1
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Tian F, Lv L, Liu Z, Guan S, Jiang F, Wang Q, Kalvakolanu DV, Jiang S, Sun W. Low Expression of GRIM-19 Correlates with Poor Prognosis in Patients with Upper Urinary Tract Urothelial Carcinoma. Curr Cancer Drug Targets 2025; 25:401-411. [PMID: 38847244 DOI: 10.2174/0115680096299093240516163839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2025]
Abstract
PURPOSE This study aimed to clarify the expression of a gene associated with Retinoid- Interferon-Induced Mortality-19 (GRIM-19) in Upper Urinary Tract Urothelial Carcinoma (UUTUC) and its prognostic significance for UUTUC patients. MATERIALS AND METHODS Immunohistochemical (IHC) staining was used to determine the GRIM-19 expression in 70 paired samples. Progression-Free Survival (PFS) and Cancer-Specific Survival (CSS) were assessed using the Kaplan-Meier method. The independent prognostic factors for PFS and CSS were analyzed by multivariable Cox regression models. RESULTS IHC staining showed that GRIM-19 expression was significantly decreased in UUTUC, and its cellular location changed from being both cytoplasmic and nuclear to only cytoplasmic. Kaplan- Meier analysis revealed that the patients with tumors expressing low GRIM-19 had a significantly higher risk for tumor progression (P = 0.002) and cancer-specific mortality (P < 0.001) compared to those with high GRIM-19 levels. The Cox regression showed that both GRIM-19 expression (P = 0.025) and lymph node metastasis (LN) (P = 0.007) were independent predictors of progression in the muscle-invasive (MIC) subgroup. GRIM-19 expressions (entire cohort: P = 0.011; MIC subgroup: P = 0.025), LN (entire cohort: P = 0.019; MIC subgroup: P = 0.007), and progression (entire cohort: P < 0.001; MIC subgroup: P < 0.001) were independent predictors of cancer-specific survival. CONCLUSION Low expression of GRIM-19 in patients with UUTUC had significantly shorter PFS or CSS compared to those with high GRIM-19-expressing tumors. High GRIM-19 expression was also strongly associated with longer PFS in MIC patients. It indicates that GRIM-19 might serve as a promising prognostic biomarker for UUTUC patients.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Long Lv
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Zonglin Liu
- Department of Urology, Anshan Tumor Hospital, Anshan, 114000, Liaoning, China
| | - Sheng Guan
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Fengze Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Qi Wang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD21201, USA
| | - Sixiong Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Weibing Sun
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| |
Collapse
|
3
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Youn JK, Lee HR, Ko D, Kim HY. Attenuation of esophageal anastomotic stricture through remote ischemic conditioning in a rat model. Sci Rep 2024; 14:18481. [PMID: 39122787 PMCID: PMC11315918 DOI: 10.1038/s41598-024-69386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Anastomotic stricture is a typical complication of esophageal atresia surgery. Remote ischemic conditioning (RIC) has demonstrated multiorgan benefits, however, its efficacy in the esophagus remains unclear. This study aimed to investigate whether applying RIC after esophageal resection and anastomosis in rats could attenuate esophageal stricture and improve inflammation. Sixty-five male Sprague-Dawley rats were categorized into the following groups: controls with no surgery, resection and anastomosis only, resection and anastomosis with RIC once, and resection and anastomosis with RIC twice. RIC included three cycles of hind-limb ischemia followed by reperfusion. Inflammatory markers associated with the interleukin 6/Janus kinase/ signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) and tumor necrosis factor-alpha/nuclear factor-κB (TNF-α/NF-kB) signaling pathways were evaluated with RNA and protein works. The RIC groups showed significantly lower stricture rates, lower inflammatory markers levels than the resection and anastomosis-only group. The RIC groups had significantly lower IL-6 and TNFa levels than the resection and anastomosis-only group, confirming the inhibitory role of remote ischemic conditioning in the IL-6/JAK/STAT3 and TNF-α/NF-kB signaling pathways. RIC after esophageal resection and anastomosis can reduce the inflammatory response, improving strictures at the esophageal anastomosis site, to be a novel noninvasive intervention for reducing esophageal anastomotic strictures.
Collapse
Affiliation(s)
- Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hye-Rim Lee
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
| | - Dayoung Ko
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea.
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Zhao M, Wen Y, Yang Y, Pan H, Xie S, Shen C, Liao W, Chen N, Zheng Q, Zhang G, Li Y, Gong D, Tang J, Zhao Z, Zeng J. (-)-Asarinin alleviates gastric precancerous lesions by promoting mitochondrial ROS accumulation and inhibiting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155348. [PMID: 38335913 DOI: 10.1016/j.phymed.2024.155348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.
