1
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
2
|
Ren X, Shi B, Chang Z, Zhang J, Wang S, Liu R, Sang M, Dong H, Wu Q. Relationship between pathogenic E.coli O78-induced intestinal epithelial barrier damage and Zonulin expression levels in yaks. Front Cell Infect Microbiol 2024; 14:1456356. [PMID: 39376662 PMCID: PMC11456573 DOI: 10.3389/fcimb.2024.1456356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
To explore whether the intestinal damage of yak colibacillosis resulted from the regulation of Zonulin expression by its pathogenic bacteria, the overexpression and interference plasmids of Zonulin were designed and cultured in Tranwell after cell transfection. Then qRT-PCR and Western blot were used to detect the results of cell transfection, 200 mL 1×105 CFU/mL E.coli O78 was added for 4 hours, transmembrane resistance was measured by transmembrane resistance meter, FD4 fluorescence concentration in the lower chamber was detected by enzyme labeling instrument, bacterial translocation was measured by CFU counting method, and epithelial mucin (MUC1, MUC2) and tight junction protein (FABP2, Occludin, ZO-1) were detected by qRT-PCR. Results The Zonulin gene overexpression and knockout cell lines were successfully constructed, the TEER value of the barrier of Zonulin overexpression cell lines began to decrease at 1 h after the addition of E.coli O78 and reached the lowest value at 4 h, and the TEER value of Zonulin interference cell lines decreased within 1-4 h after the addition of E.coli O78. At 4 h, the FD4 passing capacity of Zonulin overexpression cell lines was significantly higher than that of interfering cell lines, reaching twice as much as siRNA-1. The amount of bacterial translocation in overexpressed cell lines increased rapidly within 1-4 h, and the concentration of E.coli in the lower chamber was significantly higher than that in the siRNA-1 group at 4 h, but there was no significant change in the siRNA-1 group in the 1-4 h. There was no significant change in the mRNA level of MUC1 in Zonulin overexpression and interference cell lines after the addition of E.coli O78. In the overexpression group, the mRNA levels of MUC2, Occludin, and ZO-1 were significantly decreased, and the mRNA level of FABP2 was increased considerably. These results suggest stimulate epithelial cells to secrete Zonulin protein. Many Zonulin proteins regulate the opening of tight junction structures, reduce the transmembrane resistance of the cell barrier, and improve the permeability of the cell barrier and the amount of bacterial translocation.
Collapse
Affiliation(s)
- Xiaoli Ren
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Xizang Lhasa, China
| | - Zhenyu Chang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jingbo Zhang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Mudan Sang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
3
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
4
|
Zhang J, Shi B, Lu S, Wang S, Ren X, Liu R, Dong H, Li K, Fouad D, Ataya FS, Mansoor MK, Qamar H, Wu Q. Metagenomic analysis for exploring the potential of Lactobacillus yoelii FYL1 to mitigate bacterial diarrhea and changes in the gut microbiota of juvenile yaks. Microb Pathog 2024; 186:106496. [PMID: 38072228 DOI: 10.1016/j.micpath.2023.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized. For this purpose, two different doses (107 CFU, 1011 CFU) of Lactobacillus yoelii FYL1 isolated from yaks were fed to juvenile yaks exposed to E. coli O78. After a trial period of ten days fresh feces and intestinal contents of the experimental yaks were collected and metagenomics sequencing was performed. It was found that feeding a high dose of Lactobacillus yoelii FYL1 decreased abundance of phylum Firmicutes in the E. coli O78 infected group whereas, it was high in animals fed low dose of Lactobacillu yoelii FYL1. Results also revealed that counts of bacteria from the family Oscillospiraceae, genus Synergistes and Megasphaera were higher in control group whereas, order Bifidobacteriales and family Bifidobacteriaceae were higher in infected group. It was observed that bacterial counts for Pseudoruminococcus were significantly (P < 0.05) higher in animals of group that were given high dose of Lactobacillus yoelii FYL1 (HLAB). Compared to infected group multiple beneficial bacterial genera such as Deinococus and Clostridium were found higher in the animals that were given a low dose of Lactobacillus yoelii FYL1 (LLAB). The abundance of pathogenic bacterial genera that included Parascardovia, Bacteroides and Methanobrevibacter was decreased (P < 0.05) in the lower dose treated group. The results of functional analysis revealed that animals of LLAB had a higher metabolism of terpenoids and polyketides compared to animals of infected group. Virus annotation also presented a significant inhibitory effect of LLAB on some viruses (P < 0.05). It was concluded that L. yoelii FYL1 had an improved effect on gut microbiota of young yaks infected with E. coli O78. This experiment contributes to establish the positive effects of LAB supplementation while treating diarrhea.
