensmeyer
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Alessandra Esch
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Henrique Baeta
- Institute for Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Sandro Sieger
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Yamini Gupta
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Maximilian F Rathmann
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Andreas Jeschke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Bahareh Rahimi
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Lukas Lövenich
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; Institute of Sport Science, University of Hildesheim, Universitätsplatz 1, 31139 Hildesheim, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pitter F Huesgen
- Institute for Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
9
|
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal 2024; 22:421. [PMID: 39215343 PMCID: PMC11365204 DOI: 10.1186/s12964-024-01791-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as β-amyloid (Aβ), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland
- Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, Lublin, 20-950, Poland
| |
Collapse
|
10
|
Niu B, Bai N, Liu X, Ma L, Dai L, Mu X, Wu S, Ma J, Hao X, Wang L, Li P. The role of GmHSP23.9 in regulating soybean nodulation under elevated CO 2 condition. Int J Biol Macromol 2024; 274:133436. [PMID: 38936572 DOI: 10.1016/j.ijbiomac.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
Collapse
Affiliation(s)
- Bingjie Niu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Nan Bai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofeng Liu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Longjing Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lijiao Dai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoya Mu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Shenjie Wu
- College of Life Sceinces, Shanxi Agricultural University, Taigu 030801, China
| | - Junkui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lixiang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
11
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
12
|
Pei T, Zhang M, Nwanade CF, Meng H, Bai R, Wang Z, Wang R, Zhang T, Liu J, Yu Z. Sequential expression of small heat shock proteins contributing to the cold response of Haemaphysalis longicornis (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2024; 80:2061-2071. [PMID: 38117216 DOI: 10.1002/ps.7941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Haemaphysalis longicornis is an important livestock pest and a serious threat to public health. Cold is a common form of stress affecting its survival and distribution. However, H. longicornis exhibits different physiological responses to cold stress. In this study, we systematically explored the regulation and functions of small heat shock proteins (sHsps) in H. longicornis during cold stress. RESULTS Seven sHsp genes (HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, HlsHsp21.4, HlsHsp23.7, HlsHsp24.0, and HlsHsp26.1) with open reading frame lengths ranging from 408 bp (HlsHsp14.9) to 673 bp (HlsHsp26.1) were cloned from H. longicornis, and featured the typical α-crystallin domain. Phylogenetic analysis revealed high similarity with the sHsps of arachnid species. Quantitative polymerase chain reaction analysis revealed that the regulation of sHsp genes depended on the severity and duration of cold treatment. Moreover, the relative expression of each gene was largely dependent on the treatment period (P < 0.01; 3, 6, and 9 days of treatment at 8, 4, 0, and -4 °C). Among all genes, HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, and HlsHsp24.0 were most sensitive to rapid cold treatment. After RNA interference, the mortality of H. longicornis was significantly increased at -14 °C (P < 0.05), suggesting that the expression of sHsp genes is closely related to cold tolerance in H. longicornis. CONCLUSION Our results indicate that sHsps play an important role in the cold stress response of H. longicornis, which may enhance our understanding of the cold adaptation mechanisms in ticks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Meng
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
13
|
Qin S, Wang R, Li J, Tang D, Shi Z. Quantitative Proteomics Reveals Manganese Alleviates Heat Stress of Broiler Myocardial Cells via Regulating Nucleic Acid Metabolism. Biol Trace Elem Res 2024; 202:1187-1202. [PMID: 37369963 DOI: 10.1007/s12011-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Heat stress threatens severely cardiac function by caused myocardial injury in poultry. Our previous study has showed that manganese (Mn) has a beneficial effect on heat-stress resistance of broiler. Therefore, we tried to confirm the alleviation mechanism through proteomic analysis after heat stress exposure to primary broiler myocardial cells pretreated with Mn. The experiment was divided into four groups: CON group (37 °C, cells without any treatment), HS group (43 °C, cells treatment with heat stress for 4 h), HS+MnCl2 group (cells treated with 20 μM MnCl2 before heat stress), and HS+Mn-AA group (cells treated with 20 μM Mn compound amino acid complex before heat stress). Proteome analysis using DIA identified 300 differentially expressed proteins (DEPs) between CON group and HS group; 93 and 121 DEPs were identified in inorganic manganese treatment group and organic manganese treatment group, respectively; in addition, there were 53 DEPs identified between inorganic and organic manganese group. Gene Ontology (GO) analysis showed that DEPs were mainly involved in binding, catalytic activity, response to stimulus, and metabolic process. DEPs of manganese pretreatment involved in a variety of biological regulatory pathways, and significantly influenced protein processing and repair in endoplasmic reticulum, apoptosis, and DNA replication and repair. These all seem to imply that manganese may help to resist cell damage induced by heat stress by regulating key node proteins. These findings contribute to a better understanding of the effects of manganese on overall protein changes during heat-stress and the possible mechanisms, as well as how to better use manganese to protect heart function in high temperature.
Collapse
Affiliation(s)
- Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Rui Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jinlu Li
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Defu Tang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
14
|
Mythri RB, Aishwarya MRB. Biopolymers as promising vehicles for drug delivery to the brain. Drug Metab Rev 2024; 56:46-61. [PMID: 37955126 DOI: 10.1080/03602532.2023.2281855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The brain is a privileged organ, tightly guarded by a network of endothelial cells, pericytes, and glial cells called the blood brain barrier. This barrier facilitates tight regulation of the transport of molecules, ions, and cells from the blood to the brain. While this feature ensures protection to the brain, it also presents a challenge for drug delivery for brain diseases. It is, therefore, crucial to identify molecules and/or vehicles that carry drugs, cross the blood brain barrier, and reach targets within the central nervous system. Biopolymers are large polymeric molecules obtained from biological sources. In comparison with synthetic polymers, biopolymers are structurally more complex and their 3D architecture makes them biologically active. Researchers are therefore investigating biopolymers as safe and efficient carriers of brain-targeted therapeutic agents. In this article, we bring together various approaches toward achieving this objective with a note on the prospects for biopolymer-based neurotherapeutic/neurorestorative/neuroprotective interventions. Finally, as a representative paradigm, we discuss the potential use of nanocarrier biopolymers in targeting protein aggregation diseases.
