1
|
Ban J, Qian J, Zhang C, Li J. Recent advances in TAM mechanisms in lung diseases. J Transl Med 2025; 23:479. [PMID: 40287707 PMCID: PMC12032715 DOI: 10.1186/s12967-025-06398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.
Collapse
Affiliation(s)
- Jiaqi Ban
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Jiayi Qian
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Chi Zhang
- School of Clinical Medicine, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, People's Republic of China
| | - Jun Li
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
2
|
Liu J, Quan Y, Tong H, Zhu Y, Shi X, Liu Y, Cheng G. Insights into mosquito-borne arbovirus receptors. CELL INSIGHT 2024; 3:100196. [PMID: 39391003 PMCID: PMC11462183 DOI: 10.1016/j.cellin.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The increasing global prevalence of mosquito-borne viruses has emerged as a significant threat to human health and life. Identifying receptors for these viruses is crucial for improving our knowledge of viral pathogenesis and developing effective antiviral strategies. The widespread application of CRISPR-Cas9 screening have led to the discovery of many mosquito-borne virus receptors. The revealed structures of virus-receptor complexes also provide important information for understanding their interaction mechanisms. This review provides a comprehensive summary of both conventional and novel approaches for identifying new viral receptors and the putative entry factors of the most prevalent mosquito-borne viruses within the Flaviviridae, Togaviridae, and Bunyavirales. At the same time, we emphasize the common receptors utilized by these viruses for entry into both vertebrate hosts and mosquito vectors. We discuss promising avenues for developing anti-mosquito-borne viral strategies that target these receptors. Notably, targeting universal receptors of specific mosquito-borne viruses in both vertebrates and mosquitoes offers dual benefits for disease prevention. Additionally, the widespread use of AI-based machine learning and protein structure prediction will accelerate the identification of new viral receptors and provide new avenues for antiviral drug discovery.
Collapse
Affiliation(s)
- Jianying Liu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yixin Quan
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- School of Life Science, Southern University of Science and Technology, Shenzhen, 518052, China
| | - Hua Tong
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Bian P, Zhang H, Ye C, Luo C, Jiang H, Wang Y, Dong Y, Yang J, Zhang F, Wang X, Zhang Y, Jia Z, Lei Y. GAS6 as a potential target to alleviate neuroinflammation during Japanese encephalitis in mouse models. J Neuroinflammation 2024; 21:231. [PMID: 39300526 PMCID: PMC11411859 DOI: 10.1186/s12974-024-03225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Viral encephalitis is characterized by inflammation of the brain parenchyma caused by a variety of viruses, among which the Japanese encephalitis (JE) virus (JEV) is a typical representative arbovirus. Neuronal death, neuroinflammation, and breakdown of the blood brain barrier (BBB) constitute vicious circles of JE progression. Currently, there is no effective therapy to prevent this damage. Growth arrest specific gene 6 (GAS6) is a secreted growth factor that binds to the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases and has been demonstrated to participate in neuroprotection and suppression of inflammation in many central nervous system (CNS) diseases which has great potential for JE intervention. In this study, we found that GAS6 expression in the brain was decreased and was reversely correlated with viral load and neuronal loss. Mice with GAS6/TAM signalling deficiency showed higher mortality and accelerated neuroinflammation during peripheral JEV infection, accompanied by BBB breakdown. GAS6 directly promoted the expression of tight junction proteins in bEnd.3 cells and strengthened BBB integrity, partly via AXL. Mice administered GAS6 were more resistant to JEV infection due to increased BBB integrity, as well as decreased viral load and neuroinflammation. Thus, targeted GAS6 delivery may represent a strategy for the prevention and treatment of JE especially in patients with impaired BBB.
Collapse
Affiliation(s)
- Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710027, China
| | - Haijun Zhang
- Xijing 986 Hospital, Air Force Medical University, Xi'an, 710054, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chuanyu Luo
- Norinco General Hospital, Xi'an, 710065, China
| | - Hong Jiang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Jing Yang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710027, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Zhansheng Jia
- Department of Infectious Diseases, Xi'an International Medical Center Hospital, Xi'an, 710100, China.