Collapse
Affiliation(s)
- Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shunkai Xie
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caifei Shen
- Department of Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Nianzhi Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Yuchen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
7
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
8
|
Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, Sanaat Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther 2023; 14:342. [PMID: 38017510 PMCID: PMC10685711 DOI: 10.1186/s13287-023-03571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Samaneh Pirmoradi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Hsu CY, Yang WT, Lin JH, Lu CH, Hu KC, Lan TH, Chang CC. Sertindole, an Antipsychotic Drug, Curbs the STAT3/BCL-xL Axis to Elicit Human Bladder Cancer Cell Apoptosis In Vitro. Int J Mol Sci 2023; 24:11852. [PMID: 37511611 PMCID: PMC10380261 DOI: 10.3390/ijms241411852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chien-Hsing Lu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Kai-Cheng Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou 542019, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institute, Miaoli 350401, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Graduate Institute of Biomedical Sciences, Rong Hsing Translational Medicine Research Center, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
10
|
He N, Li L, Li R, Zhang SQ, Wu LH, Guan X, Zhang QY, Jiang T, Yang JB. A Novel Ageladine A Derivative Acts as a STAT3 Inhibitor and Exhibits Potential Antitumor Effects. Int J Mol Sci 2023; 24:ijms24108859. [PMID: 37240202 DOI: 10.3390/ijms24108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The Janus kinase/signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway controls multiple biological processes, including cell survival, proliferation, and differentiation. Abnormally activated STAT3 signaling promotes tumor cell growth, proliferation, and survival, as well as tumor invasion, angiogenesis, and immunosuppression. Hence, JAK/STAT3 signaling has been considered a promising target for antitumor therapy. In this study, a number of ageladine A derivative compounds were synthesized. The most effective of these was found to be compound 25. Our results indicated that compound 25 had the greatest inhibitory effect on the STAT3 luciferase gene reporter. Molecular docking results showed that compound 25 could dock into the STAT3 SH2 structural domain. Western blot assays demonstrated that compound 25 selectively inhibited the phosphorylation of STAT3 on the Tyr705 residue, thereby reducing STAT3 downstream gene expression without affecting the expression of the upstream proteins, p-STAT1 and p-STAT5. Compound 25 also suppressed the proliferation and migration of A549 and DU145 cells. Finally, in vivo research revealed that 10 mg/kg of compound 25 effectively inhibited the growth of A549 xenograft tumors with persistent STAT3 activation without causing significant weight loss. These results clearly indicate that compound 25 could be a potential antitumor agent by inhibiting STAT3 activation.
Collapse
Affiliation(s)
- Na He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Li Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Rui Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Si-Qi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Li-Hong Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Qian-Yue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Jin-Bo Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
11
|
Hypoxia-Induced GST1 Exerts Protective Effects on Trophoblasts via Inhibiting Reactive Oxygen Species (ROS) Accumulation. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/9391252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hypoxic conditions are a typical extrinsic factor for the modification of trophoblast biological functions, including cell proliferation, migration, and invasion. Hypoxia-induced reactive oxygen species (ROS) accumulation causes chronic trophoblast injury and contributes to preeclampsia (PE). Glutathione-S-transferase P (GSTP1) is a main regulator of ROS. However, it is still unknown whether GSTP1 is involved in ROS regulation under hypoxic conditions. Here, we investigated the expression level of GSTP1 in first-trimester villi placentas compared with full-term placentas and the effect of hypoxic conditions on GSTP1. GSTP1 expression in first-trimester villi placentas was much higher than that in full-term placentas. After hypoxia exposure, GSTP1 was significantly upregulated in JEG3 cells, a trophoblast-like cell line. Hypoxic-induced GSTP1 scavenged ROS accumulated by hypoxia exposure, potentially by promoting GST activity. The inhibitory effects of hypoxia exposure on cell proliferation, migration, and invasion induced by hypoxia exposure were obviously reversed by overexpression of GSTP1. Hypoxia-induced cell apoptosis was also reversed by GSTP1 overexpression, indicating the protective effects of GSTP1 against ROS-induced cell injury. Moreover, overexpressed GSTP1 markedly promoted the cell proliferation, migration, invasion, and colony formation abilities in JEG3 cells, demonstrating that GSP1 also exerts promoting effects under normoxic conditions. These data show that hypoxia-induced GSTP1 expression facilitates trophoblast cell proliferation, migration, and invasion and exerts protective effects under hypoxic conditions, which may play an important role during the increase in PE.
