1
|
Zhang X, Ma W, Liu B, Shen C, Yang F, Yang Y, Lv L, Wu J, Liu Y, Shang Y, Guo J, Zhu Z, Liu X, Zheng H, He J. Phylogenetic analyses and antigenic characterization of foot-and-mouth disease virus PanAsia lineage circulating in China between 1999 and 2023. Virol Sin 2024; 39:747-754. [PMID: 39293543 PMCID: PMC11738760 DOI: 10.1016/j.virs.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most important transboundary animal diseases caused by foot-and-mouth disease virus (FMDV), leading to significant economic losses worldwide. The first report of PanAsia lineage of FMDV in China was in 1999. Since 2011, 18 outbreaks attributed to PanAsia lineage viruses have been reported across 7 provinces or municipality in China. Phylogenetic analysis indicated that these PanAsia strains were clustered into three distinct clades (clade 1, clade 2, and clade 3), with nucleotide homology ranging from 91.4% to 100%. The outbreaks of FMD caused by clade 1 strains occurred around 1999 when this lineage was prevalent globally. Clade 2 strains dominated from 2011 to 2013, while clade 3 strains were prevalent during 2018-2019, sharing only 93% homology with clade 2 strains and 91% with clade 1 strains. Tracing analysis showed that these outbreaks represented 3 distinct introductions of PanAsia viruses into China. Virus neutralization tests (VNT) have demonstrated that current commercial vaccines are effective to protect susceptible animals against these strains (r1 > 0.3). However, the growing demand for livestock has promoted animal movement and encouraged the exchange of products, services, and materials between countries, thereby heightening the risk of exotic strain incursions. Therefore, it is imperative to reinforce border controls and limit animal movements among various Asian countries continually to reduce the risk of new transboundary diseases, such as FMD incursion. Additionally, PanAsia-2 strains need to be taken seriously to prevent its incursions, and the relevant vaccines against PanAsia-2 strains need to be stockpiled in preparation for any possible incursion.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Weimin Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yamin Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Lv Lv
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Yongjie Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Jianhong Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; WOAH/National Reference Laboratory for Foot-and-mouth Disease, Lanzhou 730046, China.
| |
Collapse
|
2
|
Caridi F, Cañas-Arranz R, Vázquez-Calvo Á, de León P, Calderón KI, Domingo E, Sobrino F, Martín-Acebes MA. Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Sci Rep 2021; 11:23494. [PMID: 34873184 PMCID: PMC8648728 DOI: 10.1038/s41598-021-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.
Collapse
Affiliation(s)
- Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040, Madrid, Spain
| |
Collapse
|
3
|
Dong H, Lu Y, Zhang Y, Mu S, Wang N, Du P, Zhi X, Wen X, Wang X, Sun S, Zhang Y, Guo H. A Heat-Induced Mutation on VP1 of Foot-and-Mouth Disease Virus Serotype O Enhanced Capsid Stability and Immunogenicity. J Virol 2021; 95:e0017721. [PMID: 34011545 PMCID: PMC8312871 DOI: 10.1128/jvi.00177-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals that causes a significant economic burden globally. Vaccination is the most effective FMD control strategy. However, FMD virus (FMDV) particles are prone to dissociate when appropriate physical or chemical conditions are unavailable, such as an incomplete cold chain. Such degraded vaccines result in compromised herd vaccination. Therefore, thermostable FMD particles are needed for use in vaccines. This study generated thermostable FMDV mutants (M3 and M10) by serial passages at high temperature, subsequent amplification, and purification. Both mutants contained an alanine-to-threonine mutation at position 13 in VP1 (A1013T), although M3 contained 3 additional mutations. The selected mutants showed improved stability and immunogenicity in neutralizing antibody titers, compared with the wild-type (wt) virus. The sequencing analysis and cryo-electron microscopy showed that the mutation of alanine to threonine at the 13th amino acid in the VP1 protein (A1013T) is critical for the capsid stability of FMDV. Virus-like particles containing A1013T (VLPA1013T) also showed significantly improved stability to heat treatment. This study demonstrated that Thr at the 13th amino acid of VP1 could stabilize the capsid of FMDV. Our findings will facilitate the development of a stable vaccine against FMDV serotype O. IMPORTANCE Foot-and-mouth disease (FMD) serotype O is one of the global epidemic serotypes and causes significant economic loss. Vaccination plays a key role in the prevention and control of FMD. However, the success of vaccination mainly depends on the quality of the vaccine. Here, the thermostable FMD virus (FMDV) mutants (M3 and M10) were selected through thermal screening at high temperatures with improved stability and immunogenicity compared with the wild-type virus. The results of multisequence alignment and cryo-electron microscopy (cryo-EM) analysis showed that the Thr substitution at the 13th amino acid in the VP1 protein is critical for the capsid stability of FMDV. For thermolabile type O FMDV, this major discovery will aid the development of its thermostable vaccine.
