1
|
Zhao X, Chae Y, Smith D, Chen V, DeFelipe D, Sokol JW, Sadangi A, Tschida K. Short-term social isolation acts on hypothalamic neurons to promote social behavior in a sex- and context-dependent manner. eLife 2025; 13:RP94924. [PMID: 40035330 DOI: 10.7554/elife.94924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Social animals, including both humans and mice, are highly motivated to engage in social interactions. Short-term social isolation promotes social behavior, but the neural circuits through which it does so remain incompletely understood. Here, we sought to identify neurons that promote social behavior in single-housed female mice, which exhibit increased rates of social investigation, social ultrasonic vocalizations (USVs), and mounting during same-sex interactions that follow a period of short-term (3 days) isolation. We first used immunostaining for the immediate early gene Fos to identify a population of neurons in the preoptic hypothalamus (POA) that increase their activity in single-housed females following same-sex interactions (POAsocial neurons) but not in single-housed females that did not engage in social interactions. TRAP2-mediated chemogenetic silencing of POAsocial neurons in single-housed females significantly attenuates the effects of short-term isolation on social investigation, USV production, and mounting. In contrast, caspase-mediated ablation of POAsocial neurons in single-housed females robustly attenuates mounting but does not decrease social investigation or USV production. Optogenetic activation of POAsocial neurons in group-housed females promotes social investigation and USV production but does not recapitulate the effects of short-term isolation on mounting. To understand whether a similar population of POAsocial neurons promotes social behavior in single-housed males, we performed Fos immunostaining in single-housed males following either same-sex or opposite-sex social interactions. These experiments revealed a population of POA neurons that increase Fos expression in single-housed males following opposite-sex, but not same-sex, interactions. Chemogenetic silencing of POAsocial neurons in single-housed males during interactions with females reduces mounting but does not affect social investigation or USV production. These experiments identify a population of hypothalamic neurons that promote social behavior following short-term isolation in a sex- and social context-dependent manner.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, United States
| | - Yurim Chae
- Department of Psychology, Cornell University, Ithaca, United States
| | - Destiny Smith
- Department of Psychology, Cornell University, Ithaca, United States
| | - Valerie Chen
- Department of Psychology, Cornell University, Ithaca, United States
| | - Dylan DeFelipe
- Department of Psychology, Cornell University, Ithaca, United States
| | - Joshua W Sokol
- Department of Psychology, Cornell University, Ithaca, United States
| | - Archana Sadangi
- Department of Psychology, Cornell University, Ithaca, United States
| | | |
Collapse
|
2
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542531. [PMID: 37292748 PMCID: PMC10246011 DOI: 10.1101/2023.05.26.542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor function is a critical aspect of social behavior in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social behavior in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behavior beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
4
|
Hou Y, Li Y, Yang D, Zhao Y, Feng T, Zheng W, Xian P, Liu X, Wu S, Wang Y. Involvement and regulation of the left anterior cingulate cortex in the ultrasonic communication deficits of autistic mice. Front Behav Neurosci 2024; 18:1387447. [PMID: 38813469 PMCID: PMC11133516 DOI: 10.3389/fnbeh.2024.1387447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/21/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a group of diseases often characterized by poor sociability and challenges in social communication. The anterior cingulate cortex (ACC) is a core brain region for social function. Whether it contributes to the defects of social communication in ASD and whether it could be physiologically modulated to improve social communication have been poorly investigated. This study is aimed at addressing these questions. Methods Fragile X mental retardation 1 (FMR1) mutant and valproic acid (VPA)-induced ASD mice were used. Male-female social interaction was adopted to elicit ultrasonic vocalization (USV). Immunohistochemistry was used to evaluate USV-activated neurons. Optogenetic and precise target transcranial magnetic stimulation (TMS) were utilized to modulate anterior cingulate cortex (ACC) neuronal activity. Results In wild-type (WT) mice, USV elicited rapid expression of c-Fos in the excitatory neurons of the left but not the right ACC. Optogenetic inhibition of the left ACC neurons in WT mice effectively suppressed social-induced USV. In FMR1-/-- and VPA-induced ASD mice, significantly fewer c-Fos/CaMKII-positive neurons were observed in the left ACC following USV compared to the control. Optogenetic activation of the left ACC neurons in FMR1-/- or VPA-pretreated mice significantly increased social activity elicited by USV. Furthermore, precisely stimulating neuronal activity in the left ACC, but not the right ACC, by repeated TMS effectively rescued the USV emission in these ASD mice. Discussion The excitatory neurons in the left ACC are responsive to socially elicited USV. Their silence mediates the deficiency of social communication in FMR1-/- and VPA-induced ASD mice. Precisely modulating the left ACC neuronal activity by repeated TMS can promote the social communication in FMR1-/- and VPA-pretreated mice.