Collapse
|
12
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
13
|
Zhao Y, Zhang X, Li Y, Li Y, Zhang H, Song Z, Xu J, Guo Y. A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154118. [PMID: 35576741 DOI: 10.1016/j.phymed.2022.154118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonsmall-cell lung cancer (NSCLC) is one of the most common malignant tumors, and the current drugs have not achieved ideal therapeutic effects. The abnormal activation of STAT3 and FAK signal transduction in tumor cells is highly correlated with their proliferation and migration ability. Therefore, bioactive compounds that can inhibit STAT3 and FAK activation have the potential to become agents to treat NSCLC. PURPOSE This study aims to discover new antitumor compounds from Garcinia xipshuanbannaensis and investigate the molecular mechanism by which they inhibit lung cancer proliferation and metastasis in vivo and in vitro, all of which may lead to obtainment of a potential antitumor agent. METHODS Xipsxanthone H was obtained by various chromatography methods (including silica gel, medium pressure liquid chromatography (MPLC), and preparative high-performance liquid chromatography (HPLC)). 1D and 2D nuclear magnetic resonance (NMR) spectra were used to analyze the structure. Cell viability and wound healing assays were employed to detect changes in the proliferation and migration of cancer cells. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression of STAT3 and FAK signaling pathways affected by xipsxanthone H was determined by Western blotting. The zebrafish model was used to evaluate the in vivo effects of xipshantone H on tumor proliferation and metastasis. Molecular docking was utilized to explore the interaction between xipsxanthone H and STAT3. Cellular thermal shift assays (CETSAs) were employed to explore the possible target of xipsxanthone H. RESULTS The novel compound xipsxanthone H was purified and characterized from G. xipshuanbannaensis. Xipsxanthone H exhibited strong anti-proliferation activity in a variety of tumor cell lines. In addition to inducing reactive oxygen species (ROS) production and arresting the cell cycle, mechanistic studies demonstrated that xipsxanthone H suppressed STAT3 and FAK phosphorylation and regulated the downstream protein expression of the STAT3 and FAK signaling pathways. The in vivo studies using the zebrafish model revealed that xipsxanthone H inhibited tumor proliferation, metastasis, and angiogenesis. CONCLUSIONS A new xanthone was obtained from G. xipshuanbannaensis, and this compound had the property of inhibiting tumor proliferation and metastasis by targeting STAT3 and FAK signaling pathways in NSCLC. These findings suggested that xipsxanthone H might be a potential candidate agent for NSCLC treatment.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
14
|
Cho SJ, Jeong BY, Song YS, Park CG, Cho DY, Lee HY. STAT3 mediates RCP-induced cancer cell invasion through the NF-κB/Slug/MT1-MMP signaling cascade. Arch Pharm Res 2022; 45:460-474. [PMID: 35809175 DOI: 10.1007/s12272-022-01396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Rab coupling protein (RCP) has been known to induce cancer invasion and metastasis, and STAT3 is one of major oncogenic factors. In the present study, we identify the critical role of STAT3 in RCP-induced cancer cell invasion. Immunohistochemical data of ovarian cancer tissues presented that levels of RCP expression are closely correlated with those of phospho-STAT3 (p-STAT3). In addition, ovarian cancer patients with high expression of both RCP and p-STAT3 had significantly lower progress-free and overall survival rates compared to those with low either RCP or p-STAT3 expression. Mechanistically, RCP induced STAT3 phosphorylation in both ovarian and breast cancer cells. Silencing or pharmacological inhibition of STAT3 significantly inhibited RCP-induced cancer cell invasion. In addition, we provide evidence that the β1 integrin/EGFR axis is important for RCP-induced STAT3 phosphorylation. Furthermore, STAT3 activated NF-κB for Slug expression that in turn upregulated MT1-MMP expression for cancer cell invasion. Collectively, our present data demonstrate that STAT3 is located downstream of the β1 integrin/EGFR axis and induces Slug and MT1-MMP expression for cancer cell invasion.
Collapse
Affiliation(s)
- Su Jin Cho
- Department of Pharmacology, College of Medicine, Konyang University, 821 Medical Science Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, 821 Medical Science Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.,Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, 97201, USA
| | - Young Soo Song
- Department of Pathology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, 821 Medical Science Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Do Yeun Cho
- Department of Hematology and Oncology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, 821 Medical Science Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
15
|
Exploring the Mechanism of Weikang Keli in Inhibiting Gastric Cancer through the MAPK Signaling Pathway: Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2662288. [PMID: 35547655 PMCID: PMC9085321 DOI: 10.1155/2022/2662288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Background With a high incidence and limited treatments, gastric cancer (GC) seriously threatens human health worldwide. Weikang Keli (WK) is a compound prescription summed up from clinical experience. In our previous studies, WK has been proved to exert antitumor effects. However, there are no research studies to discuss and verify its mechanism as a compound. Objective The aim of the study is to explore the potential molecular mechanism of WK in the treatment of GC with the aid of network pharmacology and verify it through experiments. Methods Related databases were used to obtain genes and targets of WK and gastric cancer. A protein-protein interaction (PPI) network is constructed and visualized by Cytoscape 3.7.2. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to analyze core targets. The cell viability of MFC and BGC-823 cells was determined by CCK8. Immunofluorescence was used to determine autophagy of GC cells. Moreover, the effect of WK on the MAPK signaling pathway in GC cells and tumor tissues of ICR mice was detected by Western blot. Results A total of 106 cross targets of WK and GC were obtained. According to the enrichment analysis of GO and KEGG, we target the MAPK signaling pathway to discuss the mechanism of WK on GC. Cell experiments proved that WK inhibited the viability of gastric cancer cells in a dose-dependent and time-dependent manner. Autophagosome aggregation and an increase in the expression of an autophagy marker protein LC3-II can also be observed in WK groups. Further animal experiments showed that the tumor inhibition rate of WK showed a dose-effect relationship. Moreover, the expressions of p-JNK, p-p38, and p-ERR1/2 proteins in the MAPK signaling pathway in WK Group were downregulated both in the cell and animal experiments, compared with the blank control group. Conclusion WK showed an explicit antitumor effect on gastric cancer through the MAPK signaling pathway, and the curative effect varies in different concentrations. Besides, in model mice, the antitumor effect of high-dose WK group is close to that of platinum. This study provided a theoretical basis for the application of WK in the clinical treatment of gastric cancer.
