1
|
Tang H, Zhang T, Feng J, Zhang M, Xu B, Zhang Q, Li N, Zhang N, Fang Q. Neuropeptide FF prevented histamine- or chloroquine-induced acute itch behavior through non-NPFF receptors mechanism in male mice. Neuropeptides 2024; 108:102481. [PMID: 39504659 DOI: 10.1016/j.npep.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.d.) injection of histamine or chloroquine in male mice. Our results indicated that intracerebroventricular (i.c.v.) administration of NPFF dose-dependently prevented histamine- or chloroquine-induced acute itch behaviors. In addition, the modulatory effect of NPFF was not affected by the selective NPFF receptor antagonist RF9. Furthermore, we investigated the effects of NPVF and dNPA, the selective agonists of NPFF1 and NPFF2 receptors respectively, on the acute itch. The results demonstrated that both NPFF agonists effectively prevented acute itch induced by histamine or chloroquine in a manner similar to NPFF, and their effects were also not modified by RF9. To further investigate the possible mechanism of the NPFF receptors agonists, the NPFF-derived analogues [Phg8]-NPFF and NPFF(1-7)-NH2 that could not activate NPFF receptors in cAMP assays were subsequently tested in the acute itch model. Interestingly, [Phg8]-NPFF, but not NPFF(1-7)-NH2, prevented acute itch behavior after i.c.v. administration. In conclusion, our findings reveal that NPFF and related peptides prevent histamine- and chloroquine-induced acute itch through a NPFF receptor-independent mechanism. And it was revealed that the C-terminal phenyl structure of NPFF may play a crucial role in these modulatory effects on acute itch.
Collapse
Affiliation(s)
- Honghai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China; ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jiamin Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Chen HH, Mohsin M, Ge JY, Feng YT, Wang JG, Ou YS, Jiang ZJ, Hu BY, Liu XJ. Optogenetic Activation of Peripheral Somatosensory Neurons in Transgenic Mice as a Neuropathic Pain Model for Assessing the Therapeutic Efficacy of Analgesics. ACS Pharmacol Transl Sci 2024; 7:236-248. [PMID: 38230281 PMCID: PMC10789130 DOI: 10.1021/acsptsci.3c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.
Collapse
Affiliation(s)
- Hao-Hao Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Muhammad Mohsin
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Jia-Yi Ge
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Ting Feng
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing-Ge Wang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Sen Ou
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Zuo-Jie Jiang
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Bo-Ya Hu
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xing-Jun Liu
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
3
|
Chen O, He Q, Han Q, Furutani K, Gu Y, Olexa M, Ji RR. Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma. J Clin Invest 2023; 133:160807. [PMID: 36520531 PMCID: PMC9927942 DOI: 10.1172/jci160807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Qingjian Han
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Madelynne Olexa
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Zhang FM, Wang B, Hu H, Li QY, Chen HH, Luo LT, Jiang ZJ, Zeng MX, Liu XJ. Transcriptional Profiling of TGF-β Superfamily Members in Lumbar DRGs of Rats Following Sciatic Nerve Axotomy and Activin C Inhibits Neuropathic Pain. Endocr Metab Immune Disord Drug Targets 2023; 23:375-388. [PMID: 36201267 DOI: 10.2174/1871530322666221006114557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-β superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-β superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE We aimed to plot the transcriptional profiles of transforming growth factor-β superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-β superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin βC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS The expression of transforming growth factor-β superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin βC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION This is the first report to investigate the transcriptional profiles of members of transforming growth factor-β superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-β superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Bing Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qing-Yi Li
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Hao-Hao Chen
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Li-Ting Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zuo-Jie Jiang
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Mei-Xing Zeng
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| |
Collapse
|
5
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
6
|
Fan L, He J, Zheng Y, Nie Y, Chen T, Zhang H. Facial micro-expression recognition impairment and its relationship with social anxiety in internet gaming disorder. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Ji RR. Third Special Issue on Mechanisms of Pain and Itch. Neurosci Bull 2022; 38:339-341. [PMID: 35467251 PMCID: PMC9068844 DOI: 10.1007/s12264-022-00851-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain 2021; 162:1960-1976. [PMID: 34130310 DOI: 10.1097/j.pain.0000000000002218] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.
