1
|
Sundaram SS, Kannan A, Chintaluri PG, Sreekala AGV, Nathan VK. Thermostable bacterial L-asparaginase for polyacrylamide inhibition and in silico mutational analysis. Int Microbiol 2024; 27:1765-1779. [PMID: 38519776 DOI: 10.1007/s10123-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
The L-asparaginase (ASPN) enzyme has received recognition in various applications including acrylamide degradation in the food industry. The synthesis and application of thermostable ASPN enzymes is required for its use in the food sector, where thermostable enzymes can withstand high temperatures. To achieve this goal, the bacterium Bacillus subtilis was isolated from the hot springs of Tapovan for screening the production of thermostable ASPN enzyme. Thus, ASPN with a maximal specific enzymatic activity of 0.896 U/mg and a molecular weight of 66 kDa was produced from the isolated bacteria. The kinetic study of the enzyme yielded a Km value of 1.579 mM and a Vmax of 5.009 µM/min with thermostability up to 100 min at 75 °C. This may have had a positive indication for employing the enzyme to stop polyacrylamide from being produced. The current study has also been extended to investigate the interaction of native and mutated ASPN enzymes with acrylamide. This concluded that the M10 (with 10 mutations) has the highest protein and thermal stability compared to the wild-type ASPN protein sequence. Therefore, in comparison to a normal ASPN and all other mutant ASPNs, M10 is the most favorable mutation. This research has also demonstrated the usage of ASPN in food industrial applications.
Collapse
Affiliation(s)
| | - Aravind Kannan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | - Pratham Gour Chintaluri
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | | | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
2
|
Maqsood A, Shakir NA, Aslam M, Rahman M, Rashid N. Structural and functional investigations of Pcal_0606, a bifunctional phosphoglucose/phosphomannose isomerase from Pyrobaculum calidifontis. Int J Biol Macromol 2024; 279:135127. [PMID: 39208883 DOI: 10.1016/j.ijbiomac.2024.135127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
We are investigating the glycolytic pathway in Pyrobaculum calidifontis whose genome sequence contains homologues of all the enzymes involved in this pathway. We have characterized most of them. An open reading frame, Pcal_0606, annotated as a putative phosphoglucose/phosphomannose isomerase has to be characterized yet. In silico analysis indicated the presence of more than one substrate binding pockets at the dimeric interface of Pcal_0606. The gene encoding Pcal_0606 was cloned and expressed in Escherichia coli. Recombinant Pcal_0606, produced in soluble form, exhibited highest enzyme activity at 90 °C and pH 8.5. Presence or absence of metal ions or EDTA did not significantly affect the enzyme activity. Under optimal conditions, Pcal_0606 displayed apparent Km values of 0.33, 0.34, and 0.29 mM against glucose 6-phosphate, mannose 6-phosphate and fructose 6-phosphate, respectively. In the same order, Vmax values against these substrates were 290, 235, and 240 μmol min-1 mg-1, indicating that Pcal_0606 catalyzed the reversible isomerization of these substrates with nearly same catalytic efficiency. These results characterize Pcal_0606 a bifunctional phosphoglucose/phosphomannose isomerase, which displayed high thermostability with a half-life of ∼50 min at 100 °C. To the best of our knowledge, Pcal_0606 is the most active and thermostable bifunctional phosphoglucose/phosphomannose isomerase characterized to date.
Collapse
Affiliation(s)
- Amina Maqsood
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
3
|
Sania A, Muhammad MA, Sajed M, Ahmad N, Aslam M, Tang XF, Rashid N. Engineering Tk1656, a highly active l-asparaginase from Thermococcus kodakarensis, for enhanced activity and stability. Int J Biol Macromol 2024; 281:136442. [PMID: 39389482 DOI: 10.1016/j.ijbiomac.2024.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods. However, it displayed <5 % activity under physiological conditions compared to the optimal activity at 85 °C and pH 9.5. We have attempted engineering of this valuable enzyme to improve the characteristics required for therapeutic and industrial applications. Based on the literature and crystal structure of Tk1656, nine specific mutant variants were designed, produced in Escherichia coli, and the purified mutant enzymes were compared with the wild-type. One of the mutants, K299L, displayed >20 % increase in activity at 85 °C. H158S substitution resulted in >5 °C increase in the optimal temperature. Similarly, a mesophilic-like mutation L56D, resulted in >5-fold increase in activity at pH 7.0 and 37 °C compared to that of the wild-type enzyme. The substrate specificity of the mutant variants remained unchanged. These results demonstrate that L56D and K299L variants of Tk1656 are the potent enzymes for therapeutics and acrylamide mitigation applications, respectively.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
4
|
Shad M, Rehman HM, Akhtar MW, Sajjad M. Structural and functional insights of starch processing α-amylase from hyperthermophilic archaeon Pyrococcusabyssi. Carbohydr Res 2024; 539:109122. [PMID: 38657354 DOI: 10.1016/j.carres.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 μmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.