Collapse
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuanlu Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Suyu Mu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoying Zhi
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- College of Animal Science, Yangtze University, Jingzhou District, Jingzhou, People’s Republic of China
| |
Collapse
|
4
|
Yang B, Zhang X, Zhang D, Hou J, Xu G, Sheng C, Choudhury SM, Zhu Z, Li D, Zhang K, Zheng H, Liu X. Molecular Mechanisms of Immune Escape for Foot-and-Mouth Disease Virus. Pathogens 2020; 9:pathogens9090729. [PMID: 32899635 PMCID: PMC7558374 DOI: 10.3390/pathogens9090729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious vesicular disease in cloven-hoofed livestock that results in severe consequences for international trade, posing a great economic threat to agriculture. The FMDV infection antagonizes the host immune responses via different signaling pathways to achieve immune escape. Strategies to escape the cell immune system are key to effective infection and pathogenesis. This review is focused on summarizing the recent advances to understand how the proteins encoded by FMDV antagonize the host innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Keshan Zhang
- Correspondence: (K.Z.); (H.Z.); Tel.: +86-15214078335 (K.Z.)
| | - Haixue Zheng
- Correspondence: (K.Z.); (H.Z.); Tel.: +86-15214078335 (K.Z.)
| | | |
Collapse
|
5
|
Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Sci Rep 2020; 10:1657. [PMID: 32015411 PMCID: PMC6997383 DOI: 10.1038/s41598-020-58414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17.
Collapse
|
6
|
Yuan H, Li P, Bao H, Sun P, Bai X, Bai Q, Li N, Ma X, Cao Y, Fu Y, Li K, Zhang J, Li D, Chen Y, Zhang J, Lu Z, Liu Z. Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines. Appl Microbiol Biotechnol 2020; 104:1683-1694. [PMID: 31900553 PMCID: PMC6985056 DOI: 10.1007/s00253-019-10280-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Foot-and-mouth disease virus (FMDV), the most acid-unstable virus among picornaviruses, tends to disassemble into pentamers at pH values slightly below neutrality. However, the structural integrity of intact virion is one of the most important factors that influence the induction of a protective antibody response. Thus, improving the acid stability of FMDV is required for the efficacy of vaccine preparations. According to the previous studies, a single substitution or double amino acid substitutions (VP1 N17D, VP2 H145Y, VP2 D86H, VP3 H142D, VP3 H142G, and VP1 N17D + VP2 H145Y) in the capsid were introduced into the full-length infectious clone of type O FMDV vaccine strain O/HN/CHN/93 to develop seed FMDV with improved acid stability. After the transfection into BSR/T7 cells of constructed plasmids, substitution VP1 N17D or VP2 D86H resulted in viable and genetically stable FMDVs, respectively. However, substitution VP2 H145Y or VP1 N17D + VP2 H145Y showed reverse mutation and additional mutations, and substitution VP3 H141G or VP3 H141D prevented viral viability. We found that substitution VP1 N17D or VP2 D86H could confer increased acid resistance, alkali stability, and thermostability on FMDV O/HN/CHN/93, whereas substitution VP1 N17D was observed to lead to a decreased replication ability in BHK-21 cells and mildly impaired virulence in suckling mice. In contrast, substitution VP2 D86H had no negative effect on viral infectivity. These results indicated that the mutant rD86H carrying substitution VP2 D86H firstly reported by us could be more adequate for the development of inactivated FMD vaccines with enhanced acid stability.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Deepak PR, Saravanan P, Biswal JK, Basagoudanavar SH, Dechamma HJ, Umapathi V, Sreenivasa BP, Tamilselvan RP, Krishnaswamy N, Zaffer I, Sanyal A. Generation of acid resistant virus like particles of vaccine strains of foot-and-mouth disease virus (FMDV). Biologicals 2019; 60:28-35. [PMID: 31221554 DOI: 10.1016/j.biologicals.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a contagious viral disease affecting cloven hoofed livestock. Insect cell expressed virus like particles (VLPs) are potential alternative to overcome the limitations of inactivated vaccine. However, at pH < 6.5, virus particles disassociate into pentameric structure resulting in loss of antigenicity. Accordingly, we generated seven mutant VLPs containing mutations in the structural genes of FMDV vaccine strains (N17D and/or H145Y for serotypes O/IND/R2/75 and Asia1/IND/63/72; and H142D for serotype A/IND/40/00) by PCR based site directed mutagenesis. Acid resistant VLPs produced by baculovirus expression system were tested for acid stability at pH 7.5, 6.5, 6.0 and 5.5 followed by reactivity in sandwich-ELISA (s-ELISA), which revealed mutant-1 (N17D) of serotype O and Asia1 retained the antigenicity in s-ELISA even at pH 5.5 as compared to other VLPs and wild-types. Further, the 75S empty capsids obtained in sucrose density gradient, when tested in liquid phase blocking ELISA (LPBE) in comparison to cell culture antigen indicated that the VLPs were stable at acidic pH. Transmission electron microscopy of OM-1 confirmed the intact morphology of the empty VLPs. It is concluded that acid resistant VLPs could be useful for developing new generation vaccine or diagnostic for FMDV.