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Luo C, Li M, Bian P, Yang J, Liao X, Dong Y, Ye C, Zhang F, Lv X, Zhang Q, Lei Y. The protective role of Mertk in JEV-induced encephalitis by maintaining the integrity of blood-brain barrier. Virol J 2024; 21:217. [PMID: 39277738 PMCID: PMC11401310 DOI: 10.1186/s12985-024-02472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
Japanese encephalitis is an acute infectious disease of the central nervous system caused by neurotropic Japanese encephalitis virus (JEV). As a member of TAM (Tyro3, Axl and Mertk) family, Mertk has involved in multiple biological processes by engaging with its bridging ligands Gas6 and Protein S, including invasion of pathogens, phagocytosis of apoptotic cells, inflammatory response regulation, and the maintenance of blood brain barrier (BBB) integrity. However, its role in encephalitis caused by JEV infection has not been studied in detail. Here, we found that Mertk-/- mice exhibited higher mortality and more rapid disease progression than wild-type mice after JEV challenge. There were no significant differences in viral load and cytokines expression level in peripheral tissues between Wild type and Mertk-/- mice. Furthermore, the absence of Mertk had little effect on the inflammatory response and immunopathological damage while it can cause an increased viral load in the brain. For the in vitro model of BBB, Mertk was shown to maintain the integrity of the BBB. In vivo, Mertk-/- mice exhibited higher BBB permeability and lower BBB integrity. Taken together, our findings demonstrate that Mertk acts as a protective factor in the development of encephalitis induced by JEV infection, which is mainly associated with its beneficial effect on BBB integrity, rather than its regulation of inflammatory response.
Collapse
Affiliation(s)
- Chuanyu Luo
- Department of Clinical Laboratory, Norinco General Hospital, Xi'an, 710065, China
| | - Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiali Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiamei Liao
- Department of Microbiology and Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology and Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology and Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Xin Lv
- Department of Microbiology and Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| | - Qianqian Zhang
- Department of Microbiology, Medical College, Yan'an University, Yan'an, 716000, China.
| | - Yingfeng Lei
- Department of Microbiology and Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
6
|
Gomes JA, Sgarioni E, Boquett JA, Kowalski TW, Fraga LR, Terças-Trettel ACP, da Silva JH, Ribeiro BFR, Galera MF, de Oliveira TM, Carvalho de Andrade MDF, Carvalho IF, Schüler-Faccini L, Vianna FSL. Investigation of the impact of AXL, TLR3, and STAT2 in congenital Zika syndrome through genetic polymorphisms and protein-protein interaction network analyses. Birth Defects Res 2023; 115:1500-1512. [PMID: 37526179 DOI: 10.1002/bdr2.2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Zika virus (ZIKV) is a human teratogen that causes congenital Zika syndrome (CZS). AXL, TLR3, and STAT2 are proteins involved in the ZIKV's entry into cells (AXL) and host's immune response (TLR3 and STAT2). In this study, we evaluated the role of genetic polymorphisms in these three genes as risk factors to CZS, and highlighted which proteins that interact with them could be important for ZIKV infection and teratogenesis. MATERIALS AND METHODS We evaluate eighty-eight children exposed to ZIKV during the pregnancy, 40 with CZS and 48 without congenital anomalies. The evaluated polymorphisms in AXL (rs1051008), TLR3 (rs3775291), and STAT2 (rs2066811) were genotyped using TaqMan® Genotyping Assays. A protein-protein interaction network was created in STRING database and analyzed in Cytoscape software. RESULTS We did not find any statistical significant association among the polymorphisms and the occurrence of CZS. Through the analyses of the network composed by AXL, TLR3, STAT2 and their interactions targets, we found that EGFR and SRC could be important proteins for the ZIKV infection and its teratogenesis. CONCLUSION In summary, our results demonstrated that the evaluated polymorphisms do not seem to represent risk factors for CZS; however, EGFR and SRC appear to be important proteins that should be investigated in future studies.