Collapse
Affiliation(s)
- Jingbo Zhang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Bin Shi
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, 850009, China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Wang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Xiaoli Ren
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Ruidong Liu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qingxia Wu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
5
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
6
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
7
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|
8
|
Li A, Wang Y, He Y, Liu B, Iqbal M, Mehmood K, Jamil T, Chang YF, Hu L, Li Y, Guo J, Pan J, Tang Z, Zhang H. Environmental fluoride exposure disrupts the intestinal structure and gut microbial composition in ducks. CHEMOSPHERE 2021; 277:130222. [PMID: 33794430 DOI: 10.1016/j.chemosphere.2021.130222] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Fluorine (F) and its compounds produced from industrial production and coal combustion can cause air, water and soil contamination, which can accumulate in animals, plants and humans via food chain threatening public health. Fluoride exposure affects liver, kidney, gastrointestinal and reproductive system in humans and animals. Literature regarding fluoride influence on intestinal structure and microbiota composition in ducks is scarce. This study was designed to investigate these effects by using simple and electron microscopy and 16S rRNA sequencing techniques. Results indicated an impaired structure with reduced relative distribution of goblet cells in the fluoride exposed group. Moreover, the gut microbiota showed a significant decrease in alpha diversity. Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in both control and fluoride-exposed groups. Specifically, fluoride exposure resulted in a significant decrease in the relative abundance of 9 bacterial phyla and 15 bacterial genera. Among them, 4 phyla (Latescibacteria, Dependentiae, Zixibacteria and Fibrobacteres) and 4 genera (Thauera, Hydrogenophaga, Reyranella and Arenimonas) weren't even detectable in the gut microbiota of the ducks. In summary, higher fluoride exposure can significantly damage the intestinal structure and gut microbial composition in ducks.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Dong H, Liu B, Li A, Iqbal M, Mehmood K, Jamil T, Chang YF, Zhang H, Wu Q. Microbiome Analysis Reveals the Attenuation Effect of Lactobacillus From Yaks on Diarrhea via Modulation of Gut Microbiota. Front Cell Infect Microbiol 2021; 10:610781. [PMID: 33665171 PMCID: PMC7920975 DOI: 10.3389/fcimb.2020.610781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Domestic yaks (Bos grunniens) are indigenous to the Tibetan Plateau and display a high diarrhea rate due to poor habitat and husbandry conditions. Lactobacillus has been shown to exert beneficial effects as antimicrobial, growth promotion, and gut microbiota in humans and/or murine models, but the relevant data regarding Lactobacillus isolated from yaks was unavailable. Therefore, this study aimed to investigate the effects of Lactobacillus from yaks on the intestinal microbial community in a mouse model and determine whether Lactobacillus supplementation contributed in alleviating diarrhea by modulating gut microbiota. A total of 12 ileac samples from four groups were collected for 16S rRNA gene amplicon sequencing of V3-V4 region. Results revealed that although Lactobacillus supplementation did not change the diversity of gut microbiota in mice, the proportion of some intestinal microbiota significantly changed. Specifically, the proportion of Lactobacillus and Sphingomonas in the Lactobacillus treated-group (L-group) were increased as compared to control group (C-group), whereas Pantoea, Cutibacterium, Glutamicibacter, Turicibacter, Globicatella, Microbacterium, Facklamia, unidentified_Corynebacteriaceae, Brachybacterium, and Staphylococcus were significantly decreased in the L-group. In contrast, Escherichia coli (E. coli) infection significantly decreased the proportion of beneficial bacteria such as Globicatella, Acinetobacter, Aerococcus, and Comamonas, while loads of pathogenic bacteria significantly increased including Roseburia and Megasphaera. Interestingly, Lactobacillus administration could ameliorate the microbial community structure of E. coli-induced diarrheal mice by reducing the relative abundance of pathogenic bacteria such as Paenibacillus, Aerococcus, Comamonas, Acinetobacter, Corynebacterium, Facklamia, and Globicatella. Results in this study revealed that Lactobacillus supplementation not only improved the gut microbiota but also alleviated diarrhea in mice, which may be mediated by modulating the composition and function of gut microbiota. Moreover, this study is expected to provide a new theoretical basis for the establishment of a preventive and treatment system for diarrhea in yaks.