Collapse
Affiliation(s)
- Yilin Hou
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Yuqian Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dingding Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Tingwei Feng
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Wei’an Zheng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Panpan Xian
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Ruiz-Sobremazas D, Ruiz Coca M, Morales-Navas M, Rodulfo-Cárdenas R, López-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. Neurodevelopmental consequences of gestational exposure to particulate matter 10: Ultrasonic vocalizations and gene expression analysis using a bayesian approach. ENVIRONMENTAL RESEARCH 2024; 240:117487. [PMID: 37918762 DOI: 10.1016/j.envres.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Air pollution has been associated with a wide range of health issues, particularly regarding cardio-respiratory diseases. Increasing evidence suggests a potential link between gestational exposure to environmental pollutants and neurodevelopmental disorders such as autism spectrum disorder. The respiratory pathway is the most commonly used exposure model regarding PM due to valid and logical reasons. However, PM deposition on food (vegetables, fruits, cereals, etc.) and water has been previously described. Although this justifies the need of unforced, oral models of exposure, preclinical studies using oral exposure are uncommon. Specifically, air pollution can modify normal brain development at genetic, cellular, and structural levels. The present work aimed to investigate the effects of oral gestational exposure to particulate matter (PM) on ultrasonic vocalizations (USV). To this end, pregnant rats were exposed to particulate matter during gestation. The body weight of the pups was monitored until the day of recording the USVs. The results revealed that the exposed group emitted more USV calls when compared to the control group. Furthermore, the calls from the exposed group were longer in duration and started earlier than those from the non-exposed group. Gene expression analyses showed that PM exposure down-regulates the expression of Gabrg2 and Maoa genes in the brain, but no effect was detected on glutamate or other neurotransmission systems. These findings suggest that gestational exposure to PM10 may be related to social deficits or other phenomena that can be analyzed with USV. In addition, we were able to detect abnormalities in the expression of genes related to different neurotransmitter systems, such as the GABAergic and monoaminergic systems. Further research is needed to fully understand the possible effects of air pollutant exposure on neurodevelopmental disorders as well as the way in which these effects are linked to differences in neurotransmission systems.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain; University of Zaragoza, Department of Psychology and Sociology, Teruel, Spain
| | - Mario Ruiz Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | | | - Maria Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain.
| |
Collapse
|
6
|
Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, Chien J, Yamaguchi T, Urtecho A, Tong X, Chen ZS, Lin D. Neural dynamics in the limbic system during male social behaviors. Neuron 2023; 111:3288-3306.e4. [PMID: 37586365 PMCID: PMC10592239 DOI: 10.1016/j.neuron.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Sexual and aggressive behaviors are vital for species survival and individual reproductive success. Although many limbic regions have been found relevant to these behaviors, how social cues are represented across regions and how the network activity generates each behavior remains elusive. To answer these questions, we utilize multi-fiber photometry (MFP) to simultaneously record Ca2+ signals of estrogen receptor alpha (Esr1)-expressing cells from 13 limbic regions in male mice during mating and fighting. We find that conspecific sensory information and social action signals are widely distributed in the limbic system and can be decoded from the network activity. Cross-region correlation analysis reveals striking increases in the network functional connectivity during the social action initiation phase, whereas late copulation is accompanied by a "dissociated" network state. Based on the response patterns, we propose a mating-biased network (MBN) and an aggression-biased network (ABN) for mediating male sexual and aggressive behaviors, respectively.
Collapse
Affiliation(s)
- Zhichao Guo
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; School of Life Sciences, Peking University, Beijing 100871, China
| | - Luping Yin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Veronica Diaz
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley Urtecho
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe S Chen
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
7
|
Gan-Or B, London M. Cortical circuits modulate mouse social vocalizations. SCIENCE ADVANCES 2023; 9:eade6992. [PMID: 37774030 PMCID: PMC10541007 DOI: 10.1126/sciadv.ade6992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Vocalizations provide a means of communication with high fidelity and information rate for many species. Diencephalon and brainstem neural circuits have been shown to control mouse vocal production; however, the role of cortical circuits in this process is debatable. Using electrical and optogenetic stimulation, we identified a cortical region in the anterior cingulate cortex in which stimulation elicits ultrasonic vocalizations. Moreover, fiber photometry showed an increase in Ca2+ dynamics preceding vocal initiation, whereas optogenetic suppression in this cortical area caused mice to emit fewer vocalizations. Last, electrophysiological recordings indicated a differential increase in neural activity in response to female social exposure dependent on vocal output. Together, these results indicate that the cortex is a key node in the neuronal circuits controlling vocal behavior in mice.