Collapse
|
16
|
Nuclear expression of pSTAT3Tyr705 and pSTAT3Ser727 in the stromal compartment of localized hormone-naïve prostate cancer. Pathol Res Pract 2022; 232:153811. [DOI: 10.1016/j.prp.2022.153811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
|
17
|
Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors. Int J Mol Sci 2021; 22:ijms222313154. [PMID: 34884957 PMCID: PMC8658387 DOI: 10.3390/ijms222313154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.
Collapse
|
18
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
19
|
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, Yin J, Zhu J, Zhong C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:266. [PMID: 34429133 PMCID: PMC8385858 DOI: 10.1186/s13046-021-02069-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02069-4. Apatinib suppressed proliferation, induced cell cycle arrest and apoptosis, and inhibited malignancy in NSCLC in vitro and in vivo. Apatinib downregulated PD-L1 and c-Myc in NSCLC through VEGFR2/STAT3 pathway. Apatinib inhibited PD-L1 expression in THP-1 derived macrophages stimulated by the conditioned medium from NSCLC cells and partially restored the activation of Jurkat T cells co-cultured with NSCLC cells. Apatinib induced ROS generation and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Miaomiao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China. .,Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
20
|
Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview. Life (Basel) 2021; 11:life11040332. [PMID: 33920160 PMCID: PMC8070048 DOI: 10.3390/life11040332] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.
Collapse
|
21
|
Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 2021; 78:2105-2129. [PMID: 33386887 PMCID: PMC11073202 DOI: 10.1007/s00018-020-03696-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021; 9:641469. [PMID: 33732706 PMCID: PMC7957022 DOI: 10.3389/fcell.2021.641469] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a disease which frequently has a poor prognosis. Although multiple therapeutic strategies have been developed for various cancers, including chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments frequently impedes the clinical outcomes. Besides the active resistance driven by genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME) has also been reported to be a crucial regulator in tumorigenesis, progression, and resistance. Here, we propose that the adaptive mechanisms of tumor resistance are closely connected with the TME rather than depending on non-cell-autonomous changes in response to clinical treatment. Although the comprehensive understanding of adaptive mechanisms driven by the TME need further investigation to fully elucidate the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the TME have been successful. In this review, we report on recent advances concerning the molecular events and important factors involved in the TME, particularly focusing on the contributions of the TME to adaptive resistance, and provide insights into potential therapeutic methods or translational medicine targeting the TME to overcome resistance to therapy in clinical treatment.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
23
|
Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF-MS/MS and network pharmacology. Sci Rep 2021; 11:1905. [PMID: 33479376 PMCID: PMC7820434 DOI: 10.1038/s41598-021-81485-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Sparganii rhizoma (SL) has potential therapeutic effects on gastric cancer (GC), but its main active ingredients and possible anticancer mechanism are still unclear. In this study, we used HPLC-Q-TOF–MS/MS to comprehensively analyse the chemical components of the aqueous extract of SL. On this basis, a network pharmacology method incorporating target prediction, gene function annotation, and molecular docking was performed to analyse the identified compounds, thereby determining the main active ingredients and hub genes of SL in the treatment of GC. Finally, the mRNA and protein expression levels of the hub genes of GC patients were further analysed by the Oncomine, GEPIA, and HPA databases. A total of 41 compounds were identified from the aqueous extract of SL. Through network
analysis, we identified seven main active ingredients and ten hub genes: acacetin, sanleng acid, ferulic acid, methyl 3,6-dihydroxy-2-[(2-hydroxyphenyl) ethynyl]benzoate, caffeic acid, adenine nucleoside, azelaic acid and PIK3R1, PIK3CA, SRC, MAPK1, AKT1, HSP90AA1, HRAS, STAT3, FYN, and RHOA. The results indicated that SL might play a role in GC treatment by controlling the PI3K-Akt and other signalling pathways to regulate biological processes such as proliferation, apoptosis, migration, and angiogenesis in tumour cells. In conclusion, this study used HPLC-Q-TOF–MS/MS combined with a network pharmacology approach to provide an essential reference for identifying the chemical components of SL and its mechanism of action in the treatment of GC.