Collapse
Affiliation(s)
- Hailong Dong
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| |
Collapse
|
10
|
Onbas T, Osmanagaoglu O, Kiran F. Potential Properties of Lactobacillus plantarum F-10 as a Bio-control Strategy for Wound Infections. Probiotics Antimicrob Proteins 2020; 11:1110-1123. [PMID: 30523603 DOI: 10.1007/s12602-018-9486-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, Lactobacillus plantarum F-10, a promising probiotic strain isolated from fecal microbiota of healthy breastfed infant, was assessed as a bio-control strategy for wound infections. Pseudomonas aeruginosa PAO1/ATCC 27853, methicillin-resistant Staphylococcus aureus ATCC 43300, and their hospital-derived strains isolated from skin chronic wound samples were used as important skin pathogens. The cell-free extract (CFE) of the strain F-10 was shown to inhibit the growth of all pathogens tested, while no inhibition was observed when CFE was neutralized. The strain displayed no hemolysis and exhibited a strong auto-aggregating phenotype (51.48 ± 1.45%, 5 h) as well as co-aggregation. Antibiotic resistance profile was found to be safe according to the European Food Safety Authority. Biofilm formation was measured by crystal violet assay and visualized with scanning electron microscopy and confocal laser scanning microscopy. One hundred percent reduction in biofilm formation of all pathogens tested was obtained by sub-MIC value (12.5 mg/ml) of CFE following 24-h co-incubation. Inhibition of quorum sensing-controlled virulence factors (motility, protease and elastase activity, production of pyocyanin and rhamnolipid) of P. aeruginosa strains was also observed. DPPH radical scavenging activity of the CFE was determined as 88.57 ± 0.49%. In conclusion, our results suggest that L. plantarum F-10 may represent an alternative bio-control strategy against skin infections with its antimicrobial, anti-biofilm, anti-quorum sensing, and antioxidant activity.
Collapse
Affiliation(s)
- Tugce Onbas
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Ozlem Osmanagaoglu
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Fadime Kiran
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
11
|
Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A. Biofilm-Inspired Encapsulation of Probiotics for the Treatment of Complex Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803925. [PMID: 30328144 DOI: 10.1002/adma.201803925] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/25/2018] [Indexed: 05/18/2023]
Abstract
The emergence of antimicrobial resistance poses a major challenge to healthcare. Probiotics offer a potential alternative treatment method but are often incompatible with antibiotics themselves, diminishing their overall therapeutic utility. This work uses biofilm-inspired encapsulation of probiotics to confer temporary antibiotic protection and to enable the coadministration of probiotics and antibiotics. Probiotics are encapsulated within alginate, a crucial component of pseudomonas biofilms, based on a simple two-step alginate cross-linking procedure. Following exposure to the antibiotic tobramycin, the growth and metabolic activity of encapsulated probiotics are unaffected by tobramycin, and they show a four-log survival advantage over free probiotics. This results from tobramycin sequestration on the periphery of alginate beads which prevents its diffusion into the core but yet allows probiotic byproducts to diffuse outward. It is demonstrated that this approach using tobramycin combined with encapsulated probiotic has the ability to completely eradicate methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in coculture, the two most widely implicated bacteria in chronic wounds.