Collapse
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Psychology, Christ (Deemed to be University), Dharmaram College Post, Bengaluru, Karnataka, India
| | | |
Collapse
|
15
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
16
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
17
|
Ecroyd H, Bartelt-Kirbach B, Ben-Zvi A, Bonavita R, Bushman Y, Casarotto E, Cecconi C, Lau WCY, Hibshman JD, Joosten J, Kimonis V, Klevit R, Liberek K, McMenimen KA, Miwa T, Mogk A, Montepietra D, Peters C, Rocchetti MT, Saman D, Sisto A, Secco V, Strauch A, Taguchi H, Tanguay M, Tedesco B, Toth ME, Wang Z, Benesch JLP, Carra S. The beauty and complexity of the small heat shock proteins: a report on the proceedings of the fourth workshop on small heat shock proteins. Cell Stress Chaperones 2023; 28:621-629. [PMID: 37462824 PMCID: PMC10746627 DOI: 10.1007/s12192-023-01360-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 12/23/2023] Open
Abstract
The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.
Collapse
Affiliation(s)
- Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| | | | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raffaella Bonavita
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti" (DiSFeB), Dipartimento di Eccellenza, Università degli Studi di Milano, Milan, Italy
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, Modena, Italy
| | - Wilson Chun Yu Lau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joep Joosten
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California - Irvine, Orange, CA, 92868, USA
- Department of Neurology and Department of Pathology, University of California, Irvine, CA, 92697, USA
| | - Rachel Klevit
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Kathryn A McMenimen
- Program in Biochemistry and Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503, Japan
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld, 282, Heidelberg, Germany
| | - Daniele Montepietra
- Istituto Nanoscienze-CNR-NANO, Center S3, Modena, Italy
- Department of Department of Chemical, Life and Environmental sustainability sciences, University of Parma, Parma, Italy
| | - Carsten Peters
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggio, Italy
| | - Dominik Saman
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Valentina Secco
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annika Strauch
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503, Japan
| | - Morgan Tanguay
- Program in Biochemistry and Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti" (DiSFeB), Dipartimento di Eccellenza, Università degli Studi di Milano, Milan, Italy
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Zihao Wang
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Serena Carra
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
18
|
Bieńkowska-Tokarczyk A, Stelmaszczyk-Emmel A, Demkow U, Małecki M. Hyperthermia Enhances Adeno-Associated Virus Vector Transduction Efficiency in Melanoma Cells. Curr Issues Mol Biol 2023; 45:8519-8538. [PMID: 37886980 PMCID: PMC10604982 DOI: 10.3390/cimb45100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Gene therapy perfectly fits in the current needs of medicine for patients with melanoma. One of the major challenges of gene therapy is to increase gene transfer. The role of hyperthermia in the improvement of AAV (adeno-associated virus) transduction efficiency has been indicated. The aim of the present study was to assess the transduction efficacy of melanoma cell lines (A375, G-361, and SK-MEL-1) with the use of the rAAV/DJ mosaic vector under hyperthermia conditions. The analysis of changes in the transduction efficacy and expression of HSPs (heat shock proteins) and receptors for AAV was performed. The transduction was performed at 37 °C and at 43 °C (1 h). Hyperthermia enhanced gene transfer in all the tested cell lines. The most efficient transducing cell line under hyperthermia was A375 (increase by 17%). G361 and SK-MEL-1 cells showed an increase of 7%. The changes in the expression of the AAV receptors and HSPs after hyperthermia were observed. A key role in the improvement of gene transfer may be played by AAVR, HSPB1, HSP6, DNAJC4, HSPD1, HSPA8, HSPA9, HSP90AB1, and AHSA1. This study showed the possibility of the use of hyperthermia as a factor enabling the stimulation of cell transduction with rAAV vectors, thereby providing tools for the improvement in the efficacy of gene therapy based on rAAV.
Collapse
Affiliation(s)
- Alicja Bieńkowska-Tokarczyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Boyd RA, Majumder S, Stiban J, Mavodza G, Straus AJ, Kempelingaiah SK, Reddy V, Hannun YA, Obeid LM, Senkal CE. The heat shock protein Hsp27 controls mitochondrial function by modulating ceramide generation. Cell Rep 2023; 42:113081. [PMID: 37689067 PMCID: PMC10591768 DOI: 10.1016/j.celrep.2023.113081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Sphingolipids have key functions in membrane structure and cellular signaling. Ceramide is the central molecule of the sphingolipid metabolism and is generated by ceramide synthases (CerS) in the de novo pathway. Despite their critical function, mechanisms regulating CerS remain largely unknown. Using an unbiased proteomics approach, we find that the small heat shock protein 27 (Hsp27) interacts specifically with CerS1 but not other CerS. Functionally, our data show that Hsp27 acts as an endogenous inhibitor of CerS1. Wild-type Hsp27, but not a mutant deficient in CerS1 binding, inhibits CerS1 activity. Additionally, silencing of Hsp27 enhances CerS1-generated ceramide accumulation in cells. Moreover, phosphorylation of Hsp27 modulates Hsp27-CerS1 interaction and CerS1 activity in acute stress-response conditions. Biologically, we show that Hsp27 knockdown impedes mitochondrial function and induces lethal mitophagy in a CerS1-dependent manner. Overall, we identify an important mode of CerS1 regulation and CerS1-mediated mitophagy through protein-protein interaction with Hsp27.