Collapse
Affiliation(s)
- Benjamin Gan-Or
- Edmond and Lily Safra Center for Brain Sciences and Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
8
|
Yu ZX, Zha X, Xu XH. Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr Opin Neurobiol 2023; 81:102749. [PMID: 37421660 DOI: 10.1016/j.conb.2023.102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of "circuit genetics", where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
9
|
Sterling ML, Teunisse R, Englitz B. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming. eLife 2023; 12:e86126. [PMID: 37493217 PMCID: PMC10522333 DOI: 10.7554/elife.86126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Collapse
Affiliation(s)
- Max L Sterling
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Visual Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Ruben Teunisse
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
10
|
Qi H, Luo L, Lu C, Chen R, Zhou X, Zhang X, Jia Y. TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through its DNA binding domain but not transcription activation domain. Mol Psychiatry 2023; 28:1703-1717. [PMID: 36782064 DOI: 10.1038/s41380-023-01993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/β-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its β-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.
Collapse
Affiliation(s)
- Huihui Qi
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Medicine, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Li Luo
- Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China
| | - Caijing Lu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Chen
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xianyao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Science, Beijing Normal University, Beijing, 100875, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,School of Medicine, Tsinghua University, Beijing, 100084, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Stoumpou V, Vargas CDM, Schade PF, Boyd JL, Giannakopoulos T, Jarvis ED. Analysis of Mouse Vocal Communication (AMVOC): a deep, unsupervised method for rapid detection, analysis and classification of ultrasonic vocalisations. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2099973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Vasiliki Stoumpou
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - César D. M. Vargas
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Peter F. Schade
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - J. Lomax Boyd
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Theodoros Giannakopoulos
- Computational Intelligence Lab, Institute of Informatics and Telecommunications, National Center of Scientific Research 'Demokritos', Athens, Greece
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
12
|
Zheng DJ, Okobi DE, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022; 530:2075-2099. [PMID: 35385140 PMCID: PMC11987554 DOI: 10.1002/cne.25321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Vocalizations are often elaborate, rhythmically structured behaviors. Vocal motor patterns require close coordination of neural circuits governing the muscles of the larynx, jaw, and respiratory system. In the elaborate vocalization of Alston's singing mouse (Scotinomys teguina) each note of its rapid, frequency-modulated trill is accompanied by equally rapid modulation of breath and gape. To elucidate the neural circuitry underlying this behavior, we introduced the polysynaptic retrograde neuronal tracer pseudorabies virus (PRV) into the cricothyroid and digastricus muscles, which control frequency modulation and jaw opening, respectively. Each virus singly labels ipsilateral motoneurons (nucleus ambiguus for cricothyroid, and motor trigeminal nucleus for digastricus). We find that the two isogenic viruses heavily and bilaterally colabel neurons in the gigantocellular reticular formation, a putative central pattern generator. The viruses also show strong colabeling in compartments of the midbrain including the ventrolateral periaqueductal gray and the parabrachial nucleus, two structures strongly implicated in vocalizations. In the forebrain, regions important to social cognition and energy balance both exhibit extensive colabeling. This includes the paraventricular and arcuate nuclei of the hypothalamus, the lateral hypothalamus, preoptic area, extended amygdala, central amygdala, and the bed nucleus of the stria terminalis. Finally, we find doubly labeled neurons in M1 motor cortex previously described as laryngeal, as well as in the prelimbic cortex, which indicate these cortical regions play a role in vocal production. The progress of both viruses is broadly consistent with vertebrate-general patterns of vocal circuitry, as well as with circuit models derived from primate literature.
Collapse
Affiliation(s)
- Da-Jiang Zheng
- Department of Integrative Biology, The University of Texas at Austin, Austin TX 78712, USA
| | - Daniel E. Okobi
- Department of Neurology, University of California Los Angeles, Los Angeles CA 90095, USA
| | - Ryan Shu
- Department of Integrative Biology, The University of Texas at Austin, Austin TX 78712, USA
| | - Rania Agrawal
- Department of Integrative Biology, The University of Texas at Austin, Austin TX 78712, USA
| | - Samantha K. Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin TX 78712, USA
| | - Michael A. Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York NY 10016, USA
| | - Steven M. Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
13
|
Karigo T. Gaining insights into the internal states of the rodent brain through vocal communications. Neurosci Res 2022; 184:1-8. [PMID: 35908736 DOI: 10.1016/j.neures.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/31/2022]
Abstract
Animals display various behaviors during social interactions. Social behaviors have been proposed to be driven by the internal states of the animals, reflecting their emotional or motivational states. However, the internal states that drive social behaviors are complex and difficult to interpret. Many animals, including mice, use vocalizations for communication in various social contexts. This review provides an overview of current understandings of mouse vocal communications, its underlying neural circuitry, and the potential to use vocal communications as a readout for the animal's internal states during social interactions.