Collapse
Affiliation(s)
- Zhihao Li
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Nitzan Ginat
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Stephany Y Tzeng
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Sarit Sivan
- Department of Biotechnology Engineering, Ort Braude College, P.O. Box 78, Karmiel, 21982, Israel
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:621-630. [PMID: 30184789 DOI: 10.1016/j.msec.2018.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
The skin wounds cause serious burden to healthcare systems. The lack of sterility of the innate barrier function of the skin facilitates the development of microbial communities within the wound environment especially in biofilm form. Since biofilm is difficult to eradicate, new treatments have been established, such as silver nanoparticles (AgNPs), which antimicrobial and anti-biofilm properties have been studied, nevertheless, their toxic effects are known too. Different concentrations of AgNPs stabilized with a biocompatible and thermo-reversible vehicle as hydrogel Pluronic F-127 were synthesized, those formulations presented interesting thermo-reversibility which could be used to apply on wounds. The formulations (Gel 62.5, 125, and 250 ppm of AgNPs) proposed in this study showed in vitro a total inhibition of clinical strains (Staphylococcus aureus and Pseudomonas aeruginosa) in planktonic form, as well as, anti-biofilm activity was archived with the formulation of Gel 250 ppm, a total inhibition of biofilm formation with mixed culture was registered in the first 30 min of biofilm growth; even more, the viability of human fibroblasts with all gels formulations was >95%, in contrast to silver sulfadiazine cream 1% which showed the highest cytotoxic effect. PF-127 gel with AgNPs could be a prophylactic treatment for skin wounds, because its activity in critical steps on biofilm formation.
Collapse
Affiliation(s)
- Elizabeth Alvarado-Gomez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Gabriel Martínez-Castañon
- Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Roberto Sanchez-Sanchez
- Biotechnology Laboratory, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289, Arenal Tepepan, CP 14389 Ciudad de Mexico, Mexico
| | - Adriana Ganem-Rondero
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Carretera Cuautitlan Teoloyucan Km 2.5, San Sebastian Xhala, CP 54714 Cuautitlan Izcalli, Ciudad de Mexico, Mexico
| | - Miguel Jose Yacaman
- Department of Physics and Astronomy, The University of Texas at San Antonio, UTSA Circle, CP 78249 San Antonio, TX, USA
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico.
| |
Collapse
|
13
|
Alvarado-Gomez E, Perez-Diaz M, Valdez-Perez D, Ruiz-Garcia J, Magaña-Aquino M, Martinez-Castañon G, Martinez-Gutierrez F. Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:336-344. [PMID: 29025667 DOI: 10.1016/j.msec.2017.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/08/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022]
Abstract
A biofilm is a very complex consortium formed by a mix of different microorganisms, which have become an important health problem, because its formation is a resistance mechanism used by bacteria against antibiotics or the immune system. In this work, we show differences between some physicochemical properties of biofilms in mono- and multi-species, formed by bacteria from clinical samples of infected chronic wounds. Of the most prevalent bacteria in wounds, two mono- and one multi-species biofilms were developed in vitro by Drip Flow Reactor: one biofilm was developed by S. aureus, other by P. aeruginosa, and a third one by the mix of both strains. With these biofilms, we determined microbial growth by plate counting, and their physicochemical characterization by Atomic Force Microscopy, Raman Micro-Spectroscopy and Scanning Electron Microscopy. We found that the viability of S. aureus was less than P. aeruginosa in multi-species biofilm. However, the adhesion force of S. aureus is much higher than that of P. aeruginosa, but it decreased while that of P. aeruginosa increased in the multi-species biofilm. In addition, we found free pyrimidines functional groups in the P. aeruginosa biofilm and its mix with S. aureus. Surprisingly, each bacterium alone formed single layer biofilms, while the mix bacteria formed a multilayer biofilm at the same observation time. Our results show the necessity to evaluate biofilms from clinically isolated strains and have a better understanding of the adhesion forces of bacteria in biofilm multispecies, which could be of prime importance in developing more effective treatments against biofilm formation.