Collapse
Affiliation(s)
- Rowan A Boyd
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Saurav Majumder
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Department of Biology and Biochemistry, Birzeit University, Ramallah, Palestine
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Sachin K Kempelingaiah
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Varun Reddy
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23398, USA.
| |
Collapse
|
20
|
Bejaoui B, Sdiri C, Ben Souf I, Belhadj Slimen I, Ben Larbi M, Koumba S, Martin P, M'Hamdi N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023; 28:molecules28083332. [PMID: 37110566 PMCID: PMC10147039 DOI: 10.3390/molecules28083332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Heat stress is one of the most stressful events in livestock life, negatively impacting animal health, productivity, and product quality. Moreover, the negative impact of heat stress on animal product quality has recently attracted increasing public awareness and concern. The purpose of this review is to discuss the effects of heat stress on the quality and the physicochemical component of meat in ruminants, pigs, rabbits, and poultry. Based on PRISMA guidelines, research articles were identified, screened, and summarized based on inclusion criteria for heat stress on meat safety and quality. Data were obtained from the Web of Science. Many studies reported the increased incidences of heat stress on animal welfare and meat quality. Although heat stress impacts can be variable depending on the severity and duration, the exposure of animals to heat stress (HS) can affect meat quality. Recent studies have shown that HS not only causes physiological and metabolic disturbances in living animals but also alters the rate and extent of glycolysis in postmortem muscles, resulting in changes in pH values that affect carcasses and meat. It has been shown to have a plausible effect on quality and antioxidant activity. Acute heat stress just before slaughter stimulates muscle glycogenolysis and can result in pale, tender, and exudative (PSE) meat characterized by low water-holding capacity (WHC). The enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) act by scavenging both intracellular and extracellular superoxide radicals and preventing the lipid peroxidation of the plasma membrane. Therefore, understanding and controlling environmental conditions is crucial to successful animal production and product safety. The objective of this review was to investigate the effects of HS on meat quality and antioxidant status.
Collapse
Affiliation(s)
- Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana 2020, Tunisia
- Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Chaima Sdiri
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Ikram Ben Souf
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Imen Belhadj Slimen
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
- Laboratory of Materials, Molecules, and Application, Preparatory Institute for Scientific and Technical Studies, B.P. 51, La Marsa, Tunis 2078, Tunisia
| | - Manel Ben Larbi
- LR13AGR02, Higher School of Agriculture, University of Carthage, Mateur 7030, Tunisia
| | - Sidrine Koumba
- Unité Transformations & Agroressources, ULR7519, Université d'Artois-UniLaSalle, F-62408 Bethune, France
| | - Patrick Martin
- Unité Transformations & Agroressources, ULR7519, Université d'Artois-UniLaSalle, F-62408 Bethune, France
| | - Naceur M'Hamdi
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| |
Collapse
|
21
|
Kaushik R, Arya A, Kumar D, Goel A, Rout PK. Genetic studies of heat stress regulation in goat during hot climatic condition. J Therm Biol 2023; 113:103528. [PMID: 37055132 DOI: 10.1016/j.jtherbio.2023.103528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 04/15/2023]
Abstract
Various direct and indirect environmental constraints have an impact on livestock performance. The physiological parameters, such as rectal temperature, heart rate, and respiratory rate, are the primary indicators of thermal stress. Under a stressed environment temperature humidity index (THI) had established as a vital measurement to identify the thermal stress in livestock. THI in association with climatic variations can define the environmental effect as stressful or comfortable for livestock. Goats are small ruminants that adapt to a wide range of ecological variations due to their anatomical and physiological characteristics. However, the productivity of animals declines at the individual level during thermal stress. Stress tolerance can be determined through genetic studies associated with at the cellular level using physiological as well as molecular approaches. Information on genetic association with thermal stress in goats is scanty, this severely affects their survival and hence productivity of livestock. The ever-increasing demand for food across the globe needs deciphering novel molecular markers as well as stress indicators that play a vital role in livestock improvement. This review represents an analysis of current knowledge of phenotypic differences during thermal stress and signifies the importance of physiological responses and their association at the cellular level in goats. The regulation of vital genes associated with thermal stress such as Aquaporins (AQP 0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, and 10) and super-aquaporins (AQP 11, 12); BAX inhibitors such as PERK (PKR like ER kinase), IRE 1(inositol-requiring-1); Redox regulating genes such as NOX; Transport of Na+ and K+ such as ATPase (ATP1A1) and several heat shock proteins have been implicated in heat-stress related adaptations have been elucidated. As these changes have a significant impact on production performance as well as on livestock productivity. Such efforts may help in the development of molecular markers and will assist the breeders to develop heat-tolerant goats with improved productivity.
Collapse
Affiliation(s)
- Rakesh Kaushik
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, U.P, India; Department of Biotechnology, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, 281406, U.P, India.
| | - Aditya Arya
- ICMR-National Institute for Malaria Research, Dwarka Sector- 8, New Delhi, 110077, India
| | - Devendra Kumar
- Department of Biotechnology, Keral Verma Subharti College of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P, India
| | - Anjana Goel
- Department of Biotechnology, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, 281406, U.P, India
| | - P K Rout
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, U.P, India.