Collapse
Affiliation(s)
- Mohsin Shad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan; Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan.
| |
Collapse
|
5
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
6
|
Tsegaye K, Tsehai BA, Getie B. Desirable L-asparaginases for treating cancer and current research trends. Front Microbiol 2024; 15:1269282. [PMID: 38591038 PMCID: PMC11001194 DOI: 10.3389/fmicb.2024.1269282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Amino acid depletion therapy is a promising approach for cancer treatment. It exploits the differences in the metabolic processes between healthy and cancerous cells. Certain microbial enzymes induce cancer cell apoptosis by removing essential amino acids. L-asparaginase is an enzyme approved by the FDA for the treatment of acute lymphoblastic leukemia. The enzymes currently employed in clinics come from two different sources: Escherichia coli and Erwinia chrysanthemi. Nevertheless, the search for improved enzymes and other sources continues because of several factors, including immunogenicity, in vivo instability, and protease degradation. Before determining whether L-asparaginase is clinically useful, research should consider the Michaelis constant, turnover number, and maximal velocity. The identification of L-asparaginase from microbial sources has been the subject of various studies. The primary goals of this review are to explore the most current approaches used in the search for therapeutically useful L-asparaginases and to establish whether these investigations identified the crucial characteristics of L-asparaginases before declaring their therapeutic potential.
Collapse
Affiliation(s)
- Kindu Tsegaye
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | | | - Birhan Getie
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Joshi D, Patel H, Suthar S, Patel DH, Kikani BA. Evaluation of the efficiency of thermostable L-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World J Microbiol Biotechnol 2024; 40:92. [PMID: 38345704 DOI: 10.1007/s11274-024-03907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.
Collapse
Affiliation(s)
- Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan H Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
8
|
Abbas Q, Muhammad MA, Shakir NA, Aslam M, Rashid N. Molecular cloning and characterization of Pcal_0039, an ATP-/NAD +-independent DNA ligase from hyperthermophilic archaeon Pyrobaculum calidifontis. Int J Biol Macromol 2023; 253:126711. [PMID: 37673141 DOI: 10.1016/j.ijbiomac.2023.126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.
Collapse
Affiliation(s)
- Qamar Abbas
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nisar Ahmad Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
9
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
10
|
Muhammad MA, Ahmad N, Akhter M, Rashid N. Structural and functional analyses of Pcal_0917, an α-glucosidase from hyperthermophilic archaeon Pyrobaculum calidifontis. Int J Biol Macromol 2023:125446. [PMID: 37330102 DOI: 10.1016/j.ijbiomac.2023.125446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Genome analysis of Pyrobaculum calidifontis revealed the presence of α-glucosidase (Pcal_0917) gene. Structural analysis affirmed the presence of signature sequences of Type II α-glucosidases in Pcal_0917. We have heterologously expressed the gene and produced recombinant Pcal_0917 in Escherichia coli. Biochemical characteristics of the recombinant enzyme resembled to that of Type I α-glucosidases, instead of Type II. Recombinant Pcal_0917 existed in a tetrameric form in solution and displayed highest activity at 95 °C and pH 6.0, independent of any metal ions. A short heat-treatment at 90 °C resulted in a 35 % increase in enzyme activity. A slight structural shift was observed by CD spectrometry at this temperature. Half-life of the enzyme was >7 h at 90 °C. Pcal_0917 exhibited apparent Vmax values of 1190 ± 5 and 3.9 ± 0.1 U/mg against p-nitrophenyl α-D-glucopyranoside and maltose, respectively. To the best of our knowledge, Pcal_0917 displayed the highest ever reported p-nitrophenyl α-D-glucopyranosidase activity among the characterized counterparts. Moreover, Pcal_0917 displayed transglycosylation activity in addition to α-glucosidase activity. Furthermore, in combination with α-amylase, Pcal_0917 was capable of producing glucose syrup from starch with >40 % glucose content. These properties make Pcal_0917 a potential candidate for starch hydrolyzing industry.