Collapse
Affiliation(s)
- Tomomi Karigo
- Division of Biology and Biological Engineering 140-18,TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, USA; Present address: Kennedy Krieger Institute, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Ruat J, Genewsky AJ, Heinz DE, Kaltwasser SF, Canteras NS, Czisch M, Chen A, Wotjak CT. Why do mice squeak? Towards a better understanding of defensive vocalization. iScience 2022; 25:104657. [PMID: 35845167 PMCID: PMC9283514 DOI: 10.1016/j.isci.2022.104657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Although mice mostly communicate in the ultrasonic range, they also emit audible calls. We demonstrate that mice selectively bred for high anxiety-related behavior (HAB) have a high disposition for emitting sonic calls when caught by the tail. The vocalization was unrelated to pain but sensitive to anxiolytics. As revealed by manganese-enhanced MRI, HAB mice displayed an increased tonic activity of the periaqueductal gray (PAG). Selective inhibition of the dorsolateral PAG not only reduced anxiety-like behavior but also completely abolished sonic vocalization. Calls were emitted at a fundamental frequency of 3.8 kHz, which falls into the hearing range of numerous predators. Indeed, playback of sonic vocalization attracted rats if associated with a stimulus mouse. If played back to HAB mice, sonic calls were repellent in the absence of a conspecific but attractive in their presence. Our data demonstrate that sonic vocalization attracts both predators and conspecifics depending on the context. Sonic vocalization in threatening situations is prominent in highly anxious mice It coincides with increased neuronal activity within the periaqueductal gray (PAG) Pharmacological inhibition of the PAG attenuates sonic vocalization Sonic calls attract both rats and mice in the presence of a stimulus mouse
Collapse
|
15
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
16
|
Evaluating the DeepSqueak and Mouse Song Analyzer vocalization analysis systems in C57BL/6J, FVB.129, and FVB neonates. J Neurosci Methods 2021; 364:109356. [PMID: 34508783 DOI: 10.1016/j.jneumeth.2021.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Communication is an essential behavior in mammals. Alterations in communication (neonatal crying) characterize numerous human neurodevelopmental conditions. Mice produce communicative vocalizations, known as ultrasonic vocalizations, (USVs) that can be recorded. The Mouse Song Analyzer is an automated USV analysis system while DeepSqueak is a semi-automated USV detection system. METHOD We used data from, C57BL/6J, FVB.129, and FVB neonates to compare the reliability of DeepSqueak and the Mouse Song Analyzer across various acoustic variables. RESULTS We found that both systems detected a similar quantity of USVs for FVB.129 and FVB mice. However, DeepSqueak detected more USVs for C57BL/6J mice. High correlations were found between systems for each strain. When assessing duration, Deepsqueak detected USVs of a longer duration then the Mouse Song Analyzer across all strains. A low correlation between systems for duration was found for FVB.129 mice, while high correlations were found for C57BL/6J and FVB mice. When assessing fundamental frequency, the Mouse Song Analyzer detected a higher frequency than DeepSqueak for FVB.129 mice, with no other differences present. High correlations between systems were found for C57BL/6J and FVB.129 mice, while a low correlation was found for FVB mice. We also assessed each system's sensitivity and found that Deepsqueak was able to detect softer USVs than the Mouse Song Analyzer. CONCLUSIONS These findings demonstrate that the strain of mouse used significantly affects the reliability of USV analysis systems. However, our data also indicates that DeepSqueak is more reliable and accurate than the Mouse Song Analyzer due to its increased sensitivity.
Collapse
|
17
|
Zha X, Xu XH. Neural circuit mechanisms that govern inter-male attack in mice. Cell Mol Life Sci 2021; 78:7289-7307. [PMID: 34687319 PMCID: PMC11072497 DOI: 10.1007/s00018-021-03956-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male-male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top-down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Wallach A, Melanson A, Longtin A, Maler L. Mixed selectivity coding of sensory and motor social signals in the thalamus of a weakly electric fish. Curr Biol 2021; 32:51-63.e3. [PMID: 34741807 DOI: 10.1016/j.cub.2021.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
High-level neural activity often exhibits mixed selectivity to multivariate signals. How such representations arise and modulate natural behavior is poorly understood. We addressed this question in weakly electric fish, whose social behavior is relatively low dimensional and can be easily reproduced in the laboratory. We report that the preglomerular complex, a thalamic region exclusively connecting midbrain with pallium, implements a mixed selectivity strategy to encode interactions related to courtship and rivalry. We discuss how this code enables the pallial recurrent networks to control social behavior, including dominance in male-male competition and female mate selection. Notably, response latency analysis and computational modeling suggest that corollary discharge from premotor regions is implicated in flagging outgoing communications and thereby disambiguating self- versus non-self-generated signals. These findings provide new insights into the neural substrates of social behavior, multi-dimensional neural representation, and its role in perception and decision making.