| |
Collapse
|
22
|
The Emerging Role of Heat Shock Factor 1 (HSF1) and Heat Shock Proteins (HSPs) in Ferroptosis. PATHOPHYSIOLOGY 2023; 30:63-82. [PMID: 36976734 PMCID: PMC10057451 DOI: 10.3390/pathophysiology30010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Cells employ a well-preserved physiological stress response mechanism, termed the heat shock response, to activate a certain type of molecular chaperone called heat shock proteins (HSPs). HSPs are activated by transcriptional activators of heat shock genes known as heat shock factors (HSFs). These molecular chaperones are categorized as the HSP70 superfamily, which includes HSPA (HSP70) and HSPH (HSP110) families; the DNAJ (HSP40) family; the HSPB family (small heat shock proteins (sHSPs)); chaperonins and chaperonin-like proteins; and other heat-inducible protein families. HSPs play a critical role in sustaining proteostasis and protecting cells against stressful stimuli. HSPs participate in folding newly synthesized proteins, holding folded proteins in their native conformation, preventing protein misfolding and accumulation, and degrading denatured proteins. Ferroptosis is a recently identified type of oxidative iron-dependent cell demise. It was coined recently in 2012 by Stockwell Lab members, who described a special kind of cell death induced by erastin or RSL3. Ferroptosis is characterized by alterations in oxidative status resulting from iron accumulation, increased oxidative stress, and lipid peroxidation, which are mediated by enzymatic and non-enzymatic pathways. The process of ferroptotic cell death is regulated at multiple, and it is involved in several pathophysiological conditions. Much research has emerged in recent years demonstrating the involvement of HSPs and their regulator heat shock factor 1 (HSF1) in ferroptosis regulation. Understanding the machinery controlling HSF1 and HSPs in ferroptosis can be employed in developing therapeutic interventions for ferroptosis occurrence in a number of pathological conditions. Therefore, this review comprehensively summarized the basic characteristics of ferroptosis and the regulatory functions of HSF1 and HSPs in ferroptosis.
Collapse
|
23
|
Woods CN, Ulmer LD, Guttman M, Bush MF, Klevit RE. Disordered region encodes α-crystallin chaperone activity toward lens client γD-crystallin. Proc Natl Acad Sci U S A 2023; 120:e2213765120. [PMID: 36719917 PMCID: PMC9963673 DOI: 10.1073/pnas.2213765120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.
Collapse
Affiliation(s)
| | - Lindsey D. Ulmer
- Department of Chemistry, University of Washington, 98195-1700Seattle, WA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, 98195-7610Seattle, WA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, 98195-1700Seattle, WA
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, 98195-7350Seattle, WA
| |
Collapse
|
24
|
Dobosz R, Flis Ł, Bocianowski J, Malewski T. Effect of Vicia sativa L. on Motility, Mortality and Expression Levels of hsp Genes in J2 Stage of Meloidogyne hapla. J Nematol 2023; 55:20230009. [PMID: 37082220 PMCID: PMC10111211 DOI: 10.2478/jofnem-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 04/22/2023] Open
Abstract
Assuming that the seeds of Vicia sativa L. have a stressful effect on J2 stage Meloidogyne hapla, we undertook research on the effect of these seeds on the motility and mortality of J2 and determined the expression levels of selected hsp genes in J2. The assessment of the effect of V. sativa seeds on the motility of M. hapla specimens consisted of observing the movement of J2 immersed in a seed diffusate or in a tomato root filtrate at temperatures of 10, 17, and 21°C. In J2 treated with V. sativa (cv. Ina) seed diffusates, the expression level of hsp genes was determined by qPCR. J2 exposed to V. sativa diffusates were found to lose their motility, while their mortality did not exceed 30%. J2 in the seed diffusate were characterized by an increase in the expression levels of the Mh-hsp90, Mh-hsp1, and Mh-hsp43 genes. It is suggested that the hsp90 gene may be a potential bioindicator of the environmental impact on Meloidogyne nematodes. The impaired ability to move in J2 of M. hapla is attributable to the occurrence of V. sativa seeds in their habitat. These studies may contribute to developing methods of reducing crop damage caused by M. hapla.
Collapse
Affiliation(s)
- Renata Dobosz
- Institute of Plant Protection-National Research Institute, Department of Entomology and Animal Pests, Węgorka 20, 60-318Poznan, Poland
| | - Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| |
Collapse
|
25
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
27
|
Chierichetti M, Cerretani M, Ciammaichella A, Crippa V, Rusmini P, Ferrari V, Tedesco B, Casarotto E, Cozzi M, Mina F, Pramaggiore P, Galbiati M, Piccolella M, Bresciani A, Cristofani R, Poletti A. Identification of HSPB8 modulators counteracting misfolded protein accumulation in neurodegenerative diseases. Life Sci 2022; 322:121323. [PMID: 36574942 DOI: 10.1016/j.lfs.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS The small Heat Shock Protein B8 (HSPB8) is the core component of the chaperone-assisted selective autophagy (CASA) complex. This complex selectively targets, transports, and tags misfolded proteins for their recognition by autophagic receptors and insertion into autophagosome for clearance. CASA is essential to maintain intracellular proteostasis, especially in heart, muscle, and brain often exposed to various types of cell stresses. In neurons, HSPB8 protects against neurotoxicity caused by misfolded proteins in several models of neurodegenerative diseases; by facilitating autophagy, HSPB8 assists misfolded protein degradation also counteracting proteasome overwhelming and inhibition. MATERIALS AND METHODS To enhance HSPB8 protective activity, we screened a library of approximately 120,000 small molecules to identify compounds capable of increasing HSPB8 gene transcription, translation, or protein stability. We found 83 compounds active in preliminary dose-response assays and further classified them in 19 chemical classes by medicinal chemists' visual inspection. Of these 19 prototypes, 14 induced HSPB8 mRNA and protein levels in SH-SY5Y cells. KEY FINDINGS Out of these 14, 3 successfully reduced the aggregation propensity of a disease-associated mutant misfolded Superoxide Dismutase 1 (SOD1) protein in a flow cytometry-based "aggregation assay" [Flow cytometric analysis of Inclusions and Trafficking" (FloIT)] and induced the expression (mRNA and protein) of some autophagy receptors. Notably, the 3 hits were inactive in HSPB8-depleted cells, confirming that their protective activity is mediated by and requires HSPB8. SIGNIFICANCE Thus, these compounds may be highly relevant for a therapeutic approach in several human disorders, including neurodegenerative diseases, in which enhancement of CASA exerts beneficial activities.