Collapse
|
24
|
Kong K, Zhao Y, Xia L, Jiang H, Xu M, Zheng J. B3GNT3: A prognostic biomarker associated with immune cell infiltration in pancreatic adenocarcinoma. Oncol Lett 2020; 21:159. [PMID: 33552277 PMCID: PMC7798085 DOI: 10.3892/ol.2020.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the most malignant gastrointestinal tumors, is prone to liver metastasis. However, due to the lack of appropriate and comprehensive diagnostic methods, it is difficult to accurately predict the survival outcomes. Therefore, there is a need to identify effective biomarkers, such as UDP-GlcNAc: βGal β-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), that predict the survival outcome of patients with pancreatic cancer. In the present study, based on data from 171 cases of pancreatic cancer obtained from The Cancer Genome Atlas portal, the differential expression of mRNAs was screened by comparing cancerous tissues with adjacent tissues. Univariate Cox regression analysis demonstrated that B3GNT3 had prognostic capability and could be an independent prognostic factor for pancreatic adenocarcinoma (PAAD). Using the Tumor Immune Estimation Resource tool and Tumor-Immune System Interaction Database, a potential relationship between B3GNT3 expression and immune cell infiltration was identified in pancreatic carcinoma. Furthermore, 177 samples of pancreatic carcinoma were collected and the association of CD68 expression with B3GNT3 was assessed by immunohistochemical staining. B3GNT3 expression was associated with clinical outcomes in pancreatic carcinoma and related to infiltrating levels of immune cells, which indicated that B3GNT3 could be used as an immunotherapy target for PAAD.
Collapse
Affiliation(s)
- Kaiwen Kong
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Leilei Xia
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
25
|
Zhu J, Wang J, Huang J, Du W, He Y, Pan H, Luo J. MicroRNA-140-5p regulates the proliferation, apoptosis and inflammation of RA FLSs by repressing STAT3. Exp Ther Med 2020; 21:171. [PMID: 33456538 PMCID: PMC7792473 DOI: 10.3892/etm.2020.9602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Ectopic expression of microRNA (miRNA) in rheumatoid arthritis (RA) fibroblast-like synoviocyte (RA FLS) is associated with the development of rheumatoid arthritis. The present study aimed to evaluate the effects of miRNA-140-5p (miR-140) on the properties of RA FLSs. It was found that miR-140 expression was decreased in 33 RA patients and extracted RA FLS samples, when compared to the corresponding healthy controls. Abnormally increased miR-140 expression in RA FLSs attenuated cell proliferation and increased cell apoptosis. Additionally, reduced pro-inflammatory cytokine production was observed in RA FLSs transfected with a miR-140 precursor. Furthermore, the 3'-UTR of the signal transducer and activator of transcription (STAT) 3 gene was identified as a target of miR-140. Notably, restoration of STAT3 expression rescued the regulatory effect of miR-140 on the proliferation, apoptosis and inflammatory cytokine production of RA FLSs. Therefore, the current findings indicated that miR-140 is a crucial modulator of both proliferation and apoptosis, shedding light on the etiology behind RA FLS viability, which is modulated by an interplay between miR-140 and STAT3 in the context of RA.
Collapse
Affiliation(s)
- Jiehua Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianglin Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jialin Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wensheng Du
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yingzhong He
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hongfei Pan
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
26
|
Perspectives Regarding the Intersections between STAT3 and Oxidative Metabolism in Cancer. Cells 2020; 9:cells9102202. [PMID: 33003453 PMCID: PMC7600636 DOI: 10.3390/cells9102202] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions as a major molecular switch that plays an important role in the communication between cytokines and kinases. In this role, it regulates the transcription of genes involved in various biochemical processes, such as proliferation, migration, and metabolism of cancer cells. STAT3 undergoes diverse post-translational modifications, such as the oxidation of cysteine by oxidative stress, the acetylation of lysine, or the phosphorylation of serine/threonine. In particular, the redox modulation of critical cysteine residues present in the DNA-binding domain of STAT3 inhibits its DNA-binding activity, resulting in the inactivation of STAT3-mediated gene expression. Accumulating evidence supports that STAT3 is a key protein that acts as a mediator of metabolism and mitochondrial activity. In this review, we focus on the post-translational modifications of STAT3 by oxidative stress and how the modification of STAT3 regulates cell metabolism, particularly in the metabolic pathways in cancer cells.