Collapse
Affiliation(s)
- P R Deepak
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - P Saravanan
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India.
| | - J K Biswal
- ICAR-Directorate on Foot-and-Mouth Disease, FMD Vaccination Monitoring and Sero-surveillance Unit, Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - S H Basagoudanavar
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - H J Dechamma
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - V Umapathi
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - R P Tamilselvan
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - N Krishnaswamy
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - I Zaffer
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - A Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| |
Collapse
|
8
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Xie Y, Li H, Qi X, Ma Y, Yang B, Zhang S, Chang H, Yin X, Li Z. Immunogenicity and protective efficacy of a novel foot-and-mouth disease virus empty-capsid-like particle with improved acid stability. Vaccine 2019; 37:2016-2025. [PMID: 30808570 DOI: 10.1016/j.vaccine.2019.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animal species. The FMDV capsid is highly acid labile and viral particles lose their immunogenicity when they disassemble at mildly acidic pHs. The viral capsid of FMDV serotype O is more sensitive than those of other serotypes, making it more difficult to acquire enough empty-capsid-like particles in the acidic insect cell environment for research. In this study, novel FMDV mutants with increased acid resistance were isolated using BHK-21 cell cultured under low-pH conditions. Amino acid substitutions Q25R, K41E, and N85A in the VP1 capsid protein and K154Q in the VP3 capsid protein were detected in all six mutants. Based on these amino acid replacements, empty-capsid-like particles of FMDV serotype O, which were resistant to the acid-induced dissociation of the capsid into pentameric subunits, were produced in insect cells. We characterized the protective immunity induced by these acid-resistant empty capsid particles. Significant humoral and cellular immune responses were elicited in mice after immunization with the acid-resistant empty capsid particles. The acid-resistant empty-capsid-like particles also induced strong neutralizing antibodies in guinea pigs and protected all the guinea pigs from FMDV challenge. Our results suggest that these acid-resistant empty-capsid-like particles have potential utility as a vaccine against serotype O FMDV infection.
Collapse
Affiliation(s)
- Yinli Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haitao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shumin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
10
|
Zhao L, Niu Y, Lu T, Yin H, Zhang Y, Xu L, Wang Y, Chen H. Metagenomic Analysis of the Jinding Duck Fecal Virome. Curr Microbiol 2018; 75:658-665. [PMID: 29368024 PMCID: PMC7080049 DOI: 10.1007/s00284-018-1430-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Ducks play an important role in transmitting and maintaining mammalian viruses in nature, and are a reservoir host of many animal viruses. We analyzed the fecal virome of four strains (A, B, C, and D) of ducks living in isolation by using metagenomic analysis. The feces of the ducks tested contained 18 animal virus families. The percentage values of RNA virus reads, compared to the total animal virus reads in each of the four strains were 96.96% (A), 97.30% (B), 98.01 (C), and 67.49% (D), and were mainly from Orthomyxoviridae, Mimiviridae, Bunyaviridae, Picobirnaviridae, and Reoviridae. Meanwhile, the minority of DNA virus reads were related to Herpesviridae, Adenoviridae, Iridoviridae, and other, low abundance viral families. The percentage values of Orthomyxoviridae, Mimiviridae, Bunyaviridae, Picobirnaviridae, and Herpesviridae reads were not significantly different among strains A, B, and C; however, there were marked differences in the abundance of these reads in strain D. In summary, this study provides an unbiased examination of the viral diversity in the feces of four strains of ducks in specific-pathogen-free periods, and highlights the variation in the percentage of viral families present. These results can be used as a reference for detecting duck viral pathogens and predicting zoonotic potential.