Collapse
Affiliation(s)
- Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
11
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
12
|
Dumina M, Zhgun A. Thermo-L-Asparaginases: From the Role in the Viability of Thermophiles and Hyperthermophiles at High Temperatures to a Molecular Understanding of Their Thermoactivity and Thermostability. Int J Mol Sci 2023; 24:ijms24032674. [PMID: 36768996 PMCID: PMC9916696 DOI: 10.3390/ijms24032674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances-stable and heat resistant thermo-ASNases. This review is an attempt to take a broader view on the thermo-ASNases. Here we discuss the position of thermo-ASNases in the large family of L-ASNases, their role in the heat-tolerance cellular system of thermophiles and hyperthermophiles, and molecular aspects of their thermoactivity and thermostability. Different types of thermo-ASNases exhibit specific L-asparaginase activity and additional secondary activities. All products of these enzymatic reactions are associated with diverse metabolic pathways and are important for mitigating heat stress. Thermo-ASNases are quite distinct from typical mesophilic L-ASNases based on structural properties, kinetic and activity profiles. Here we attempt to summarize the current understanding of the molecular mechanisms of thermo-ASNases' thermoactivity and thermostability, from amino acid composition to structural-functional relationships. Research of these enzymes has fundamental and biotechnological significance. Thermo-ASNases and their improved variants, cloned and expressed in mesophilic hosts, can form a large pool of enzymes with valuable characteristics for biotechnological application.
Collapse
|
13
|
Pcal_0976, a pullulanase homologue from Pyrobaculum calidifontis, displays a glycoside hydrolase activity but no pullulanase activity. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-022-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Shakir NA, Aslam M, Bibi T, Falak S, Rashid N. Functional analyses of a highly thermostable hexokinase from Pyrobaculum calidifontis. Carbohydr Res 2023; 523:108711. [PMID: 36395717 DOI: 10.1016/j.carres.2022.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The gene encoding a repressor open reading frame sugar kinase (ROK) family protein from hyperthermophilic crenarchaeon Pyrobaculum calidifontis, Pcal-HK, was cloned and expressed in Escherichia coli. The recombinant protein was produced in soluble and highly active form. Purified Pcal-HK was highly thermostable and existed in a monomeric form in solution. The enzyme was specific to ATP as phosphoryl donor but showed broad specificity to phosphoryl acceptors. It catalyzed the phosphorylation of a number of hexoses, including glucose, glucosamine, N-acetyl glucosamine, fructose and mannose, at nearly the same rate and similar affinity. The enzyme was metal ion dependent exhibiting highest activity at 90-95 °C and pH 8.5. Mg2+ was most effective metal ion, which could be partially replaced by Mn2+, Ni2+ or Zn2+. Kinetic parameters were determined at 90 °C and the enzyme showed almost similar catalytic efficiency (kcat/Km) towards the above mentioned hexoses. To the best of our knowledge, Pcal-HK is the most active thermostable ROK family hexokinase characterized to date which catalyzes the phosphorylation of various hexoses with nearly similar affinity.
Collapse
Affiliation(s)
- Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tahira Bibi
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Samia Falak
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
15
|
Sajed M, Falak S, Muhammad MA, Ahmad N, Rashid N. A plant-type L-asparaginase from Pyrobaculum calidifontis undergoes temperature dependent autocleavage. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Darwesh DB, Al-Awthan YS, Elfaki I, Habib SA, Alnour TM, Darwish AB, Youssef MM. Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei. J Microbiol Biotechnol 2022; 32:551-563. [PMID: 35354764 PMCID: PMC9628870 DOI: 10.4014/jmb.2112.12050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/19/2023]
Abstract
L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50°C and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30°C, 40°C, and 50°C, respectively. The enzyme reserved its activity at 30°C and 37°C up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant L-asparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.