Collapse
|
9
|
Wang Z, Jiang C, Yao H, Chen O, Rahman S, Gu Y, Zhao J, Huh Y, Ji RR. Central opioid receptors mediate morphine-induced itch and chronic itch via disinhibition. Brain 2021; 144:665-681. [PMID: 33367648 DOI: 10.1093/brain/awaa430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 02/27/2024] Open
Abstract
Opioids such as morphine are mainstay treatments for clinical pain conditions. Itch is a common side effect of opioids, particularly as a result of epidural or intrathecal administration. Recent progress has advanced our understanding of itch circuits in the spinal cord. However, the mechanisms underlying opioid-induced itch are not fully understood, although an interaction between µ-opioid receptor (MOR) and gastrin-releasing peptide receptor (GRPR) in spinal GRPR-expressing neurons has been implicated. In this study we investigated the cellular mechanisms of intrathecal opioid-induced itch by conditional deletion of MOR-encoding Oprm1 in distinct populations of interneurons and sensory neurons. We found that intrathecal injection of the MOR agonists morphine or DAMGO elicited dose-dependent scratching as well as licking and biting, but this pruritus was totally abolished in mice with a specific Oprm1 deletion in Vgat+ neurons [Oprm1-Vgat (Slc32a1)]. Loss of MOR in somatostatin+ interneurons and TRPV1+ sensory neurons did not affect morphine-induced itch but impaired morphine-induced antinociception. In situ hybridization revealed Oprm1 expression in 30% of inhibitory and 20% of excitatory interneurons in the spinal dorsal horn. Whole-cell recordings from spinal cord slices showed that DAMGO induced outward currents in 9 of 19 Vgat+ interneurons examined. Morphine also inhibited action potentials in Vgat+ interneurons. Furthermore, morphine suppressed evoked inhibitory postsynaptic currents in postsynaptic Vgat- excitatory neurons, suggesting a mechanism of disinhibition by MOR agonists. Notably, morphine-elicited itch was suppressed by intrathecal administration of NPY and abolished by spinal ablation of GRPR+ neurons with intrathecal injection of bombesin-saporin, whereas intrathecal GRP-induced itch response remained intact in mice lacking Oprm1-Vgat. Intrathecal bombesin-saporin treatment reduced the number of GRPR+ neurons by 97% in the lumber spinal cord and 91% in the cervical spinal cord, without changing the number of Oprm1+ neurons. Additionally, chronic itch from DNFB-induced allergic contact dermatitis was decreased by Oprm1-Vgat deletion. Finally, naloxone, but not peripherally restricted naloxone methiodide, inhibited chronic itch in the DNFB model and the CTCL model, indicating a contribution of central MOR signalling to chronic itch. Our findings demonstrate that intrathecal morphine elicits itch via acting on MOR on spinal inhibitory interneurons, leading to disinhibition of the spinal itch circuit. Our data also provide mechanistic insights into the current treatment of chronic itch with opioid receptor antagonist such as naloxone.