Collapse
Affiliation(s)
- Julia A Gomes
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Eduarda Sgarioni
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliano A Boquett
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente (PPGSCA), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Neurology, University of California, San Francisco, California, USA
| | - Thayne W Kowalski
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Lucas R Fraga
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina: Ciências Médicas (PPGCM), Porto Alegre, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Cláudia P Terças-Trettel
- Departamento de Enfermagem, Universidade do Estado de Mato Grosso (UNEMAT), Tangará da Serra, Brazil
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Juliana H da Silva
- Secretaria Municipal de Saúde de Tangará da Serra, Tangará da Serra, Brazil
| | | | - Marcial F Galera
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
- Hospital Universitário Júlio Müller (HUJM), Universidade Federal de Mato Grosso (UFMT), Empresa Brasileira de Serviços Hospitalares (EBSERH), Cuiabá, Brazil
| | - Thalita M de Oliveira
- Hospital Universitário Júlio Müller (HUJM), Universidade Federal de Mato Grosso (UFMT), Empresa Brasileira de Serviços Hospitalares (EBSERH), Cuiabá, Brazil
| | - Maria Denise F Carvalho de Andrade
- Universidade Estadual do Ceará (UECE), Fortaleza, Brazil
- Centro Universitário Christus (UNICHRISTUS), Fortaleza, Brazil
- Faculdade Paulo Picanço, Fortaleza, Brazil
- Hospital Geral Dr. César Cals, Fortaleza, Brazil
| | | | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente (PPGSCA), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina: Ciências Médicas (PPGCM), Porto Alegre, Brazil
| |
Collapse
|
7
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
8
|
Rizzi M, Tonello S, D’Onghia D, Sainaghi PP. Gas6/TAM Axis Involvement in Modulating Inflammation and Fibrosis in COVID-19 Patients. Int J Mol Sci 2023; 24:ijms24020951. [PMID: 36674471 PMCID: PMC9861142 DOI: 10.3390/ijms24020951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Gas6 (growth arrest-specific gene 6) is a widely expressed vitamin K-dependent protein that is involved in many biological processes such as homeostatic regulation, inflammation and repair/fibrotic processes. It is known that it is the main ligand of TAMs, a tyrosine kinase receptor family of three members, namely MerTK, Tyro-3 and Axl, for which it displays the highest affinity. Gas6/TAM axis activation is known to be involved in modulating inflammatory responses as well as fibrotic evolution in many different pathological conditions. Due to the rapidly evolving COVID-19 pandemic, this review will focus on Gas6/TAM axis activation in SARS-CoV-2 infection, where de-regulated inflammatory responses and fibrosis represent a relevant feature of severe disease manifestation. Furthermore, this review will highlight the most recent scientific evidence supporting an unsuspected role of Axl as a SARS-CoV-2 infection driver, and the potential therapeutic advantages of the use of existing Axl inhibitors in COVID-19 management. From a physiological point of view, the Gas6/TAM axis plays a dual role, fostering the tissue repair processes or leading to organ damage and loss of function, depending on the prevalence of its anti-inflammatory or profibrotic properties. This review makes a strong case for further research focusing on the Gas6/TAM axis as a pharmacological target to manage different disease conditions, such as chronic fibrosis or COVID-19.
Collapse
|
9
|
Baskol G, Özel M, Saracoglu H, Ulger B, Kalin Unuvar G, Onuk S, Bayram A, Karayol Akin A, Muhtaroglu S, Sagiroglu P, Kilic E. New Avenues to Explore in SARS-CoV-2 Infection: Both TRIM25 and TRIM56 Positively Correlate with VEGF, GAS6, and sAXL in COVID-19 Patients. Viral Immunol 2022; 35:690-699. [PMID: 36450108 DOI: 10.1089/vim.2022.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The ongoing COVID-19 pandemic poses a significant threat to human health. Many hypotheses regarding pathogenesis have been proposed and are being tried to be clarified by experimental and clinical studies. This study aimed to reveal the roles of the innate immune system modulator GAS6/sAXL pathway, endothelial dysfunction markers vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α, and antiviral effective TRIM25 and TRIM56 proteins in pathogenesis of COVID-19. The study included 55 patients with COVID-19 and 25 healthy individuals. The serum levels of GAS6, sAXL, VEGF, HIF-1α, TRIM25, and TRIM56 were measured using commercial ELISA kits and differences between COVID-19 patients and healthy controls, and the relationship to severity and prognosis were evaluated. GAS6, sAXL, TRIM56, and VEGF were found to be higher, while TRIM25 was lower in patients. There were strong positive correlations between GAS6, sAXL, TRIM25, TRIM56, and VEGF. None of the research parameters other than HIF-1α was associated with severity or prognosis. However, HIF-1α was positively correlated with APACHE II. We speculate that the antiviral effective TRIM25 and TRIM56 proteins, as well as the GAS6/sAXL pathway, act together as a defense mechanism in COVID-19. We hope that our study will contribute to further studies to elucidate the molecular mechanism associated with TRIM56, TRIM25, GAS6, sAXL, and VEGF in COVID-19 patients.