Collapse
Affiliation(s)
- Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mauro Cerretani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Alina Ciammaichella
- Department of Drug Discovery, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
28
|
Kaku H, Balaj AR, Rothstein TL. Small Heat Shock Proteins Collaborate with FAIM to Prevent Accumulation of Misfolded Protein Aggregates. Int J Mol Sci 2022; 23:11841. [PMID: 36233145 PMCID: PMC9570119 DOI: 10.3390/ijms231911841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cells and tissues are continuously subject to environmental insults, such as heat shock and oxidative stress, which cause the accumulation of cytotoxic, aggregated proteins. We previously found that Fas Apoptosis Inhibitory Molecule (FAIM) protects cells from stress-induced cell death by preventing abnormal generation of protein aggregates similar to the effect of small heat shock proteins (HSPs). Protein aggregates are often associated with neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we sought to determine how FAIM protein dynamics change during cellular stress and how FAIM prevents the formation of amyloid-β aggregates/fibrils, one of the pathological hallmarks of AD. Here, we found that the majority of FAIM protein shifts to the detergent-insoluble fraction in response to cellular stress. A similar shift to the insoluble fraction was also observed in small heat shock protein (sHSP) family molecules, such as HSP27, after stress. We further demonstrate that FAIM is recruited to sHSP-containing complexes after cellular stress induction. These data suggest that FAIM might prevent protein aggregation in concert with sHSPs. In fact, we observed the additional effect of FAIM and HSP27 on the prevention of protein aggregates using an in vitro amyloid-β aggregation model system. Our work provides new insights into the interrelationships among FAIM, sHSPs, and amyloid-β aggregation.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Allison R Balaj
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Thomas L Rothstein
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| |
Collapse
|
29
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
30
|
Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. Int J Mol Sci 2022; 23:ijms23179758. [PMID: 36077156 PMCID: PMC9456243 DOI: 10.3390/ijms23179758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan–Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients’ relapse and poor survival.
Collapse
Affiliation(s)
- Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| |
Collapse
|
31
|
Chang P, Li X, Lin J, Li C, Li S. scFv-oligopeptide chaperoning system-assisted on-column refolding and purification of human muscle creatine kinase from inclusion bodies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123410. [PMID: 35994994 DOI: 10.1016/j.jchromb.2022.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
The formation of inclusion bodies in bacterial hosts poses a major challenge for the large-scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive, and the yields of recombinant protein are often low. Here, we describe a novel method for the renaturation and purification of inclusion bodies. This method combines a scFv-oligopeptide chaperoning system and an on-column refolding system to help refold human muscle creatine kinase (HCK) inclusion bodies. This method could significantly increase the activity recovery of denatured HCK inclusion bodies and provides an effective method for the production of bioactive proteins from inclusion bodies.
Collapse
Affiliation(s)
- Peipei Chang
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Xiaoyun Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Jingye Lin
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Cong Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Sen Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China.
| |
Collapse
|
32
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Csoboz B, Gombos I, Kóta Z, Dukic B, Klement É, Varga-Zsíros V, Lipinszki Z, Páli T, Vígh L, Török Z. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes. Int J Mol Sci 2022; 23:ijms23137317. [PMID: 35806322 PMCID: PMC9266964 DOI: 10.3390/ijms23137317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Institute of Medical Biology, University of Tromsø, 9008 Tromsø, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Éva Klement
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Vanda Varga-Zsíros
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Correspondence:
| |
Collapse
|
34
|
Ferreira JV, da Rosa Soares A, Pereira P. Cell Non-autonomous Proteostasis Regulation in Aging and Disease. Front Neurosci 2022; 16:878296. [PMID: 35757551 PMCID: PMC9220288 DOI: 10.3389/fnins.2022.878296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a risk factor for a number of diseases, being the more notorious ones perhaps neurodegenerative diseases such as Alzheimer's and Parkinson's. These and other age-related pathologies are often associated with accumulation of proteotoxic material inside cells, as well as with the accumulation of protein deposits extracellularly. It is widely accepted that this accumulation of toxic proteins trails a progressive decline in the mechanisms that regulate protein homeostasis, or proteostasis, during aging. However, despite significant efforts, the progress in terms of novel or improved therapies targeting accumulation of proteotoxic material has been rather limited. For example, clinical trials for new drugs aimed at treating Alzheimer's disease, by preventing accumulation of toxic proteins, have notoriously failed. On the other hand, it is becoming increasingly apparent that regulation of proteostasis is not a cell autonomous process. In fact, cells rely on complex transcellular networks to maintain tissue and organ homeostasis involving endocrine and paracrine signaling pathways. In this review we will discuss the impact of cell non-autonomous proteostasis mechanisms and their impact in aging and disease. We will focus on how transcellular proteostasis networks can shed new light into stablished paradigms about the aging of organisms.