Collapse
Affiliation(s)
- Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongyu Yao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sreya Rahman
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Phelan I, Furness PJ, Dunn HD, Carrion-Plaza A, Matsangidou M, Dimitri P, Lindley S. Immersive virtual reality in children with upper limb injuries: Findings from a feasibility study. J Pediatr Rehabil Med 2021; 14:401-414. [PMID: 34151871 PMCID: PMC9108569 DOI: 10.3233/prm-190635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Children who sustain Upper Limb Injuries (ULIs), including fractures and burns, may undergo intensive rehabilitation. The discomfort of therapy can reduce their compliance, limit their range of motion (ROM) and lead to chronic pain. Virtual Reality (VR) interventions have been found to reduce anticipated and procedural pain.This feasibility study aimed to explore perceptions and impacts of a custom-made, fully immersive Head-Mounted Display VR (HMD-VR) experience within a United Kingdom (UK) National Health Service (NHS) outpatient rehabilitation service for children with ULIs. METHODS Ten children aged 9-16 in one UK Children's hospital trialled HMD-VR during one rehabilitation session. They, their parents (n = 10), and hospital physiotherapy staff (n = 2) were interviewed about their perceptions of pain, difficulty, enjoyability, therapeutic impacts, benefits, and limitations. Children rated the sessions on enjoyability, difficulty, and pain compared to usual rehabilitation exercises. Physiotherapists were asked to provide range of motion readings. RESULTS Inductive thematic analysis of interview data generated three themes, 'Escape through Engagement'; 'Enhanced Movement'; and 'Adaptability and Practicality'. Children rated the session as more enjoyable, less difficult and painful than their usual rehabilitation exercises. Findings suggested that HMD-VR was an engaging, enjoyable experience that distracted children from the pain and boredom of therapy. Also, it seemed to enhance the movement they achieved. Participants perceived it was useful for rehabilitation and adaptable to individual needs and other patient groups. Suggestions were made to increase adaptability and build in practical safeguards. CONCLUSION Findings from this small-scale feasibility study suggested HMD-VR was perceived as usable, acceptable, and effective with potential for further development. Future work could include larger scale trials.
Collapse
Affiliation(s)
- Ivan Phelan
- Centre for Culture, Media and Society, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| | - Penny J Furness
- Centre for Behavioural Sciences and Applied Psychology (CeBSAP), Department of Psychology, Sociology and Politics, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| | - Heather D Dunn
- Centre for Behavioural Sciences and Applied Psychology (CeBSAP), Department of Psychology, Sociology and Politics, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| | - Alicia Carrion-Plaza
- Centre for Culture, Media and Society, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| | - Maria Matsangidou
- Centre for Culture, Media and Society, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| | - Paul Dimitri
- NIHR Children & Young People MedTech Cooperative, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom.,Sheffield Hallam University, Sheffield, United Kingdom
| | - Shirley Lindley
- Centre for Culture, Media and Society, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
11
|
Tweety-Homolog 1 Facilitates Pain via Enhancement of Nociceptor Excitability and Spinal Synaptic Transmission. Neurosci Bull 2020; 37:478-496. [PMID: 33355899 DOI: 10.1007/s12264-020-00617-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.
Collapse
|
12
|
Huang Y, Lu Y, Zhao X, Zhang J, Zhang F, Chen Y, Bi L, Gu J, Jiang Z, Wu X, Li Q, Liu Y, Shen J, Liu X. Cytokine activin C ameliorates chronic neuropathic pain in peripheral nerve injury rodents by modulating the TRPV1 channel. Br J Pharmacol 2020; 177:5642-5657. [PMID: 33095918 PMCID: PMC7707095 DOI: 10.1111/bph.15284] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The cytokine activin C is mainly expressed in small-diameter dorsal root ganglion (DRG) neurons and suppresses inflammatory pain. However, the effects of activin C in neuropathic pain remain elusive. EXPERIMENTAL APPROACH Male rats and wild-type and TRPV1 knockout mice with peripheral nerve injury - sciatic nerve axotomy and spinal nerve ligation in rats; chronic constriction injury (CCI) in mice - provided models of chronic neuropathic pain. Ipsilateral lumbar (L)4-5 DRGs were assayed for activin C expression. Chronic neuropathic pain animals were treated with intrathecal or locally pre-administered activin C or the vehicle. Nociceptive behaviours and pain-related markers in L4-5 DRGs and spinal cord were evaluated. TRPV1 channel modulation by activin C was measured. KEY RESULTS Following peripheral nerve injury, expression of activin βC subunit mRNA and activin C protein was markedly up-regulated in L4-5 DRGs of animals with axotomy, SNL or CCI. [Correction added on 26 November 2020, after first online publication: The preceding sentence has been corrected in this current version.] Intrathecal activin C dose-dependently inhibited neuropathic pain in spinal nerve ligated rats. Local pre-administration of activin C decreased neuropathic pain, macrophage infiltration into ipsilateral L4-5 DRGs and microglial reaction in L4-5 spinal cords of mice with CCI. In rat DRG neurons, activin C enhanced capsaicin-induced TRPV1 currents. Pre-treatment with activin C reduced capsaicin-evoked acute hyperalgesia and normalized capsaicin-evoked persistent hypothermia in mice. Finally, the analgesic effect of activin C was abolished in TRPV1 knockout mice with CCI. CONCLUSION AND IMPLICATIONS Activin C inhibits neuropathic pain by modulating TRPV1 channels, revealing potential analgesic applications in chronic neuropathic pain therapy.