Collapse
Affiliation(s)
- Gülden Baskol
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Merve Özel
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hatice Saracoglu
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Ulger
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gamze Kalin Unuvar
- Department of Infectious Disease, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sevda Onuk
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Aynur Karayol Akin
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sabahattin Muhtaroglu
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Sagiroglu
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Eser Kilic
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Li FP, Shi GF, Lin ZZ, Zhu XL, Wang LJ, Tung TH, Zhang MX. Antibody response to SARS-CoV-2 vaccines among hospitalized patients in China: a case-control study. Hum Vaccin Immunother 2022; 18:2088966. [PMID: 35708313 PMCID: PMC9621078 DOI: 10.1080/21645515.2022.2088966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
A lack of confidence on the vaccination drive hinders the management of the COVID-19 pandemic. We aimed to assess the antibody response to the SARS-CoV-2 vaccine among hospitalized patients in China. This case-control study was based on SARS-CoV-2 sero-surveillance during hospitalization. From April to June 2021, hospitalized patients without documented COVID-19 infection from the Department of Urology were routinely assayed for anti-SARS-CoV-2 antibodies. The SARS-CoV-2 vaccination history of each participant was obtained from their vaccination records. Of the 405 participants, there were 37 seropositive participants (case group) and 368 seronegative participants (control group); 68 participants (16.8%) had received the inactivated SARS-CoV-2 vaccine, including 54 who received the Sinovac-CoronaVac vaccine and 14 received the Sinopharm vaccine. All seropositive participants who had received one or two doses of the SARS-CoV-2 vaccine were assessed for at least 16 days, while 31 (8.4%) of 368 seronegative controls who had received the vaccine were tested for 1-94 days. The overall seroconversion rate was 54.4% (37/68) in the vaccinated participants who received the inactivated SARS-CoV-2 vaccine. The odds ratio (OR) and confidence interval (CI) for seropositivity was 6.20 (95% CI: 2.05-18.71) in those received full vaccination with two doses versus those partially vaccinated participants with one dose after adjusting for sex and age. These findings imply that the inactivated SARS-CoV-2 vaccine could have a protective antibody response.
Collapse
Affiliation(s)
- Fei-Ping Li
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Gui-Feng Shi
- Department of Preventive Health Care, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhen-Zhen Lin
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Xiao-Liang Zhu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Li-Jun Wang
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Mei-Xian Zhang
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
11
|
Zhang M, Wang X, Hu L, Zhang Y, Zheng H, Wu H, Wang J, Luo L, Xiao H, Qiao C, Li X, Huang W, Wang Y, Feng J, Chen G. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol Spectr 2022; 10:e0221221. [PMID: 35384693 PMCID: PMC9241846 DOI: 10.1128/spectrum.02212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Malafaia G, Ahmed MAI, Souza SSD, Rezende FNE, Freitas ÍN, da Luz TM, da Silva AM, Charlie-Silva I, Braz HLB, Jorge RJB, Sanches PRS, Mendonça-Gomes JM, Cilli EM, Araújo APDC. Toxicological impact of SARS-CoV-2 on the health of the neotropical fish, Poecilia reticulata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106104. [PMID: 35176694 PMCID: PMC8830931 DOI: 10.1016/j.aquatox.2022.106104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/12/2023]
Abstract
There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-Graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia MG, Brazil.
| | | | - Sindoval Silva de Souza
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Fernanda Neves Estrela Rezende
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Abner Marcelino da Silva
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | |
Collapse
|
14
|
Zdżalik-Bielecka D, Kozik K, Poświata A, Jastrzębski K, Jakubik M, Miączyńska M. Bemcentinib and Gilteritinib Inhibit Cell Growth and Impair the Endo-Lysosomal and Autophagy Systems in an AXL-Independent Manner. Mol Cancer Res 2022; 20:446-455. [PMID: 34782372 DOI: 10.1158/1541-7786.mcr-21-0444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting. In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Jakubik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
15
|
Abstract
TAM receptors (Tyro3, Axl and MerTK) are a family of tyrosine kinase receptors that are expressed in a variety of cell populations, including liver parenchymal and non-parenchymal cells. These receptors are vital for immune homeostasis, as they regulate the innate immune response by suppressing inflammation via toll-like receptor inhibition and by promoting tissue resolution through efferocytosis. However, there is increasing evidence indicating that aberrant TAM receptor signaling may play a role in pathophysiological processes in the context of liver disease. This review will explore the roles of TAM receptors and their ligands in liver homeostasis as well as a variety of disease settings, including acute liver injury, steatosis, fibrosis, cirrhosis-associated immune dysfunction and hepatocellular carcinoma. A better understanding of our current knowledge of TAM receptors in liver disease may identify new opportunities for disease monitoring as well as novel therapeutic targets. Nonetheless, this review also aims to highlight areas where further research on TAM receptor biology in liver disease is required.