Collapse
Affiliation(s)
- Avner Wallach
- Zuckerman Institute of Mind, Brain and Behavior, Columbia University, 3227 Broadway, NY 10027, USA.
| | - Alexandre Melanson
- Département de Physique et d'Astronomie, Université de Moncton, 18 Av. Antonine-Maillet, Moncton, NB E1A 3E9, Canada; Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada; Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Leonard Maler
- Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
19
|
Bogacki-Rychlik W, Rolf M, Bialy M. Anticipatory 50-kHz Precontact Ultrasonic Vocalizations and Sexual Motivation: Characteristic Pattern of Ultrasound Subtypes in an Individual Analyzed Profile. Front Behav Neurosci 2021; 15:722456. [PMID: 34489656 PMCID: PMC8417802 DOI: 10.3389/fnbeh.2021.722456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
We verified the hypothesis of the existence of forms of individual-specific differences in the emission of anticipatory precontact vocalization (PVs) indicating individualization related to sexual experience and motivation in male rats. Long-Evans males were individually placed in a chamber and 50-kHz ultrasounds were recorded during 5-min periods. In experiment 1, PVs were recorded before the introduction of a female in four consecutive sessions during the acquisition of sexual experience. In experiment 2, PVs were analyzed in three groups of sexually experienced males: with the highest, moderate, and the lowest sexual motivation based on previous copulatory activity. In both experiments, the total number of ultrasounds, as well as 14 different specific subtypes, was measured. The ultrasound profiles for each male were created by analyzing the proportions of specific dominant subtypes of so-called 50-kHz calls. We decided that the dominant ultrasounds were those that represented more than 10% of the total recorded signals in a particular session. The number of PVs was positively correlated with the acquisition of sexual experience and previous copulatory efficiency (measured as the number of sessions with ejaculation). Furthermore, PVs showed domination of the frequency modulated signals (complex and composite) as well as flat and short with upward ramp ultrasounds with some individual differences, regardless of the level of sexual motivation. The results show a characteristic pattern of PVs and confirm the hypothesis that the number of PVs is a parameter reflecting the level of sexual motivation.
Collapse
Affiliation(s)
- Wiktor Bogacki-Rychlik
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Rolf
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Bialy
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, Zhao J, Kornbrek C, He Z, Tschida KA. Sex- and context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS One 2021; 16:e0255640. [PMID: 34469457 PMCID: PMC8409668 DOI: 10.1371/journal.pone.0255640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - William Chan
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Jennifer Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Caroline Kornbrek
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Zichen He
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kikusui T, Sonobe M, Yoshida Y, Nagasawa M, Ey E, de Chaumont F, Bourgeron T, Nomoto K, Mogi K. Testosterone Increases the Emission of Ultrasonic Vocalizations With Different Acoustic Characteristics in Mice. Front Psychol 2021; 12:680176. [PMID: 34248780 PMCID: PMC8267093 DOI: 10.3389/fpsyg.2021.680176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.
Collapse
Affiliation(s)
- Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Miku Sonobe
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuuki Yoshida
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Miho Nagasawa
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Elodie Ey
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Fabrice de Chaumont
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Kensaku Nomoto
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
22
|
Yamaguchi T. Neural circuit mechanisms of sex and fighting in male mice. Neurosci Res 2021; 174:1-8. [PMID: 34175319 DOI: 10.1016/j.neures.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Surviving in the animal kingdom hinges on the ability to fight competitors and to mate with partners. Dedicated neural circuits in the brain allow animals to mate and attack without any prior experience. Classical lesioning and stimulation studies demonstrated that medial hypothalamic and limbic areas are crucial for male sexual and aggressive behaviors. Moreover, recent functional manipulation tools have uncovered neural circuits critical for mating and aggression, and optical and electrophysiological recordings have revealed how socially relevant information (e.g. sex-specific sensory signals, action commands for specific behaviors, mating- and aggression-specific motivational states) is encoded in these circuits. A better understanding of the neural mechanisms of innate social behaviors will provide critical insights to how complex behavioral outputs are coordinated at the circuit level. In this paper, I review these recent studies and discuss the potential circuit logic of male sexual and aggressive behaviors in mice.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
23
|
Seidisarouei M, van Gurp S, Pranic NM, Calabus IN, van Wingerden M, Kalenscher T. Distinct Profiles of 50 kHz Vocalizations Differentiate Between Social Versus Non-social Reward Approach and Consumption. Front Behav Neurosci 2021; 15:693698. [PMID: 34234654 PMCID: PMC8255485 DOI: 10.3389/fnbeh.2021.693698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Social animals tend to possess an elaborate vocal communication repertoire, and rats are no exception. Rats utilize ultrasonic vocalizations (USVs) to communicate information about a wide range of socially relevant cues, as well as information regarding the valence of the behavior and/or surrounding environment. Both quantitative and qualitative acoustic properties of these USVs are thought to communicate context-specific information to conspecifics. Rat USVs have been broadly categorized into 22 and 50 kHz call categories, which can be further classified into subtypes based on their sonographic features. Recent research