Collapse
Affiliation(s)
- Ya‐Kun Huang
- School of PharmacyNantong UniversityNantongChina
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | - Yu‐Gang Lu
- Department of Anesthesiology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xin Zhao
- Department of GeriatricsRenji Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghaiChina
| | - Jing‐Bing Zhang
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | | | - Yong Chen
- School of PharmacyNantong UniversityNantongChina
| | - Ling‐Bo Bi
- School of PharmacyNantong UniversityNantongChina
| | - Jia‐Hui Gu
- School of PharmacyNantong UniversityNantongChina
| | - Zuo‐Jie Jiang
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | - Xiao‐Man Wu
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | - Qing‐Yi Li
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | - Yanli Liu
- College of Pharmaceutical ScienceSoochow UniversitySuzhouChina
| | - Jian‐Xin Shen
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| | - Xing‐Jun Liu
- School of PharmacyNantong UniversityNantongChina
- Pain and Related Diseases Research LaboratoryShantou University Medical CollegeShantouChina
| |
Collapse
|
13
|
Huang J, Bloe CB, Zhou X, Wu S, Zhang W. The Role of the Spinal Wnt Signaling Pathway in HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2020; 40:1075-1085. [PMID: 32100186 PMCID: PMC11448846 DOI: 10.1007/s10571-020-00805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain includes HIV-induced neuropathic pain (HNP) and antiretroviral therapy-induced neuropathic pain (ART-NP). A significant amount of evidence from the past few years has shown that the development of HIV-related neuropathic pain is closely related to the activation of the Wnt signaling pathway in the spinal cord. This review summarizes the function of the spinal Wnt signaling pathway in HIV-induced neuropathic pain, focusing on the role of the spinal Wnt signaling pathway in HNP, and provides a theoretical basis for further studies and the exploration of new target drugs.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Adult Stress Promotes Purinergic Signaling to Induce Visceral Pain in Rats with Neonatal Maternal Deprivation. Neurosci Bull 2020; 36:1271-1280. [PMID: 32909219 PMCID: PMC7674540 DOI: 10.1007/s12264-020-00575-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic visceral pain is one of the primary symptoms of patients with irritable bowel syndrome (IBS), which affects up to 15% of the population world-wide. The detailed mechanisms of visceral pain remain largely unclear. Our previous studies have shown that neonatal maternal deprivation (NMD) followed by adult multiple stress (AMS) advances the occurrence of visceral pain, likely due to enhanced norepinephrine (NE)-β2 adrenergic signaling. This study was designed to explore the roles of P2X3 receptors (P2X3Rs) in the chronic visceral pain induced by combined stress. Here, we showed that P2X3Rs were co-expressed in β2 adrenergic receptor (β2-AR)-positive dorsal root ganglion neurons and that NE significantly enhanced ATP-induced Ca2+ signals. NMD and AMS not only significantly increased the protein expression of P2X3Rs, but also greatly enhanced the ATP-evoked current density, number of action potentials, and intracellular Ca2+ concentration of colon-related DRG neurons. Intrathecal injection of the P2X3R inhibitor A317491 greatly attenuated the visceral pain and the ATP-induced Ca2+ signals in NMD and AMS rats. Furthermore, the β2-AR antagonist butoxamine significantly reversed the expression of P2X3Rs, the ATP-induced current density, and the number of action potentials of DRG neurons. Overall, our data demonstrate that NMD followed by AMS leads to P2X3R activation, which is most likely mediated by upregulation of β2 adrenergic signaling in primary sensory neurons, thus contributing to visceral hypersensitivity.