Collapse
|
16
|
Novel reverse genetics of genotype I and III Japanese encephalitis viruses assembled through transformation associated recombination in yeast: The reporter viruses expressing a green fluorescent protein for the antiviral screening assay. Antiviral Res 2022; 197:105233. [DOI: 10.1016/j.antiviral.2021.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/24/2022]
|
17
|
Liang X, Zhu D, Li Y, Liao L, Yang C, Liu L, Huang R, Wang W, Zhu Z, He L, Wang Y. Molecular characterization and functional analysis of peroxiredoxin 4 in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104213. [PMID: 34324900 DOI: 10.1016/j.dci.2021.104213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Peroxiredoxins (Prxs) are a group of evolutionarily conserved selenium-independent thiol-specific antioxidant proteins. In this study, the peroxiredoxin-4 (CiPrx4) gene from grass carp was identified and characterized. The full-length of CiPrx4 is 1339 bp, encoding 260 amino acids that contain two peroxiredoxin signature motifs and two GVL motifs. CiPrx4 belongs to the typical 2-Cys subfamily and shows the highest homology with Prx4 from Cyprinus carpio (95.4%). CiPrx4 mRNA was constitutively expressed in all tested tissues and was upregulated by grass carp reovirus and pathogen-associated molecular pattern (PAMP) stimulation. CiPrx4 was localized in the cytoplasm and co-localized with the endoplasmic reticulum. The purified CiPrx4 protein protected DNA from degradation in a dose-dependent manner. Moreover, the overexpression of CiPrx4 in Escherichia coli and fish cells showed apparent antioxidant and antiviral activities. Collectively, the results of the present study provide new insights for further understanding the functions of Prx4 in teleost fish.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liyue Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Weiyan Wang
- The Yellow Lake Fishery Co. Ltd of Anhui Province, Anqing, 246524, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Charrel RN, Depaquit J. Comment on Xu et al. Isolation and Identification of a Novel Phlebovirus, Hedi Virus, from Sandflies Collected in China. Viruses 2021, 13, 772. Viruses 2021; 13:2397. [PMID: 34960666 PMCID: PMC8704916 DOI: 10.3390/v13122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The article from Xu et al. [...].
Collapse
Affiliation(s)
- Remi N. Charrel
- Unité des Virus Emergents, UVE, Aix Marseille University, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Jerome Depaquit
- ESCAPE EA7510, USC ANSES VECPAR, SFR Cap Santé, UFR de Pharmacie, Université de Reims Champagne Ardenne, 51096 Reims, France;
| |
Collapse
|
19
|
Tovo PA, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M, Licciardi F, Ramenghi U, Galliano I, Bergallo M. COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. Int J Mol Sci 2021; 22:7481. [PMID: 34299101 PMCID: PMC8303145 DOI: 10.3390/ijms22147481] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. TRIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children and in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19 children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Silvia Garazzino
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Valentina Daprà
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Giulia Pruccoli
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Cristina Calvi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Federica Mignone
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Carla Alliaudi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Marco Denina
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Carlo Scolfaro
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Marisa Zoppo
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Francesco Licciardi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ugo Ramenghi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
20
|
Tutusaus A, Marí M, Ortiz-Pérez JT, Nicolaes GAF, Morales A, García de Frutos P. Role of Vitamin K-Dependent Factors Protein S and GAS6 and TAM Receptors in SARS-CoV-2 Infection and COVID-19-Associated Immunothrombosis. Cells 2020; 9:E2186. [PMID: 32998369 PMCID: PMC7601762 DOI: 10.3390/cells9102186] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
The vitamin K-dependent factors protein S (PROS1) and growth-arrest-specific gene 6 (GAS6) and their tyrosine kinase receptors TYRO3, AXL, and MERTK, the TAM subfamily of receptor tyrosine kinases (RTK), are key regulators of inflammation and vascular response to damage. TAM signaling, which has largely studied in the immune system and in cancer, has been involved in coagulation-related pathologies. Because of these established biological functions, the GAS6-PROS1/TAM system is postulated to play an important role in SARS-CoV-2 infection and progression complications. The participation of the TAM system in vascular function and pathology has been previously reported. However, in the context of COVID-19, the role of TAMs could provide new clues in virus-host interplay with important consequences in the way that we understand this pathology. From the viral mimicry used by SARS-CoV-2 to infect cells, to the immunothrombosis that is associated with respiratory failure in COVID-19 patients, TAM signaling seems to be involved at different stages of the disease. TAM targeting is becoming an interesting biomedical strategy, which is useful for COVID-19 treatment now, but also for other viral and inflammatory diseases in the future.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
| | - José T. Ortiz-Pérez
- Clinic Cardiovascular Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|