Collapse
|
27
|
Kim SJ, Ju JS, Kang MH, Won JE, Kim YH, Raninga PV, Khanna KK, Győrffy B, Pack CG, Han HD, Lee HJ, Gong G, Shin Y, Mills GB, Eyun SI, Park YY. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics 2020; 10:7974-7992. [PMID: 32724453 PMCID: PMC7381744 DOI: 10.7150/thno.45037] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women. TNBC (Triple-negative breast cancer) has limited treatment options and still lacks viable molecular targets, leading to poor outcomes. Recently, RNA-binding proteins (RBPs) have been shown to play crucial roles in human cancers, including BC, by modulating a number of oncogenic phenotypes. This suggests that RBPs represent potential molecular targets for BC therapy. Methods: We employed genomic data to identify RBPs specifically expressed in TNBC. NONO was silenced in TNBC cell lines to examine cell growth, colony formation, invasion, and migration. Gene expression profiles in NONO-silenced cells were generated and analyzed. A high-throughput screening for NONO-targeted drugs was performed using an FDA-approved library. Results: We found that the NONO RBP is highly expressed in TNBC and is associated with poor patient outcomes. NONO binds to STAT3 mRNA, increasing STAT3 mRNA levels in TNBC. Surprisingly, NONO directly interacts with STAT3 protein increasing its stability and transcriptional activity, thus contributing to its oncogenic function. Importantly, high-throughput drug screening revealed that auranofin is a potential NONO inhibitor and inhibits cell growth in TNBC. Conclusions: NONO is an RBP upstream regulator of both STAT3 RNA and protein levels and function. It represents an important and clinically relevant promoter of growth and resistance of TNBCs. NONO is also therefore a potential therapeutic target in TNBC.
Collapse
|
28
|
Cao Y, Wang J, Tian H, Fu GH. Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:119. [PMID: 32576206 PMCID: PMC7310559 DOI: 10.1186/s13046-020-01621-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Background Gastric cancer (GC) is a common form of malignant cancer in worldwide which has a poor prognosis. Despite recent improvements in the treatment of GC, the prognosis is not yet satisfactory for GC patients. CYT997, a novel microtubule-targeting agent, recently has been identified to be a promising anticancer candidate for the treatment of cancers; however, the effects of CYT997 in GC remain largely unknown. Methods Cell proliferation and apoptosis were detected by CCK8 assay and flow cytometry. The mitochondrial ROS were detected by confocal microscope and flow cytometry. Gastric cancer patient-derived xenograft (PDX) model was used to evaluate its antitumor activity of CYT997 in vivo. Results CYT997 inhibited gastric cancer cell proliferation and induced cell apoptosis and triggered autophagy. CYT997 induced apoptosis through triggering intracellular mitochondrial ROS generation in GC cells. ROS scavengers N-acetylcysteine (NAC) and Mitoquinone (MitoQ) distinctly weakened CYT997-induced cell cycle G2/M arrest and apoptosis in GC cells. Pretreatment with autophagy inhibitor 3-MA promoted the effect of CYT997 on cells apoptosis. Mechanistically, CYT997 performed its function through regulation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in GC cells. In addition, CYT997 inhibited growth of gastric cancer patient-derived xenograft (PDX) tumors. Conclusions CYT997 induces autophagy and apoptosis in gastric cancer by triggering mitochondrial ROS accumulation to silence JAK2/STAT3 pathway. CYT997 might be a potential antitumor drug candidate to treat GC.
Collapse
Affiliation(s)
- Ya Cao
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Jinglong Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China.
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China.
| |
Collapse
|
29
|
Li M, Meng X, Li M. MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging (Albany NY) 2020; 12:12107-12118. [PMID: 32554852 PMCID: PMC7343473 DOI: 10.18632/aging.103379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
Abstract
MiRNA-126 (miR-126) has been shown to be involved in various malignancies as well as other biological processes. However, currently, its role in esophageal squamous cell carcinoma (ESCC) is not well understood. The present study is focused on the mechanisms that underlie the effect of miR-126 on cell survival and death (apoptosis and autophagy) in ESCC cells. MiR-126 expression was found to be enhanced in ESCC cells and tissues. Downregulation of miR-126 suppressed cell survival, and TUNEL staining indicated that miR-126 inhibition promoted ESCC cell death. In addition, the production of LC3B and p62 proteins, two autophagy signals, was reduced following miR-126 inhibition. A dual luciferase reporter assay demonstrated that the STAT3 3’-UTR is a direct target of miR-126. Furthermore, STAT3 knock-down rescued the effects on autophagy and apoptosis caused by miR-126 inhibition in ESCC cells. The results of this study may provide some insight into the molecular and biological mechanisms underlying ESCC generation and contribute to the development of novel therapeutic approaches for ESCC.
