1
|
Efremov YM, Shimolina L, Gulin A, Ignatova N, Gubina M, Kuimova MK, Timashev PS, Shirmanova MV. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy. Cells 2023; 12:2583. [PMID: 37947661 PMCID: PMC10650173 DOI: 10.3390/cells12212583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| |
Collapse
|
2
|
Wu R, Högberg J, Adner M, Stenius U, Zheng H. Crystalline silica particles induce DNA damage in respiratory epithelium by ATX secretion and Rac1 activation. Biochem Biophys Res Commun 2021; 548:91-97. [PMID: 33636640 DOI: 10.1016/j.bbrc.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden.
| |
Collapse
|
3
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
4
|
Dong M, Spelke DP, Lee YK, Chung JK, Yu CH, Schaffer DV, Groves JT. Spatiomechanical Modulation of EphB4-Ephrin-B2 Signaling in Neural Stem Cell Differentiation. Biophys J 2018; 115:865-873. [PMID: 30075851 PMCID: PMC6127455 DOI: 10.1016/j.bpj.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between EphB4 receptor tyrosine kinases and their membrane-bound ephrin-B2 ligands on apposed cells play a regulatory role in neural stem cell differentiation. With both receptor and ligand constrained to move within the membranes of their respective cells, this signaling system inevitably experiences spatial confinement and mechanical forces in conjunction with receptor-ligand binding. In this study, we reconstitute the EphB4-ephrin-B2 juxtacrine signaling geometry using a supported-lipid-bilayer system presenting laterally mobile and monomeric ephrin-B2 ligands to live neural stem cells. This experimental platform successfully reconstitutes EphB4-ephrin-B2 binding, lateral clustering, downstream signaling activation, and neuronal differentiation, all in a configuration that preserves the spatiomechanical aspects of the natural juxtacrine signaling geometry. Additionally, the supported bilayer system allows control of lateral movement and clustering of the receptor-ligand complexes through patterns of physical barriers to lateral diffusion fabricated onto the underlying substrate. The results from this study reveal a distinct spatiomechanical effect on the ability of EphB4-ephrin-B2 signaling to induce neuronal differentiation. These observations parallel similar studies of the EphA2-ephrin-A1 system in a very different biological context, suggesting that such spatiomechanical regulation may be a common feature of Eph-ephrin signaling.
Collapse
Affiliation(s)
- Meimei Dong
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California
| | - Dawn P Spelke
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David V Schaffer
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California.
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California.
| |
Collapse
|
5
|
Tunable cell-surface mimetics as engineered cell substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2076-2093. [PMID: 29935145 DOI: 10.1016/j.bbamem.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.
Collapse
|
6
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
7
|
Kakinoki S, Seo JH, Inoue Y, Ishihara K, Yui N, Yamaoka T. Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomater 2015; 13:42-51. [PMID: 25463493 DOI: 10.1016/j.actbio.2014.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/03/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
Mechanotransduction in the regulation of cellular responses has been previously studied using elastic hydrogels. Because cells interact only with the surface of biomaterials, we are focusing on the molecular mobility at the outermost surface of biomaterials. In this study, surfaces with the mobile Arg-Gly-Asp-Ser (RGDS) peptide have been constructed. Cell culture substrates were coated with ABA-type block copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) segments (A) and a polyrotaxane (PRX) unit with RGDS bound to α-cyclodextrin (B). Adhesion, morphological changes and actin filament formation of human umbilical vein endothelial cells were reduced on the surfaces containing mobile PRX-RGDS in comparison to the immobile RGDS surfaces constructed from random copolymers with RGDS side groups (Prop-andom-RGDS). In the neurite outgrowth assay using rat adrenal pheochromocytoma cells (PC12), only ∼20% of adherent PC12 cells had neurites on PRX-RGDS surfaces, but more than 50% did on the Random-RGDS surface. The beating colony of dimethyl-sulfoxide-treated mouse embryonic carcinoma cells (P19CL6) were found 10 and 14 days after induction on PRX-RGDS and Random-RGDS surfaces, respectively. After 22 days, the beating colony disappeared on PRX-RGDS surfaces, but many colonies remained on Random-RGDS surfaces. These data suggest that the molecular mobility of the cell-binding ligand on the outermost surface of materials effectively suppresses the actin filament formation and differentiation of these functional cell lines, and may be used as a culture substrate for immature stem cells or progenitor cells.
Collapse
Affiliation(s)
- Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
8
|
Narui Y, Salaita K. Membrane tethered delta activates notch and reveals a role for spatio-mechanical regulation of the signaling pathway. Biophys J 2014; 105:2655-65. [PMID: 24359737 DOI: 10.1016/j.bpj.2013.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Short-range Notch receptor signaling is necessary for coordinating developmental activities in metazoa. To investigate this juxtacrine pathway, we mimic receptor-ligand binding within the cell-cell junction by engaging Notch1-eGFP expressing cells to a supported lipid membrane displaying Delta-like protein 4 (DLL4). DLL4-Notch1 binding, oligomerization, and transport were observed in real time, and the molecular density and stoichiometry of the complexes were determined using quantitative fluorescence imaging. A Notch transcriptional reporter readout was used to quantify how ligand lateral mobility, orientation, and density modulate receptor activation levels. These experiments demonstrate that limiting the lateral mobility of DLL4 can enhance Notch activation by 2.6-fold, thus supporting the existence of a spatio-mechanical mechanism of signal regulation.