indicates that the 50 kHz calls and their various subtype profiles may be related to the processing of social and non-social rewards. However, only a handful of studies have investigated USV elicitation in the context of both social and non-social rewards. Here, we employ a novel behavioral paradigm, the social-sucrose preference test, that allowed us to measure rats’ vocal responses to both non-social (i.e., 2, 5, and 10% sucrose) and social reward (interact with a Juvenile rat), presented concurrently. We analyzed adult male Long-Evans rats’ vocal responses toward social and non-social rewards, with a specific focus on 50 kHz calls and their 14 subtypes. We demonstrate that rats’ preference and their vocal responses toward a social reward were both influenced by the concentration of the non-social reward in the maze. In other words, rats showed a trade-off between time spent with non-social or social stimuli along with increasing concentrations of sucrose, and also, we found a clear difference in the emission of flat and frequency-modulated calls in the social and non-social reward zones. Furthermore, we report that the proportion of individual subtypes of 50 kHz calls, as well as the total USV counts, showed variation across different types of rewards as well. Our findings provide a thorough overview of rat vocal responses toward non-social and social rewards and are a clear depiction of the variability in the rat vocalization repertoire, establishing the role of call subtypes as key players driving context-specific vocal responses of rats.
Collapse
Affiliation(s)
- Mohammad Seidisarouei
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander van Gurp
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Irina Noguer Calabus
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marijn van Wingerden
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, Netherlands
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
24
|
Chen J, Markowitz JE, Lilascharoen V, Taylor S, Sheurpukdi P, Keller JA, Jensen JR, Lim BK, Datta SR, Stowers L. Flexible scaling and persistence of social vocal communication. Nature 2021; 593:108-113. [PMID: 33790464 PMCID: PMC9153763 DOI: 10.1038/s41586-021-03403-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022]
Abstract
Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | | - Varoth Lilascharoen
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sandra Taylor
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Pete Sheurpukdi
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Lisa Stowers
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
25
|
Zhang W, Li SS, Han Y, Xu XH. Sex Differences in Electrophysiological Properties of Mouse Medial Preoptic Area Neurons Revealed by In Vitro Whole-cell Recordings. Neurosci Bull 2021; 37:166-182. [PMID: 32888180 PMCID: PMC7870743 DOI: 10.1007/s12264-020-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 10/23/2022] Open
Abstract
Despite extensive characterization of sex differences in the medial preoptic area (mPOA) of the hypothalamus, we know surprisingly little about whether or how male and female mPOA neurons differ electrophysiologically, especially in terms of neuronal firing and behavioral pattern generation. In this study, by performing whole-cell patch clamp recordings of the mPOA, we investigated the influences of sex, cell type, and gonadal hormones on the electrophysiological properties of mPOA neurons. Notably, we uncovered significant sex differences in input resistance (male > female) and in the percentage of neurons that displayed post-inhibitory rebound (male > female). Furthermore, we found that the current mediated by the T-type Ca2+ channel (IT), which is known to underlie post-inhibitory rebound, was indeed larger in male mPOA neurons. Thus, we have identified salient electrophysiological properties of mPOA neurons, namely IT and post-inhibitory rebound, that are male-biased and likely contribute to the sexually dimorphic display of behaviors.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
26
|
Karigo T, Kennedy A, Yang B, Liu M, Tai D, Wahle IA, Anderson DJ. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 2021; 589:258-263. [PMID: 33268894 PMCID: PMC7899581 DOI: 10.1038/s41586-020-2995-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 01/29/2023]
Abstract
Animal behaviours that are superficially similar can express different intents in different contexts, but how this flexibility is achieved at the level of neural circuits is not understood. For example, males of many species can exhibit mounting behaviour towards same- or opposite-sex conspecifics1, but it is unclear whether the intent and neural encoding of these behaviours are similar or different. Here we show that female- and male-directed mounting in male laboratory mice are distinguishable by the presence or absence of ultrasonic vocalizations (USVs)2-4, respectively. These and additional behavioural data suggest that most male-directed mounting is aggressive, although in rare cases it can be sexual. We investigated whether USV+ and USV- mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) revealed distinct patterns of neuronal activity during USV+ and USV- mounting, and the type of mounting could be decoded from population activity in either region. Intersectional optogenetic stimulation of MPOA neurons that express ESR1 and vesicular GABA transporter (VGAT) (MPOAESR1∩VGAT neurons) robustly promoted USV+ mounting, and converted male-directed attack to mounting with USVs. By contrast, stimulation of VMHvl neurons that express ESR1 (VMHvlESR1 neurons) promoted USV- mounting, and inhibited the USVs evoked by female urine. Terminal stimulation experiments suggest that these complementary inhibitory effects are mediated by reciprocal projections between the MPOA and VMHvl. Together, these data identify a hypothalamic subpopulation that is genetically enriched for neurons that causally induce a male reproductive behavioural state, and indicate that reproductive and aggressive states are represented by distinct population codes distributed between MPOAESR1 and VMHvlESR1 neurons, respectively. Thus, similar behaviours that express different internal states are encoded by distinct hypothalamic neuronal populations.