Collapse
|
15
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
16
|
More than Scratching the Surface: Recent Progress in Brain Mechanisms Underlying Itch and Scratch. Neurosci Bull 2019; 36:85-88. [PMID: 30830669 DOI: 10.1007/s12264-019-00352-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/02/2019] [Indexed: 12/31/2022] Open
|
17
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
18
|
Du WJ, Hu S, Li X, Zhang PA, Jiang X, Yu SP, Xu GY. Neonatal Maternal Deprivation Followed by Adult Stress Enhances Adrenergic Signaling to Advance Visceral Hypersensitivity. Neurosci Bull 2018; 35:4-14. [PMID: 30560437 PMCID: PMC6357269 DOI: 10.1007/s12264-018-0318-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of visceral pain in patients with irritable bowel syndrome remains largely unknown. Our previous study showed that neonatal maternal deprivation (NMD) does not induce visceral hypersensitivity at the age of 6 weeks in rats. The aim of this study was to determine whether NMD followed by adult stress at the age of 6 weeks induces visceral pain in rats and to investigate the roles of adrenergic signaling in visceral pain. Here we showed that NMD rats exhibited visceral hypersensitivity 6 h and 24 h after the termination of adult multiple stressors (AMSs). The plasma level of norepinephrine was significantly increased in NMD rats after AMSs. Whole-cell patch-clamp recording showed that the excitability of dorsal root ganglion (DRG) neurons from NMD rats with AMSs was remarkably increased. The expression of β2 adrenergic receptors at the protein and mRNA levels was markedly higher in NMD rats with AMSs than in rats with NMD alone. Inhibition of β2 adrenergic receptors with propranolol or butoxamine enhanced the colorectal distention threshold and application of butoxamine also reversed the enhanced hypersensitivity of DRG neurons. Overall, our data demonstrate that AMS induces visceral hypersensitivity in NMD rats, in part due to enhanced NE-β2 adrenergic signaling in DRGs.
Collapse
Affiliation(s)
- Wan-Jie Du
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shufen Hu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xin Li
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Ping-An Zhang
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Center for Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Xinghong Jiang
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shan-Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Guang-Yin Xu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Center for Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China.
| |
Collapse
|
19
|
Han Q, Liu D, Convertino M, Wang Z, Jiang C, Kim YH, Luo X, Zhang X, Nackley A, Dokholyan NV, Ji RR. miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus. Neuron 2018; 99:449-463.e6. [PMID: 30033153 DOI: 10.1016/j.neuron.2018.06.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that extracellular miRNAs may serve as biomarkers of diseases, but the physiological relevance of extracellular miRNA is unclear. We find that intradermal cheek injection of miR-711 induces TRPA1-depedent itch (scratching) without pain (wiping) in naive mice. Extracellular perfusion of miR-711 induces TRPA1 currents in both Trpa1-expressing heterologous cells and native sensory neurons through the core sequence GGGACCC. Computer simulations reveal that the core sequence binds several residues at the extracellular S5-S6 loop of TRPA1, which are critical for TRPA1 activation by miR-711 but not allyl isothiocyanate. Intradermal inoculation of human Myla cells induces lymphoma and chronic itch in immune-deficient mice, associated with increased serum levels of miR-711, secreted from cancer cells. Lymphoma-induced chronic itch is suppressed by miR-711 inhibitor and a blocking peptide that disrupts the miR-711/TRPA1 interaction. Our findings demonstrated an unconventional physiological role of extracellular naked miRNAs as itch mediators and ion channel modulators.
Collapse
Affiliation(s)
- Qingjian Han
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Di Liu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marino Convertino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong Ho Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|