Collapse
Affiliation(s)
- Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yinjie Niu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Taofeng Lu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Haichang Yin
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Lijing Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yiping Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
11
|
Yuan H, Li P, Ma X, Lu Z, Sun P, Bai X, Zhang J, Bao H, Cao Y, Li D, Fu Y, Chen Y, Bai Q, Zhang J, Liu Z. The pH stability of foot-and-mouth disease virus. Virol J 2017; 14:233. [PMID: 29183342 PMCID: PMC5706165 DOI: 10.1186/s12985-017-0897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
ᅟ This review summarized the molecular determinants of the acid stability of FMDV in order to explore the uncoating mechanism of FMDV and improve the acid stability of vaccines. Background The foot-and-mouth disease virus (FMDV) capsid is highly acid labile and tends to dissociate into pentameric subunits at acidic condition to release viral RNA for initiating virus replication. However, the acid stability of virus capsid is greatly required for the maintenance of intact virion during the process of virus culture and vaccine production. The conflict between the acid lability in vivo and acid stability in vitro of FMDV capsid promotes the selection of a series of amino acid substitutions which can confer resistance to acid-induced FMDV inactivation. In order to explore the uncoating activity of FMDV and enhance the acid stability of vaccines, we summarized the available works about the pH stability of FMDV. Main body of the abstract In this review, we analyzed the intrinsic reasons for the acid instability of FMDV from the structural and functional aspects. We also listed all substitutions obtained by different research methods and showed them in the partial capsid of FMDV. We found that a quadrangle region in the viral capsid was the place where a great many pH-sensitive residues were distributed. As the uncoating event of FMDV is dependent on the pH-sensitive amino acid residues in the capsid, this most pH-sensitive position indicates a potential candidate location for RNA delivery triggered by the acid-induced coat disassociation. Short conclusion This review provided an overview of the pH stability of FMDV. The study of pH stability of FMDV not only contributes to the exploration of molecule and mechanism information for FMDV uncoating, but also enlightens the development of FMDV vaccines, including the traditionally inactivated vaccines and the new VLP (virus-like particle) vaccines.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| |
Collapse
|
12
|
Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Vet Microbiol 2017; 203:275-279. [DOI: 10.1016/j.vetmic.2017.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022]
|
13
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology. Transbound Emerg Dis 2017; 63 Suppl 1:63-71. [PMID: 27320168 DOI: 10.1111/tbed.12520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/28/2022]
Abstract
We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain distribution. With ongoing advances, these areas could translate into significantly improved disease control.
Collapse
Affiliation(s)
| | | | | | - L L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, USA
| | - C G Gay
- Agricultural Research Service, USDA, National Program 103-Animal Health, Beltsville, MD, USA
| | - K J Sumption
- European Commission for the Control of FMD (EuFMD), FAO, Rome, Italy
| | - W Vosloo
- Australian Animal Health Laboratory, CSIRO-Biosecurity Flagship, Geelong, Vic., Australia
| |
Collapse
|
14
|
Equine Rhinitis A Virus Mutants with Altered Acid Resistance Unveil a Key Role of VP3 and Intrasubunit Interactions in the Control of the pH Stability of the Aphthovirus Capsid. J Virol 2016; 90:9725-9732. [PMID: 27535044 DOI: 10.1128/jvi.01043-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022] Open
Abstract
Equine rhinitis A virus (ERAV) is a picornavirus associated with respiratory disease in horses and is genetically closely related to foot-and-mouth disease virus (FMDV), the prototype aphthovirus. ERAV has recently gained interest as an FMDV alternative for the study of aphthovirus biology, including cell entry and uncoating or antiviral testing. As described for FMDV, current data support that acidic pH inside cellular endosomes triggers ERAV uncoating. In order to provide further insights into aphthovirus uncoating mechanism, we have isolated a panel of ERAV mutants with altered acid sensitivity and that differed on their degree of sensitivity to the inhibition of endosome acidification. These results provide functional evidence of the involvement of acidic pH on ERAV uncoating within endosomes. Remarkably, all amino acid substitutions found in acid-labile or acid-resistant ERAVs were located in the capsid protein VP3, indicating that this protein plays a pivotal role for the control of pH stability of the ERAV capsid. Moreover, all amino acid substitutions mapped at the intraprotomer interface between VP3 and VP2 or between VP3 and the N terminus of VP1. These results expand our knowledge on the regions that regulate the acid stability of aphthovirus capsid and should be taken into account when using ERAV as a surrogate of FMDV. IMPORTANCE The viral capsid constitutes a sort of dynamic nanomachine that protects the viral genome against environmental assaults while accomplishing important functions such as receptor attachment for viral entry or genome release. We have explored the molecular determinants of aphthovirus capsid stability by isolating and characterizing a panel of equine rhinitis A virus mutants that differed on their acid sensitivity. All the mutations were located within a specific region of the capsid, the intraprotomer interface among capsid proteins, thus providing new insights into the regions that control the acid stability of aphthovirus capsid. These findings could positively contribute to the development of antiviral approaches targeting aphthovirus uncoating or the refinement of vaccine strategies based on capsid stabilization.
Collapse
|
15
|
Biswal JK, Das B, Sharma GK, Khulape SA, Pattnaik B. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A. Virus Genes 2016; 52:235-43. [DOI: 10.1007/s11262-016-1294-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|
16
|
The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1. J Virol 2015; 89:5633-42. [PMID: 25762735 DOI: 10.1128/jvi.03358-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. IMPORTANCE The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating.
Collapse
|