Collapse
Affiliation(s)
- Tomomi Karigo
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
- Department of Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Mengyu Liu
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Derek Tai
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Iman A Wahle
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
27
|
Michael V, Goffinet J, Pearson J, Wang F, Tschida K, Mooney R. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. eLife 2020; 9:e63493. [PMID: 33372655 PMCID: PMC7793624 DOI: 10.7554/elife.63493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Animals vocalize only in certain behavioral contexts, but the circuits and synapses through which forebrain neurons trigger or suppress vocalization remain unknown. Here, we used transsynaptic tracing to identify two populations of inhibitory neurons that lie upstream of neurons in the periaqueductal gray (PAG) that gate the production of ultrasonic vocalizations (USVs) in mice (i.e. PAG-USV neurons). Activating PAG-projecting neurons in the preoptic area of the hypothalamus (POAPAG neurons) elicited USV production in the absence of social cues. In contrast, activating PAG-projecting neurons in the central-medial boundary zone of the amygdala (AmgC/M-PAG neurons) transiently suppressed USV production without disrupting non-vocal social behavior. Optogenetics-assisted circuit mapping in brain slices revealed that POAPAG neurons directly inhibit PAG interneurons, which in turn inhibit PAG-USV neurons, whereas AmgC/M-PAG neurons directly inhibit PAG-USV neurons. These experiments identify two major forebrain inputs to the PAG that trigger and suppress vocalization, respectively, while also establishing the synaptic mechanisms through which these neurons exert opposing behavioral effects.
Collapse
Affiliation(s)
- Valerie Michael
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - Jack Goffinet
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - John Pearson
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- Department of Biostatistics & Bioinformatics, Duke University Medical CenterDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | | | - Richard Mooney
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
28
|
Zala SM, Nicolakis D, Marconi MA, Noll A, Ruf T, Balazs P, Penn DJ. Primed to vocalize: Wild-derived male house mice increase vocalization rate and diversity after a previous encounter with a female. PLoS One 2020; 15:e0242959. [PMID: 33296411 PMCID: PMC7725367 DOI: 10.1371/journal.pone.0242959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Males in a wide variety of taxa, including insects, birds and mammals, produce vocalizations to attract females. Male house mice emit ultrasonic vocalizations (USVs), especially during courtship and mating, which are surprising complex. It is often suggested that male mice vocalize at higher rates after interacting with a female, but the evidence is mixed depending upon the strain of mice. We conducted a study with wild-derived house mice (Mus musculus musculus) to test whether male courtship vocalizations (i.e., vocalizations emitted in a sexual context) are influenced by a prior direct interaction with a female, and if so, determine how long the effect lasts. We allowed sexually naïve males to directly interact with a female for five minutes (sexual priming), and then we recorded males'vocalizations either 1, 10, 20, or 30 days later when presented with an unfamiliar female (separated by a perforated partition) and female scent. We automatically detected USVs and processed recordings using the Automatic Mouse Ultrasound Detector (A-MUD version 3.2), and we describe our improved version of this tool and tests of its performance. We measured vocalization rate and spectro-temporal features and we manually classified USVs into 15 types to investigate priming effects on vocal repertoire diversity and composition. After sexual priming, males emitted nearly three times as many USVs, they had a larger repertoire diversity, and their vocalizations had different spectro-temporal features (USV length, slope and variability in USV frequency) compared to unprimed controls. Unprimed control males had the most distinctive repertoire composition compared to the primed groups. Most of the effects were found when comparing unprimed to all primed males (treatment models), irrespective of the time since priming. Timepoint models showed that USV length increased 1 day after priming, that repertoire diversity increased 1 and 20 days after priming, and that the variability of USV frequencies was lower 20 and 30 days after priming. Our results show that wild-derived male mice increased the number and diversity of courtship vocalizations if they previously interacted with a female. Thus, the USVs of house mice are not only context-dependent, they depend upon previous social experience and perhaps the contexts of these experiences. The effect of sexual priming on male courtship vocalizations is likely mediated by neuro-endocrine-mechanisms, which may function to advertise males' sexual arousal and facilitate social recognition.