Collapse
Affiliation(s)
- Elizabeth Alvarado-Gomez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Mario Perez-Diaz
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Donato Valdez-Perez
- Instituto Politecnico Nacional, UPALM, Edif. Z-4 3er Piso, CP 07738 Mexico D.F., Mexico
| | - Jaime Ruiz-Garcia
- Biological Physics Laboratory, Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Martin Magaña-Aquino
- Infectology Department, Hospital Central "Dr. Ignacio Morones Prieto", Av. Venustiano Carranza No. 2395, Zona Universitaria, CP 78290 San Luis Potosi, S.L.P., Mexico
| | - Gabriel Martinez-Castañon
- Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico.
| |
Collapse
|
14
|
Gkana EN, Giaouris ED, Doulgeraki AI, Kathariou S, Nychas GJE. Biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on stainless steel under either mono- or dual-species multi-strain conditions and resistance of sessile communities to sub-lethal chemical disinfection. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Markande AR, Nerurkar AS. Microcosm-based interaction studies between members of two ecophysiological groups of bioemulsifier producer and a hydrocarbon degrader from the Indian intertidal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14462-14471. [PMID: 27068903 DOI: 10.1007/s11356-016-6625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Isolates were obtained from intertidal zone site samples from all five western and one eastern coastal states of India and were screened. These ecophysiological groups of aerobic, mesophilic, heterotrophic, sporulating, and bioemulsifier-producing bacteria were from Planococcaceae and Bacillaceae. This is the first report of bioemulsifier production by Sporosarcina spp., Lysinibacillus spp., B. thuringiensis, and B. flexus. In this group, Solibacillus silvestris AM1 was found to produce the highest emulsification activity (62.5 %EI) and the sample that yielded it was used to isolate the ecophysiological group of non-bioemulsifier-producing, hydrocarbon-degrading bacteria (belonging to Chromatiales and Bacillales). These yielded hitherto unreported degrader, Rheinheimera sp. CO6 which was selected for the interaction studies (in a microcosm) with bioemulsifier-producing S. silvestris AM1. The gas chromatographic study of these microcosm experiments revealed increased degradation of benzene, toluene, and xylene (BTX) and the growth of Rheinheimera sp. CO6 in the presence of bioemulsifier produced by S. silvestris AM1. Enhancement of the growth of S. silvestris AM1 in the presence of Rheinheimera sp. CO6 was observed possibly due to reduced toxicity of BTX suggesting mutualistic association between the two. This study elucidates the presence and interaction between enhancers and degraders in a hydrocarbon-contaminated intertidal zone and contributes to the knowledge during application of the two in remediation processes.
Collapse
Affiliation(s)
- A R Markande
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Gujarat, India, 394 350.
| | - A S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| |
Collapse
|
16
|
Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2016; 116:94-103. [PMID: 27169634 DOI: 10.1017/s0007114516001665] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Broad-spectrum antibiotic use can disrupt the gastrointestinal microbiota resulting in diarrhoea. Probiotics may be beneficial in managing this type of diarrhoea. The aim of this 10-week randomised, double-blind, placebo-controlled, parallel study was to investigate the effect of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 supplementation on antibiotic-associated diarrhoea in healthy adults. Subjects were randomised to receive 1 week of amoxicillin-clavulanic acid (875 mg/125 mg) once per day, plus a daily dose of 8×109 colony-forming units of a multi-strain probiotic (n 80) or placebo (n 80). The probiotic or placebo intervention was maintained for 1 week after completion of the antibiotic. Primary study outcomes of consistency and frequency of bowel movements were not significantly different between the probiotic and placebo groups. The secondary outcomes of diarrhoea-like defecations, Gastrointestinal Symptoms Rating Scale scores, safety parameters and adverse events were not significantly different between the probiotic intervention and the placebo. A post hoc analysis on the duration of diarrhoea-like defecations showed that probiotic intervention reduced the length of these events by 1 full day (probiotic, 2·70 (sem 0·36) d; placebo, 3·71 (sem 0·36) d; P=0·037; effect size=0·52). In conclusion, this study provides novel evidence that L. helveticus R0052 and L. rhamnosus R0011 supplementation significantly reduced the duration of diarrhoea-like defecations in healthy adults receiving antibiotics.