Collapse
Affiliation(s)
- Doaa B. Darwesh
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia,Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia,Department of Biology, Faculty of Science, Ibb University, 70270 Ibb, Yemen
| | - Imadeldin Elfaki
- Biochemistry Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem A. Habib
- Biochemistry Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Tarig M. Alnour
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Ahmed B. Darwish
- Zoology Department, Faculty of Science, Suez University, El Salam-1, Suez 43533, Egypt
| | - Magdy M. Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt,Corresponding author Phone: +201003429355 E-mail:
| |
Collapse
|
17
|
Johny TK, Puthusseri RM, Saidumohamed BE, Sheela UB, Puthusseri SP, Sasidharan RS, Bhat SG. Appraisal of cytotoxicity and acrylamide mitigation potential of L-asparaginase SlpA from fish gut microbiome. Appl Microbiol Biotechnol 2022; 106:3583-3598. [PMID: 35579684 DOI: 10.1007/s00253-022-11954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
L-asparaginase catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. It has application in the treatment of acute lymphoblastic leukemia in children, as well as in other malignancies, in addition to its role as a food processing aid for the mitigation of acrylamide formation in the baking industry. Its use in cancer chemotherapy is limited due to problems such as its intrinsic glutaminase activity and associated side effects, leading to an increased interest in the search for novel L-asparaginases without L-glutaminase activity. This study reports the cloning and expression of an L-asparaginase contig obtained from whole metagenome shotgun sequencing of Sardinella longiceps gut microbiota. Purified recombinant glutaminase-free L-asparaginase SlpA was a 74 kDa homodimer, with maximal activity at pH 8 and 30 °C. Km and Vmax of SlpA were determined to be 3.008 mM and 0.014 mM/min, respectively. SlpA displayed cytotoxic activity against K-562 (chronic myeloid leukemia) and MCF-7 (breast cancer) cell lines with IC50 values of 0.3443 and 2.692 U/mL, respectively. SlpA did not show any cytotoxic activity against normal lymphocytes and was proved to be hemocompatible. Pre-treatment of biscuit and bread dough with different concentrations of SlpA resulted in a clear, dose-dependent reduction of acrylamide formation during baking. KEY POINTS: • Cloned and expressed L-asparaginase (SlpA) from fish gut microbiota • Purified SlpA displayed good cytotoxicity against K-562 and MCF-7 cell lines • SlpA addition caused a significant reduction of acrylamide formation during baking.
Collapse
Affiliation(s)
- Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | | | | | - Saipriya Parol Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Raghul Subin Sasidharan
- Department of Zoology, Government College Kariavattom, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India.
| |
Collapse
|
18
|
Dumina MV, Zhgun AA, Pokrovskay MV, Aleksandrova SS, Zhdanov DD, Sokolov NN, El’darov MA. Comparison of Enzymatic Activity of Novel Recombinant L-asparaginases of Extremophiles. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. A Novel L-Asparaginase from Hyperthermophilic Archaeon Thermococcus sibiricus: Heterologous Expression and Characterization for Biotechnology Application. Int J Mol Sci 2021; 22:9894. [PMID: 34576056 PMCID: PMC8470970 DOI: 10.3390/ijms22189894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
20
|
Jia R, Wan X, Geng X, Xue D, Xie Z, Chen C. Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9081659. [PMID: 34442737 PMCID: PMC8400838 DOI: 10.3390/microorganisms9081659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) hydrolyzes L-asparagine to L-aspartic acid and ammonia, which has been widely applied in the pharmaceutical and food industries. Microbes have advantages for L-asparaginase production, and there are several commercially available forms of L-asparaginase, all of which are derived from microbes. Generally, L-asparaginase has an optimum pH range of 5.0-9.0 and an optimum temperature of between 30 and 60 °C. However, the optimum temperature of L-asparaginase from hyperthermophilic archaea is considerable higher (between 85 and 100 °C). The native properties of the enzymes can be enhanced by using immobilization techniques. The stability and recyclability of immobilized enzymes makes them more suitable for food applications. This current work describes the classification, catalytic mechanism, production, purification, and immobilization of microbial L-asparaginase, focusing on its application as an effective reducer of acrylamide in fried potato products, bakery products, and coffee. This highlights the prospects of cost-effective L-asparaginase, thermostable L-asparaginase, and immobilized L-asparaginase as good candidates for food application in the future.
Collapse
Affiliation(s)
- Ruiying Jia
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xiao Wan
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xu Geng
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
- Correspondence: (X.G.); (C.C.)
| | - Deming Xue
- School of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
- Correspondence: (X.G.); (C.C.)