Collapse
Affiliation(s)
- Joao Vasco Ferreira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana da Rosa Soares
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo Pereira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
de la Fuente M, Novo M. Understanding Diversity, Evolution, and Structure of Small Heat Shock Proteins in Annelida Through in Silico Analyses. Front Physiol 2022; 13:817272. [PMID: 35530508 PMCID: PMC9075518 DOI: 10.3389/fphys.2022.817272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Small heat shock proteins (sHsps) are oligomeric stress proteins characterized by an α-crystallin domain (ACD). These proteins are localized in different subcellular compartments and play critical roles in the stress physiology of tissues, organs, and whole multicellular eukaryotes. They are ubiquitous proteins found in all living organisms, from bacteria to mammals, but they have never been studied in annelids. Here, a data set of 23 species spanning the annelid tree of life, including mostly transcriptomes but also two genomes, was interrogated and 228 novel putative sHsps were identified and manually curated. The analysis revealed very high protein diversity and showed that a significant number of sHsps have a particular dimeric architecture consisting of two tandemly repeated ACDs. The phylogenetic analysis distinguished three main clusters, two of them containing both monomeric sHsps, and ACDs located downstream in the dimeric sHsps, and the other one comprising the upstream ACDs from those dimeric forms. Our results support an evolutionary history of these proteins based on duplication events prior to the Spiralia split. Monomeric sHsps 76) were further divided into five subclusters. Physicochemical properties, subcellular location predictions, and sequence conservation analyses provided insights into the differentiating elements of these putative functional groups. Strikingly, three of those subclusters included sHsps with features typical of metazoans, while the other two presented characteristics resembling non-metazoan proteins. This study provides a solid background for further research on the diversity, evolution, and function in the family of the sHsps. The characterized annelid sHsps are disclosed as essential for improving our understanding of this important family of proteins and their pleotropic functions. The features and the great diversity of annelid sHsps position them as potential powerful molecular biomarkers of environmental stress for acting as prognostic tool in a diverse range of environments.
Collapse
Affiliation(s)
- Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia (UNED), Las Rozas, Spain
- *Correspondence: Mercedes de la Fuente,
| | - Marta Novo
- Faculty of Biology, Biodiversity, Ecology and Evolution Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
36
|
Yang Z, Du H, Sun J, Xing X, Kong Y, Li W, Li X, Zhang C. A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:838718. [PMID: 35356122 PMCID: PMC8959767 DOI: 10.3389/fpls.2022.838718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous proteins present in all organisms. The sHSPs are not only upregulated under heat shock as well as other stresses but also are expressed in unstressed cells, indicating quite diverse functions of sHSPs. However, there is little known about the role of sHSPs in nodulation and nitrogen fixation in soybean. In this study, we cloned a candidate protein of sHSP, GmHSP17.1, from proteome of nodule and analyzed its function in soybean nodulation. We found that GmHSP17.1 was a cytosolic protein and preferentially expressed during nodule development. An overexpression of GmHSP17.1 in composite transgenic plants showed increases in nodule number, fresh weight, nodule size, area of infection cells, and nitrogenase activity, and subsequently promoted the content of nitrogen and growth of soybean plants. While GmHSP17.1 RNA interference (RNAi) lines showed significantly impaired nodule development and nitrogen fixation efficiency. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), GmRIP1 was identified as the first potential target of GmHSP17.1, and was shown to be specifically expressed in soybean nodules. The interaction between GmHSP17.1 and GmRIP1 was further confirmed by yeast-two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) in vivo and pull-down assay in vitro. Furthermore, peroxidase activity was markedly increased in GmHSP17.1 overexpressed nodules and decreased in RNAi lines. As a result, the reactive oxygen species (ROS) content greatly decreased in GmHSP17.1 overexpression lines and increased in suppression lines. Taken together, we conclude that GmHSP17.1 plays an important role in soybean nodulation through interacting with GmRIP1. Our results provide foundation for studying the mechanism of nitrogen fixation and for the genetics improvement of legume plants.
Collapse
Affiliation(s)
- Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingyi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
37
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
38
|
Turki F, Ben Younes R, Sakly M, Ben Rhouma K, Martinez-Guitarte JL, Amara S. Effect of silver nanoparticles on gene transcription of land snail Helix aspersa. Sci Rep 2022; 12:2078. [PMID: 35136168 PMCID: PMC8826417 DOI: 10.1038/s41598-022-06090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (Ag-NPs) are extremely useful in a diverse range of consumer goods. However, their impact on the environment is still under research, especially regarding the mechanisms involved in their effect. Aiming to provide some insight, the present work analyzes the transcriptional activity of six genes (Hsp83, Hsp17.2, Hsp19.8, SOD Cu-Zn, Mn-SOD, and BPI) in the terrestrial snail Helix aspersa in the presence of different concentrations of Ag-NPs. The animals were exposed for seven days to Lactuca sativa soaked for one hour in different concentrations of Ag-NPs (20, 50, 100 mg/L). The results revealed that the highest concentration tested of Ag-NPs (100 mg/L) led to a statistically significant induction of the Hsp83 and BPI expression in the digestive gland compared to the control group. However, a trend to upregulation with no statistical significance was observed for all the genes in the digestive gland and the foot, while in the hemolymph, the trend was to downregulation. Ag-NPs affected the stress response and immunity under the tested conditions, although the impact was weak. It is necessary to explore longer exposure times to confirm that the effect can be maintained and impact on health. Our results highlight the usefulness of the terrestrial snail Helix aspersa as a bioindicator organism for silver nanoparticle pollution biomonitoring and, in particular, the use of molecular biomarkers of pollutant effect as candidates to be included in a multi-biomarker strategy.