Collapse
|
17
|
Vilela SFG, Barbosa JO, Rossoni RD, Santos JD, Prata MCA, Anbinder AL, Jorge AOC, Junqueira JC. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 2016; 6:29-39. [PMID: 25654408 DOI: 10.4161/21505594.2014.981486] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.
Collapse
Key Words
- ATCC, American type culture collection
- BHI, Brain heart infusion
- CFU, colony-forming unit
- Candida albicans
- Galleria mellonella
- HE, hematoxylin-eosin
- Lactobacillus acidophilus
- MRS, Man, Rogosa and Sharpe
- NIH, National Institutes of Health
- PAS, periodic acid-Schiff
- PBS, phosphate buffered saline
- SEM, Scanning electron microscopy
- YNB, Yeast nitrogen base
- biofilm
- candidiasis
- filamentation
- pH, potential hydrogen ion
- probiotic
Collapse
Affiliation(s)
- Simone F G Vilela
- a Department of Biosciences and Oral Diagnosis; Institute of Science and Technology ; UNESP - Univ Estadual Paulista ; São José dos Campos , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation. Arch Microbiol 2015; 197:1027-32. [PMID: 26267163 DOI: 10.1007/s00203-015-1140-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/17/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.
Collapse
|
20
|
Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 2014; 6:189-94. [PMID: 25257882 PMCID: PMC5153589 DOI: 10.1038/ijos.2014.52] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Altered bowel flora is currently thought to play a role in a variety of disease conditions, and the use of Bifidobacterium spp. and Lactobacillus spp. as probiotics has been demonstrated to be health-promoting, even if the success of their administration depends on the applied bacterial strain(s) and the targeted disease. In the last few decades, specific probiotics have been shown to be effective in the treatment or the prevention of acute viral gastroenteritis, pediatric post-antibiotic-associated diarrhea, some pediatric allergic disorders, necrotizing enterocolitis in preterm infants, inflammatory bowel diseases and postsurgical pouchitis. The potential application of probiotics is continuously widening, with new evidence accumulating to support their effect on the prevention and treatment of other disease conditions, including several oral diseases, such as dental caries, periodontal diseases and oral malodor, as well as genitourinary and wound infections. Considering the increasingly widespread ability of pathogens to generate persistent biofilm-related infections, an even more attractive proposal is to administer probiotics to prevent or counteract biofilm development. The response of biofilm-based oral, intestinal, vaginal and wound infections to probiotics treatment will be reviewed here in light of the most recent results obtained in this field.
Collapse
|
21
|
Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. Int J Food Microbiol 2014; 190:1-8. [PMID: 25173449 DOI: 10.1016/j.ijfoodmicro.2014.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen often multidrug-resistant that not only causes a variety of human diseases, but also is able to survive on biotic and abiotic surfaces through biofilm communities. The best way to inhibit biofilm establishment is to prevent cell adhesion. In the present study, subinhibitory concentrations of the bacteriocins bovicin HC5 and nisin were tested for their capability to interfere with the adhesion of S. aureus to polystyrene. Subinhibitory dosages of the bacteriocins reduced cell adhesion and this occurred probably due to changes in the hydrophobicity of the bacterial cell and polystyrene surfaces. After treatment with bovicin HC5 and nisin, the surfaces became more hydrophilic and the free energy of adhesion (∆G(adhesion)) between bacteria and the polystyrene surface was unfavorable. The transcriptional level of selected genes was assessed by RT-qPCR approach, revealing that the bacteriocins affected the expression of some important biofilm associated genes (icaD, fnbA, and clfB) and rnaIII, which is involved in the quorum sensing mechanism. The conditioning of food-contact surfaces with bacteriocins can be an innovative and powerful strategy to prevent biofilms in the food industry. The results are relevant for food safety as they indicate that bovicin HC5 and nisin can inhibit bacterial adhesion and consequent biofilm establishment, since cell adhesion precedes biofilm formation.