| |
Collapse
|
21
|
Shaeer A, Aslam M, Rashid N. Structural and functional analyses of a novel manganese-catalase from Bacillus subtilis R5. Int J Biol Macromol 2021; 180:222-233. [PMID: 33737179 DOI: 10.1016/j.ijbiomac.2021.03.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022]
Abstract
Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. Limited reports are available on characterization of manganese-catalases. We describe here molecular cloning and expression in Escherichia coli of a putative manganese-catalase gene from mesophilic bacterium, Bacillus subtilis R5. The gene product, CatBsu, produced as a soluble protein, was purified to apparent homogeneity and biochemically characterized. The absorption spectra and nonsignificant inhibition by sodium azide indicated that it is a manganese-catalase. The protein was in homohexameric form in solution, with a subunit molecular weight of 30 kDa, containing ~2 Mn2+ and ~1 Ca2+ per subunit. CatBsu showed highest activity at pH 8.0 and 55 °C. It was found to be highly active with a specific activity of 25,290 μmol min-1 mg-1 and apparent Km and kcat values of 98 mM and 1.27 × 104 s-1 subunit-1, respectively. Although from a mesophilic source, it exhibited a half-life of 2 h at 80 °C. Furthermore, the active site and metal binding residues in CatBsu were predicted by homology modelling and molecular docking. To the best of our knowledge, this is the first characterization of a manganese-catalase from genus Bacillus.
Collapse
Affiliation(s)
- Abeera Shaeer
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
22
|
Barros T, Brumano L, Freitas M, Pessoa A, Parachin N, Magalhães PO. Development of Processes for Recombinant L-Asparaginase II Production by Escherichia coli Bl21 (De3): From Shaker to Bioreactors. Pharmaceutics 2020; 13:E14. [PMID: 33374100 PMCID: PMC7823503 DOI: 10.3390/pharmaceutics13010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Since 1961, L-asparaginase has been used to treat patients with acute lymphocytic leukemia. It rapidly depletes the plasma asparagine and deprives the blood cells of this circulating amino acid, essential for the metabolic cycles of cells. In the search for viable alternatives to produce L-asparaginase, this work aimed to produce this enzyme from Escherichia coli in a shaker and in a 3 L bioreactor. Three culture media were tested: defined, semi-defined and complex medium. L-asparaginase activity was quantified using the β-hydroxamate aspartic acid method. The defined medium provided the highest L-asparaginase activity. In induction studies, two inducers, lactose and its analog IPTG, were compared. Lactose was chosen as an inducer for the experiments conducted in the bioreactor due to its natural source, lower cost and lower toxicity. Batch and fed-batch cultures were carried out to reach high cell density and then start the induction. Batch cultivation provided a final cell concentration of 11 g L-1 and fed-batch cultivation produced 69.90 g L-1 of cells, which produced a volumetric activity of 43,954.79 U L-1 after lactose induction. L-asparaginase was produced in a shaker and scaled up to a bioreactor, increasing 23-fold the cell concentration and thus, the enzyme productivity.
Collapse
Affiliation(s)
- Thaís Barros
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Larissa Brumano
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Marcela Freitas
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Nádia Parachin
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil;
| | - Pérola O. Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| |
Collapse
|
23
|
Naeem SU, Ahmad N, Rashid N. Pcal_0842, a highly thermostable glycosidase from Pyrobaculum calidifontis displays both α-1,4- and β-1,4-glycosidic cleavage activities. Int J Biol Macromol 2020; 165:1745-1754. [DOI: 10.1016/j.ijbiomac.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
|
24
|
Saeed H, Hemida A, El-Nikhely N, Abdel-Fattah M, Shalaby M, Hussein A, Eldoksh A, Ataya F, Aly N, Labrou N, Nematalla H. Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. Int J Biol Macromol 2020; 156:812-828. [PMID: 32311402 DOI: 10.1016/j.ijbiomac.2020.04.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
L-Asparaginase (L-ASNase EC 3.5.1.1) is considered as an important biopharmaceutical drug enzyme in the treatment of childhood acute lymphoblastic leukemia (ALL). In the present study, Pyrococcus furiosus L-ASNase gene was cloned into pET26b (+), expressed in E. coli BL21(DE3) pLysS, and purified to homogeneity using Ni2+ chelated Fast Flow Sepharose resin with 5.7 purification fold and 23.9% recovery. The purified enzyme exhibited a molecular weight of ~33,660 Da on SDS-PAGE and showed maximal activity at 50 °C and pH 8.0. It retained 98.3% and 60.7% initial activity after 60 min at 37 °C and 50 °C, respectively. The recombinant enzyme showed highest substrate specificity towards L-ASNase substrate, while no detectable specificity was observed for l-glutamine, urea, and acrylamide at 10 mM concentration. The Km and Vmax of the purified recombinant enzyme as calculated using Lineweaver-Burk plot were determined to be 1.623 mM and 105 μmol min-1 mg-1, respectively. Human leukemia cell line THP-1 treated with recombinant L-ASNase showed significant morphological changes, and the IC50 of the purified enzyme was found to be 0.8 IU. Moreover, the purified recombinant L-ASNase induced cytotoxic effects on lung adenocarcinoma A549 and colorectal adenocarcinoma Caco-2 cell lines with IC50 of 1.78 IU and 30 IU, respectively.