Collapse
Affiliation(s)
- Sarah M. Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Anton Noll
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
29
|
Binder M, Nolan SO, Lugo JN. A comparison of the Avisoft (v.5.2) and MATLAB Mouse Song Analyzer (v.1.3) vocalization analysis systems in C57BL/6, Fmr1-FVB.129, NS-Pten-FVB, and 129 mice. J Neurosci Methods 2020; 346:108913. [PMID: 32805316 PMCID: PMC7606442 DOI: 10.1016/j.jneumeth.2020.108913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Communicative behaviors play a vital role in mammals and are highly relevant to human neurodevelopmental conditions. Mice produce communicative vocalizations that occur in the ultrasonic range, which are commonly analyzed within the Avisoft recording system. Fully automated programs such as the Mouse Song Analyzer in MATLAB, have been developed to analyze USVs in a shorter time period, however, no study has compared the accuracy of MATLAB to Avisoft. NEW METHOD In order to determine MATLAB's accuracy, we used data from four different mouse strains and assessed whether the total number of USVs detected was similar between systems. RESULTS We found that there was a high correlation between systems for the number of USVs emitted from C57BL/6 and NS-Pten mice however, Avisoft detected significantly more USVs than MATLAB for both strains. For Fmr1-FVB.129 and 129 mice, large correlations were observed between systems and no significant difference was present in the USVs detected. A partial correlation was run to control for the covariates: sex, age, strain, and treatment, and found that only strain substantially influences the relationship between the USVs detected in Avisoft and those detected in MATLAB. COMPARISON WITH EXISTING METHOD These findings demonstrate that there is a high degree of agreement between Avisoft and the Mouse Song Analyzer however, Avisoft does detect significantly more USVs depending on the strain assessed. CONCLUSIONS Therefore, there are relative advantages and disadvantages with both systems that vocalization researchers should be aware of when interpreting USV results, and when using either system.
Collapse
Affiliation(s)
- Matthew Binder
- Department of Psychology and Neuroscience, Nashville, TN, 37232, USA
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Nashville, TN, 37232, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
30
|
Deng J, Zhou H, Lin JK, Shen ZX, Chen WZ, Wang LH, Li Q, Mu D, Wei YC, Xu XH, Sun YG. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala. Neuron 2020; 107:909-923.e6. [PMID: 32649865 DOI: 10.1016/j.neuron.2020.06.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
The parabrachial nucleus (PBN) is one of the major targets of spinal projection neurons and plays important roles in pain. However, the architecture of the spinoparabrachial pathway underlying its functional role in nociceptive information processing remains elusive. Here, we report that the PBN directly relays nociceptive signals from the spinal cord to the intralaminar thalamic nuclei (ILN). We demonstrate that the spinal cord connects with the PBN in a bilateral manner and that the ipsilateral spinoparabrachial pathway is critical for nocifensive behavior. We identify Tacr1-expressing neurons as the major neuronal subtype in the PBN that receives direct spinal input and show that these neurons are critical for processing nociceptive information. Furthermore, PBN neurons receiving spinal input form functional monosynaptic excitatory connections with neurons in the ILN, but not the amygdala. Together, our results delineate the neural circuit underlying nocifensive behavior, providing crucial insight into the circuit mechanism underlying nociceptive information processing.
Collapse
Affiliation(s)
- Juan Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Zi-Xuan Shen
- Department of Biotechnology, East China University of Science and Technology, 130 Mei-long Road, Shanghai 200237, China
| | - Wen-Zhen Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Lin-Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Qing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Di Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
31
|
Mhaouty-Kodja S. Courtship vocalizations: A potential biomarker of adult exposure to endocrine disrupting compounds? Mol Cell Endocrinol 2020; 501:110664. [PMID: 31765692 DOI: 10.1016/j.mce.2019.110664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
In rodents, male courtship is stimulated by pheromones emitted by the sexually receptive female. In response, the male produces ultrasonic vocalizations, which appear to play a role in female attraction and facilitate copulation. The present review summarizes the main findings on courtship vocalizations and their tight regulation by sex steroid hormones. It describes studies that address the effects of exposure to endocrine disrupting compounds (EDC) on ultrasound production, as changes in hormone levels or their signaling pathways may interfere with the emission of ultrasonic vocalizations. It also discusses the potential use of this behavior as a noninvasive biomarker of adult exposure to EDC.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris-Seine, 7 quai St Bernard, Bât A 3ème étage, 75005, Paris, France.
| |
Collapse
|