Collapse
|
22
|
Sikorska H, Smoragiewicz W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents 2013; 42:475-81. [PMID: 24071026 DOI: 10.1016/j.ijantimicag.2013.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 02/06/2023]
Abstract
Meticillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant micro-organism and is the principal nosocomial pathogen worldwide. Following initial in vitro experiments demonstrating that Lactobacillus acidophilus CL1285(®) and Lactobacillus casei LBC80R(®) commercial strains exhibit antibacterial activity against clinical MRSA isolates, we conducted a literature search to find any evidence of probiotic efficacy in decolonisation or treatment of S. aureus infection. As summarised below, many strains of lactobacilli and bifidobacteria isolated from a variety of sources inhibited the growth of S. aureus and clinical isolates of MRSA in vitro. The most active strains were Lactobacillus reuteri, Lactobacillus rhamnosus GG, Propionibacterium freudenreichii, Propionibacterium acnes, Lactobacillus paracasei, L. acidophilus, L. casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Lactobacillus fermentum and Lactococcus lactis. Their effects were mediated both by direct cell competitive exclusion as well as production of acids or bacteriocin-like inhibitors. L. acidophilus also inhibited S. aureus biofilm formation and lipase production. In vitro antimicrobial activity did not necessarily assure efficacy in vivo in animal infectious models, e.g. S. aureus 8325-4 was most sensitive in vitro to L. acidophilus, whilst in vivo Bifidobacterium bifidum best inhibited experimental intravaginal staphylococcosis in mice. On the other hand, L. plantarum, which showed the highest inhibition activity against S. aureus in vitro, was also very effective topically in preventing skin wound infection with S. aureus in mice. Very few clinical data were found on the interactions between probiotics and MRSA, but the few identified clinical cases pointed to the feasibility of elimination or reduction of MRSA colonisation with probiotic use.
Collapse
Affiliation(s)
- Hanna Sikorska
- Bio-Assistance, 705-801 rue de la Commune Est, Montreal, QC, Canada H2L 0A3.
| | | |
Collapse
|
23
|
Pieczonka AM, Strzelczyk A, Sadowska B, Mlostoń G, Stączek P. Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1H-imidazole-4-carbohydrazides. Eur J Med Chem 2013; 64:389-95. [PMID: 23648974 DOI: 10.1016/j.ejmech.2013.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/22/2022]
Abstract
In this work we reported the synthesis and evaluation of in vitro antimicrobial activities of hydrazones 6 obtained from 3-oxido-1H-imidazole-4-carbohydrazides 4. All new compounds were characterized by spectroscopic methods. Hydrazones 6 were tested for their in vitro antimicrobial activity against four Gram-positive and four Gram-negative strains of bacteria as well as one fungal species. Three of the tested compounds appeared to be promising agents against reference strains of Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. They were also tested against twelve clinical isolates of S. aureus and their cytotoxic effect on murine fibroblasts and HeLa human tumor cell line was determined.
Collapse
Affiliation(s)
- Adam M Pieczonka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | | | | | | | | |
Collapse
|
24
|
Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2012; 57:501-8. [PMID: 22644668 DOI: 10.1007/s12223-012-0164-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C(10)-C(10) moieties were by far the most predominant congeners among mono-rhamnose (53.29 %) and di-rhamnose (23.52 %) homologues. Mono-rhamnolipids form 68.35 % of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R (f)) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15 mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12-6.25 μg/mL.
Collapse
Affiliation(s)
- Nasrin Samadi
- Department of Drug and Food Control and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|