Collapse
Affiliation(s)
- Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Asmaa Hemida
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Manal Abdel-Fattah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Manal Shalaby
- Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg Al-Arab City, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmad Eldoksh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Farid Ataya
- Biochemistry Department, College of Science, King Saud University, Bld. 5, Lab AA10, P.O. Box: 2454, Riyadh, Saudi Arabia; National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, Giza 12622, Egypt
| | - Nihal Aly
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nikolaos Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 lera Odos Street, Athens GR-11855, Greece
| | - Hisham Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damnhour, Egypt
| |
Collapse
|
25
|
Maqsood B, Basit A, Khurshid M, Bashir Q. Characterization of a thermostable, allosteric L-asparaginase from Anoxybacillus flavithermus. Int J Biol Macromol 2020; 152:584-592. [DOI: 10.1016/j.ijbiomac.2020.02.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022]
|
26
|
Dumina MV, Eldarov MA, Zdanov DD, Sokolov NN. [L-asparaginases of extremophilic microorganisms in biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:105-123. [PMID: 32420891 DOI: 10.18097/pbmc20206602105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-asparaginase is extensively used in the treatment of acute lymphoblastic leukemia and several other lymphoproliferative diseases. In addition to its biomedical application, L-asparaginase is also of prospective use in food industry to reduce the formation of acrylamide, which is classified as probably neurotoxic and carcinogenic to human, and in biosensors for determination of L-asparagine level in medicine and food chemistry. The importance of L-asparaginases in different fields, disadvantages of commercial ferments, and the fact that they are widespread in nature stimuli the search for biobetter L-asparaginases from new producing microorganisms. In this regard, extremofile microorganisms exhibit unique physiological properties such as thermal stability, adaptability to extreme cold conditions, salt and pH tolerance and so provide one of the most valuable sources for novel L-asparaginases. The present review summarizes the recent results on studying the structural, functional, physicochemical and kinetic properties, stability of extremophilic L-asparaginases in comparison with their mesophilic homologues.
Collapse
Affiliation(s)
- M V Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - M A Eldarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - D D Zdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
27
|
Chohan SM, Sajed M, Naeem SU, Rashid N. Heterologous gene expression and characterization of TK2246, a highly active and thermostable plant type l-asparaginase from Thermococcus kodakarensis. Int J Biol Macromol 2020; 147:131-137. [PMID: 31923515 DOI: 10.1016/j.ijbiomac.2020.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
Abstract
The genome sequence of the hyperthermophilic archaeon Thermococcus kodakarensis contains two putative genes, TK1656 and TK2246, annotated as l-asparaginases. TK1656 has been reported previously. The current report is focused on TK2246, a plant-type l-asparaginase, which consists of 918 nucleotides corresponding to a polypeptide of 306 amino acids. The gene was cloned, expressed in Escherichia coli and the purified gene product was used to determine the properties of the recombinant enzyme. TK2246 was optimally active at 85 °C and pH 7.0 with a specific activity of 767 μmol min-1 mg-1 towards l-asparagine. The enzyme exhibited a 10% activity towards d-asparagine as compared to 100% against l-asparagine. No detectable activity was observed towards l- or d-glutamine. Half-life of the enzyme was nearly 18 h at 85 °C. TK2246 exhibited apparent Km and Vmax values of 3.1 mM and 833 μmol min-1 mg-1, respectively. Activation energy of the reaction, determined from the Arrhenius plot, was 28.3 kJ mol-1. To the best of our knowledge, this is the first characterization of a plant-type l-asparaginase from class Thermococci of phylum Euryarchaeota.
Collapse
Affiliation(s)
- Shahid Mahmood Chohan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Sabeel Un Naeem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
28
|
Farahat MG, Amr D, Galal A. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. Int J Biol Macromol 2020; 143:685-695. [DOI: 10.1016/j.ijbiomac.2019.10.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
|
29
|
What makes a good new therapeutic l-asparaginase? World J Microbiol Biotechnol 2019; 35:152. [DOI: 10.1007/s11274-019-2731-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
|