Collapse
Affiliation(s)
- Mingli Li
- Department of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xiangli Meng
- Department of Nursing, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mingxuan Li
- Department of Nursing, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
30
|
Yoon SH, Kim BK, Kang MJ, Im JY, Won M. Miconazole inhibits signal transducer and activator of transcription 3 signaling by preventing its interaction with DNA damage-induced apoptosis suppressor. Cancer Sci 2020; 111:2499-2507. [PMID: 32476221 PMCID: PMC7385363 DOI: 10.1111/cas.14432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) facilitates the survival of lung cancer by suppressing apoptosis. Moreover, DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) via their interaction. Here, we identified miconazole as an inhibitor of DDIAS/STAT3 interaction by screening a chemical library using a yeast two-hybrid assay. Miconazole inhibited growth, migration and invasion of lung cancer cells. Furthermore, miconazole suppressed STAT3 tyrosine Y705 phosphorylation and the expression of its target genes, such as cyclin D1, survivin and snail but had no suppressive effect on the activation of ERK1/2 or AKT, which is involved in the survival of lung cancer. As expected, no interaction between DDIAS and STAT3 occurred in the presence of miconazole, as confirmed by immunoprecipitation assays. Mouse xenograft experiments showed that miconazole significantly suppressed both tumor size and weight in an NCI-H1703 mouse model. Tyrosine phosphorylation of STAT3 at Y705 and expression of its targets, such as cyclin D1, survivin and snail, were decreased in miconazole-treated tumor tissues, as compared with those in vehicle-treated tumor tissues. These data suggest that miconazole exerts an anti-cancer effect by suppressing STAT3 activation through inhibiting DDIAS/STAT3 binding.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Korea.,Department of Human and Environmental Toxicology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
31
|
Luo D, Fraga-Lauhirat M, Millings J, Ho C, Villarreal EM, Fletchinger TC, Bonfiglio JV, Mata L, Nemesure MD, Bartels LE, Wang R, Rigas B, Mackenzie GG. Phospho-valproic acid (MDC-1112) suppresses glioblastoma growth in preclinical models through the inhibition of STAT3 phosphorylation. Carcinogenesis 2020; 40:1480-1491. [PMID: 30994173 DOI: 10.1093/carcin/bgz069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
New therapeutic strategies against glioblastoma multiforme (GBM) are urgently needed. Signal transducer and activator of transcription 3 (STAT3), constitutively active in many GBM tumors, plays a major role in GBM tumor growth and represents a potential therapeutic target. We have documented previously that phospho-valproic acid (MDC-1112), which inhibits STAT3 activation, possesses strong anticancer properties in multiple cancer types. In this study, we explored the anticancer efficacy of MDC-1112 in preclinical models of GBM, and evaluated its mode of action. MDC-1112 inhibited the growth of multiple human GBM cell lines in a concentration- and time-dependent manner. Normal human astrocytes were resistant to MDC-1112, indicating selectivity. In vivo, MDC-1112 reduced the growth of subcutaneous GBM xenografts in mice by up to 78.2% (P < 0.01), compared with the controls. Moreover, MDC-1112 extended survival in an intracranial xenograft model. Although all vehicle-treated mice died by 19 days of treatment, 7 of 11 MDC-1112-treated mice were alive and healthy by the end of 5 weeks, with many showing tumor regression. Mechanistically, MDC-1112 inhibited STAT3 phosphorylation at the serine 727 residue, but not at tyrosine 705, in vitro and in vivo. STAT3 overexpression rescued GBM cells from the cell growth inhibition by MDC-1112. In addition, MDC-1112 reduced STAT3 levels in the mitochondria and enhanced mitochondrial levels of reactive oxygen species, which triggered apoptosis. In conclusion, MDC-1112 displays strong efficacy in preclinical models of GBM, with the serine 727 residue of STAT3 being its key molecular target. MDC-1112 merits further evaluation as a drug candidate for GBM. New therapeutic options are needed for glioblastoma. The novel agent MDC-1112 is an effective anticancer agent in multiple animal models of glioblastoma, and its mechanism of action involves the inhibition of STAT3 phosphorylation, primarily at its Serine 727 residue.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Nutrition, University of California, One Shields Ave, Davis, CA, USA.,Department of Thyroid Surgery, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Jonathan Millings
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristella Ho
- Department of Nutrition, University of California, One Shields Ave, Davis, CA, USA
| | - Emily M Villarreal
- Department of Nutrition, University of California, One Shields Ave, Davis, CA, USA
| | - Teresa C Fletchinger
- Department of Nutrition, University of California, One Shields Ave, Davis, CA, USA
| | - James V Bonfiglio
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Leyda Mata
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Matthew D Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Lauren E Bartels
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ruixue Wang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, One Shields Ave, Davis, CA, USA.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
32
|