Collapse
Affiliation(s)
- Faten Turki
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Ridha Ben Younes
- Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - José-Luis Martinez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, c/ Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| | - Salem Amara
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Faculty of Sciences and Humanities, Shaqra University, Afif, 11921, Saudi Arabia
| |
Collapse
|
39
|
Wang X, Middleton FA, Tawil R, Chen XJ. Cytosolic adaptation to mitochondria-induced proteostatic stress causes progressive muscle wasting. iScience 2022; 25:103715. [PMID: 35072007 PMCID: PMC8762400 DOI: 10.1016/j.isci.2021.103715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction causes muscle wasting in many diseases and probably also during aging. The underlying mechanism is poorly understood. We generated transgenic mice with unbalanced mitochondrial protein loading and import, by moderately overexpressing the nuclear-encoded adenine nucleotide translocase, Ant1. We found that these mice progressively lose skeletal muscle. Ant1-overloading reduces mitochondrial respiration. Interestingly, it also induces small heat shock proteins and aggresome-like structures in the cytosol, suggesting increased proteostatic burden due to accumulation of unimported mitochondrial preproteins. The transcriptome of Ant1-transgenic muscles is drastically remodeled to counteract proteostatic stress, by repressing protein synthesis and promoting proteasomal function, autophagy, and lysosomal amplification. These proteostatic adaptations collectively reduce protein content thereby reducing myofiber size and muscle mass. Thus, muscle wasting can occur as a trade-off of adaptation to mitochondria-induced proteostatic stress. This finding could have implications for understanding the mechanism of muscle wasting, especially in diseases associated with Ant1 overexpression, including facioscapulohumeral dystrophy.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
40
|
Rodriguez Ospina S, Blazier DM, Criado-Marrero M, Gould LA, Gebru NT, Beaulieu-Abdelahad D, Wang X, Remily-Wood E, Chaput D, Stevens S, Uversky VN, Bickford PC, Dickey CA, Blair LJ. Small Heat Shock Protein 22 Improves Cognition and Learning in the Tauopathic Brain. Int J Mol Sci 2022; 23:ijms23020851. [PMID: 35055033 PMCID: PMC8775832 DOI: 10.3390/ijms23020851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.
Collapse
Affiliation(s)
- Santiago Rodriguez Ospina
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Danielle M. Blazier
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Marangelie Criado-Marrero
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren A. Gould
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - David Beaulieu-Abdelahad
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Xinming Wang
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Elizabeth Remily-Wood
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (S.S.Jr.)
| | - Stanley Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (S.S.Jr.)
| | - Vladimir N. Uversky
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, 141700 Dolgoprudny, Russia
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
- Research Service, James A. Haley Veterans’ Hospital, Tampa, FL 33620, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Chad A. Dickey
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
- Research Service, James A. Haley Veterans’ Hospital, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-813-369-0639
| |
Collapse
|
41
|
Yang Z, Du H, Xing X, Li W, Kong Y, Li X, Zhang C. A small heat shock protein, GmHSP17.9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:103-115. [PMID: 34487637 PMCID: PMC8710831 DOI: 10.1111/pbi.13698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Legume-rhizobia symbiosis enables biological nitrogen fixation to improve crop production for sustainable agriculture. Small heat shock proteins (sHSPs) are involved in multiple environmental stresses and plant development processes. However, the role of sHSPs in nodule development in soybean remains largely unknown. In the present study, we identified a nodule-localized sHSP, called GmHSP17.9, in soybean, which was markedly up-regulated during nodule development. GmHSP17.9 was specifically expressed in the infected regions of the nodules. GmHSP17.9 overexpression and RNAi in transgenic composite plants and loss of function in CRISPR-Cas9 gene-editing mutant plants in soybean resulted in remarkable alterations in nodule number, nodule fresh weight, nitrogenase activity, contents of poly β-hydroxybutyrate bodies (PHBs), ureide and total nitrogen content, which caused significant changes in plant growth and seed yield. GmHSP17.9 was also found to act as a chaperone for its interacting partner, GmNOD100, a sucrose synthase in soybean nodules which was also preferentially expressed in the infected zone of nodules, similar to GmHSP17.9. Functional analysis of GmNOD100 in composite transgenic plants revealed that GmNOD100 played an essential role in soybean nodulation. The hsp17.9 lines showed markedly more reduced sucrose synthase activity, lower contents of UDP-glucose and acetyl coenzyme A (acetyl-CoA), and decreased activity of succinic dehydrogenase (SDH) in the tricarboxylic acid (TCA) cycle in nodules due to the missing interaction with GmNOD100. Our findings reveal an important role and an unprecedented molecular mechanism of sHSPs in nodule development and nitrogen fixation in soybean.
Collapse
Affiliation(s)
- Zhanwu Yang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Hui Du
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xinzhu Xing
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Wenlong Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Youbin Kong
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xihuan Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Caiying Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| |
Collapse
|
42
|
Sun X, Siri S, Hurst A, Qiu H. Heat Shock Protein 22 in Physiological and Pathological Hearts: Small Molecule, Large Potentials. Cells 2021; 11:cells11010114. [PMID: 35011676 PMCID: PMC8750610 DOI: 10.3390/cells11010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Small heat shock protein 22 (HSP22) belongs to the superfamily of heat shock proteins and is predominantly expressed in the heart, brain, skeletal muscle, and different types of cancers. It has been found that HSP22 is involved in variant cellular functions in cardiomyocytes and plays a vital role in cardiac protection against cardiomyocyte injury under diverse stress. This review summarizes the multiple functions of HSP22 in the heart and the underlying molecular mechanisms through modulating gene transcription, post-translational modification, subcellular translocation of its interacting proteins, and protein degradation, facilitating mitochondrial function, cardiac metabolism, autophagy, and ROS production and antiapoptotic effect. We also discuss the association of HSP22 in cardiac pathologies, including human dilated cardiomyopathy, pressure overload-induced heart failure, ischemic heart diseases, and aging-related cardiac metabolism disorder. The collected information would provide insights into the understanding of the HSP22 in heart diseases and lead to discovering the therapeutic targets.