Collapse
Affiliation(s)
- Yoshie Narui
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia.
| |
Collapse
|
9
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|
10
|
Andreasson-Ochsner M, Reimhult E. Mobile and three-dimensional presentation of adhesion proteins within microwells. Methods Mol Biol 2013; 1046:123-32. [PMID: 23868585 DOI: 10.1007/978-1-62703-538-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
On traditional cell culture substrates cells adhere to a planar 2D surface where ligands are presented immobile. A more realistic presentation of cell adhesion ligands which can account for lateral mobility and a more tissue-like 3D presentation would allow studies addressing fundamental questions of significant importance for applications such as tissue engineering and implant intregration. To study the effect of lateral mobility of cell membrane interaction cues in three dimensions, we have developed and characterized a platform which generically enables patterning of single cells into microwells presenting a cell membrane mimetic interface pre-patterned to its walls. Here, we describe its application in presenting a soluble cell adhesive ligand coupled through streptavidin-antibody linkage to lipids in a supported lipid bilayer (SLB) coated microwell. The lateral mobility of the presented ligands was controlled through a small change in temperature. The SLB phospholipid composition was choosen such that below its melting transition at 30 °C the ligands are immobile, while above 30 °C they are laterally mobile. The platform thus enables the investigation of cell adhesion to either laterally immobile or mobile E-cadherin ligand presented on the same cell membrane mimetic surface.
Collapse
Affiliation(s)
- Mirjam Andreasson-Ochsner
- Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
Charnley M, Kroschewski R, Textor M. The study of polarisation in single cells using model cell membranes. Integr Biol (Camb) 2012; 4:1059-71. [PMID: 22760525 DOI: 10.1039/c2ib20111a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The apicobasal polarisation of epithelial cells within an epithelium is critical for its function as a selective barrier. Microenvironmental parameters, including cell-matrix and cell-cell interactions, contribute to the initiation and orientation of this polarity. However, it is often non-trivial to decipher the differential effects of these parameters in a controlled manner using traditional in vitro platforms. A reductionist platform, consisting of E-cadherin coupled onto laterally mobile supported lipid bilayers, was utilised to mimic E-cadherin presentation in the cell membrane. These functionalised bilayers were generated either on flat 2D surfaces or the interior surfaces of round microwells. This platform enabled the study of E-cadherin adhesion and the initiation of polarisation in a controlled environment, where the dimensionality of the microenvironment, type of protein coating and cell shape could be independently studied. A high proportion of single epithelial cells interacted with and clustered cellular E-cadherin in the presence of E-cadherin functionalised bilayers, which was reduced in the presence of integrin-mediated adhesion. The differential response in E-cadherin clustering correlated with the polarisation of E-cadherin and Na,K-ATPase, a reporter for the induction of basolateral polarity. Neither the three-dimensional presentation of E-cadherin nor the cell shape affected E-cadherin clustering or polarisation in single cells. Thus, the mobile presentation of E-cadherin was sufficient to mimic a cell-cell contact and induce basolateral polarisation in single cells.
Collapse
Affiliation(s)
- Mirren Charnley
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Andreasson-Ochsner M, Romano G, Håkanson M, Smith ML, Leckband DE, Textor M, Reimhult E. Single cell 3-D platform to study ligand mobility in cell-cell contact. LAB ON A CHIP 2011; 11:2876-2883. [PMID: 21773619 DOI: 10.1039/c1lc20067d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lateral mobility and dimensionality have both been shown to influence cellular behavior, but have yet to be combined and applied in a single in vitro platform to address, e.g., cell adhesion in a setting mimicking the three-dimensional environment of neighboring cells in a reductionist way. To study the effect of the lateral mobility of cell adhesive ligands in three dimensions we present and characterize a platform, which enables patterning of single cells into microwells presenting a cell membrane mimetic interface pre-patterned to its walls. Soluble E-cadherin extracellular domains coupled through an optimized streptavidin-antibody linkage to lipids in a supported lipid bilayer (SPB) were presented on the microwell walls as either laterally mobile or immobile ligands. The fluidity was controlled through a small change in temperature by choosing phospholipids for the SPB with a lipid phase transition temperature around 30 °C. The platform thus enabled the investigation of cell adhesion to either laterally immobile or mobile E-cadherin ligands presented on the same cell membrane mimetic surface. Chinese hamster ovary (CHO) cells engineered to express E-cadherin that were cultured on the platform demonstrated that enhanced cadherin lateral mobility significantly decreased the formation of actin bundles and resulted in more diffuse actin organization, while constraining the cell shape to that of the microwell. This example highlights the potential to use in vitro cell culture platforms to mimic direct cell-cell interaction in a controlled environment that nevertheless captures the dynamic nature of the native cell environment.
Collapse
Affiliation(s)
- Mirjam Andreasson-Ochsner
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|