Collapse
|
43
|
Mühlhofer M, Peters C, Kriehuber T, Kreuzeder M, Kazman P, Rodina N, Reif B, Haslbeck M, Weinkauf S, Buchner J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nat Commun 2021; 12:6697. [PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
Collapse
Affiliation(s)
- Moritz Mühlhofer
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Carsten Peters
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Thomas Kriehuber
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.420061.10000 0001 2171 7500Present Address: Boehringer Ingelheim, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Marina Kreuzeder
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Pamina Kazman
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.424277.0Present Address: Roche Diagnostics, Nonnenwald 2, 82377 Penzberg, Germany
| | - Natalia Rodina
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bernd Reif
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Sevil Weinkauf
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
44
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
45
|
Zhao G, Li J, Fangfang Lv, Wang X, Dong Q, Liu D, Zhang J, Li Z, Zhou X, Liu H. Biomimetic Platform Based on Mesoporous Platinum for Multisynergistic Cancer Therapy. ACS Biomater Sci Eng 2021; 7:5154-5164. [PMID: 34636537 DOI: 10.1021/acsbiomaterials.1c00912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photothermal therapy (PTT) using nanoparticles is one of the research hotspots in the field of cancer therapy. However, the thermal resistance of tumor cells and the elimination of nanoparticles by the body's immune system reduce their therapeutic effect. Therefore, it is essential to reduce heat resistance, improve their biocompatibility, and reduce the clearance of the immune system. In this work, we constructed a biomimetic platform for cancer therapy based on heat shock protein (HSP) inhibitors, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG))-loaded and platelet membrane (PM)-coated mesoporous platinum nanoparticles (MPNPs). First, MPNPs with the properties of chemotherapy and PTT were synthesized to load 17-DMAG (17-DMAG/MPNPs). Then, they were coated with PM for tumor targeting and improved biocompatibility to obtain the final bionic nanotherapy platform 17-DMAG/MPNPs@PM. The results in vivo and in vitro showed that 17-DMAG/MPNPs@PM could accumulate in the tumor and effectively inhibit the growth of tumor cells. Therefore, the biomimetic nanotherapy system is expected to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Gaoqian Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fangfang Lv
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaochun Wang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.,College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.,College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Xiaohan Zhou
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
46
|
The Implication Inferred from the Expression of Small Heat-Shock Protein Genes in Dinoflagellate Resting Cysts Buried in Marine Sediment. DIVERSITY 2021. [DOI: 10.3390/d13100471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dinoflagellates are unicellular eukaryotic microalgae, occupying pivotal niches in aquatic ecosystems with great ecological, biological, and economic significance. Small heat shock proteins (sHsps) are the most omnipresent, but the least conserved, family of molecular chaperones found in all domains of life. Although their common name (small Hsp) implies to exclusively stress their heat shock-responsive function, many sHsps in fact engage in a variety of physiological processes, from cell growth and proliferation to embryogenesis, development, differentiation, apoptosis, and even to human disease prevention. Recent years have greatly expanded our understanding of sHsps in higher plants; however, comprehensive study aiming to delineate the composition and expression pattern of dinoflagellate sHsp gene family has not yet been performed. In this study, we constructed dinoflagellate-specific environmental cDNA library from marine sediment and sequenced using the third-generation sequencing technique. Screening of sHsp genes from the library returned 13 entries with complete coding regions, which were considered to be transcriptionally activated in the natural community of dinoflagellate resting cysts. All the 13 dinoflagellate sHsps consisted of a solely characteristic α-crystallin domain, covering 88–123 amino acid residues with the typical A-X-X-X-N-G-V-L motif, flanked by variable N- and C-terminal extensions. Multiple alignment revealed considerable amino acid divergence (~26.7% average similarity) among them. An unexpected close relationship was revealed between dinoflagellate and green algal sHsps in the phylogenetic tree, seemingly reflecting a close evolutionary relationship of these sHsps themselves. We confirmed that sHsp mRNAs are expressed during dormancy of the resting cyst assemblages of dinoflagellates that were buried in marine sediment, which raised the possibility that the sHsp expression is part of the machinery of maintaining the dormancy or/and the adaptation to ambient conditions of dinoflagellate resting cysts. Our results, although preliminary, gained an important glance on the universal presence of sHsps in dinoflagellates and their active expressions in the assemblage of resting cysts that were buried in the marine sediment. The essentiality of sHsps functioning in resting cysts necessitate more intensive and extensive investigations on all possible functions of Hsps in dinoflagellates, a group of protists with vital ecological and biological importance.
Collapse
|
47
|
De Maio A, Hightower L. The interaction of heat shock proteins with cellular membranes: a historical perspective. Cell Stress Chaperones 2021; 26:769-783. [PMID: 34478113 PMCID: PMC8413713 DOI: 10.1007/s12192-021-01228-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns, and Acute Care Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Investigations of Health and Education Disparities, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Lawrence Hightower
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
48
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
49
|
Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021; 433:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the "proteome folding problem"-the problem of how organisms build and maintain a functional proteome-by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network's actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Yanai H, Hangai S, Taniguchi T. Damage-associated molecular patterns and Toll-like receptors in the tumor immune microenvironment. Int Immunol 2021; 33:841-846. [PMID: 34357403 DOI: 10.1093/intimm/dxab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 11/14/2022] Open
Abstract
As clinically demonstrated by the success of immunotherapies to improve survival outcomes, tumors are known to gain a survival advantage by circumventing immune surveillance. A defining feature of this is the creation and maintenance of a tumor immune microenvironment (TIME) that directly and indirectly alters the host's immunologic signaling pathways through a variety of mechanisms. Tumor-intrinsic mechanisms that instruct the formation and maintenance of the TIME have been an area of intensive study, such as the identification and characterization of soluble factors actively and passively released by tumor cells that modulate immune cell function. In particular, damage-associated molecular pattern molecules (DAMPs) typically released by necrotic tumor cells are recognized by innate immune receptors such as Toll-like receptors (TLRs) and stimulate immune cells within TIME. Given their broad and potent effects on the immune system, a better understanding for how DAMP and TLR interactions sculpt the TIME to favor tumor growth would identify new strategies and approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|