Kaur K, Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med Chem 2020; 19:962-983. [PMID: 30864529 DOI: 10.2174/1871520619666190312125602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the second most common cause of cancer related deaths in women. Due to severe side effects and multidrug resistance, current therapies like hormonal therapy, surgery, radiotherapy and chemotherapy become ineffective. Also, the existing drugs for BC treatment are associated with several drawbacks such as poor oral bioavailability, non-selectivity and poor pharmacodynamics properties. Therefore, there is an urgent need for the development of more effective and safer anti BC agents. OBJECTIVE This article explored in detail the possibilities of indole-based heterocyclic compounds as anticancer agents with breast cancer as their major target. METHODS Recent literature related to indole derivatives endowed with encouraging anti BC potential is reviewed. With special focus on BC, this review offers a detailed account of multiple mechanisms of action of various indole derivatives: aromatase inhibitor, tubulin inhibitor, microtubule inhibitor, targeting estrogen receptor, DNA-binding mechanism, induction of apoptosis, inhibition of PI3K/AkT/NFkB/mTOR, and HDAC inhibitors, by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that indole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Indoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, indole derivatives have been found to modulate critical targets such as topoisomerase and HDAC. These derivatives have shown significant activity against breast cancer cells. CONCLUSION In BC, indole derivatives seem to be quite competent and act through various mechanisms that are well established in case of BC. This review has shown that indole derivatives can further be explored for the betterment of BC chemotherapy. A lot of potential is still hidden which demands to be discovered for upgrading BC chemotherapy.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| |
Collapse
|
33
|
Kim BH, Lee H, Park CG, Jeong AJ, Lee SH, Noh KH, Park JB, Lee CG, Paek SH, Kim H, Ye SK. STAT3 Inhibitor ODZ10117 Suppresses Glioblastoma Malignancy and Prolongs Survival in a Glioblastoma Xenograft Model. Cells 2020; 9:cells9030722. [PMID: 32183406 PMCID: PMC7140655 DOI: 10.3390/cells9030722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constitutively activated STAT3 plays an essential role in the initiation, progression, maintenance, malignancy, and drug resistance of cancer, including glioblastoma, suggesting that STAT3 is a potential therapeutic target for cancer therapy. We recently identified ODZ10117 as a small molecule inhibitor of STAT3 and suggested that it may have an effective therapeutic utility for the STAT3-targeted cancer therapy. Here, we demonstrated the therapeutic efficacy of ODZ10117 in glioblastoma by targeting STAT3. ODZ10117 inhibited migration and invasion and induced apoptotic cell death by targeting STAT3 in glioblastoma cells and patient-derived primary glioblastoma cells. In addition, ODZ10117 suppressed stem cell properties in glioma stem cells (GSCs). Finally, the administration of ODZ10117 showed significant therapeutic efficacy in mouse xenograft models of GSCs and glioblastoma cells. Collectively, ODZ10117 is a promising therapeutic candidate for glioblastoma by targeting STAT3.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- CYTUS H&B Corporation, Cheongju 28159, Korea;
| | - Haeri Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Cheol Gyu Park
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (H.K.)
| | - Ae Jin Jeong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Song-Hee Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kum Hee Noh
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
| | | | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (H.K.)
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8281; Fax: +82-2-745-7996
| |
Collapse
|
34
|
Li Z, Xu R, Zhang X, Shen J, Chen G, Zou T, Yu X. Interleukin-22 modulates cisplatin sensitivity of osteosarcoma cells by regulating the STAT3 signaling pathway. Exp Ther Med 2020; 19:1379-1387. [PMID: 32010312 PMCID: PMC6966104 DOI: 10.3892/etm.2019.8352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the regulatory mechanisms by which interleukin (IL)-22 regulates cisplatin (DDP) sensitivity in osteosarcoma cells. Firstly, reverse transcription-quantitative (RT-q) PCR and western blotting demonstrated that IL-22 expression was significantly increased in osteosarcoma tissues and cell lines compared with the adjacent normal tissues and the normal osteoblast hFOB1.19 cells. Subsequently, the MG63 osteosarcoma cell line and cisplatin-resistant MG63/DDP osteosarcoma cell line were treated with different concentrations of cisplatin (2.5, 5.0, 10, 20, 40 and 80 µg/ml), and the half maximal inhibitory concentration (IC50) was calculated based on the MTT assay. The results showed that the IC50 of DDP in MG63/DDP cells was significantly higher than that in MG63 cells. Furthermore, IL-22 expression was higher in MG63/DDP cells compared with MG63 cells. Subsequently, the effects of IL-22 downregulation and overexpression on MG63/DDP and MG63 cells were assessed using the MTT assay, flow cytometry, RT-qPCR and western blotting. The IL-22 small interfering (si) RNA in MG63/DDP cells significantly decreased the IC50 of DDP and decreased the cell viability of MG63/DDP cells. Furthermore, IL-22 RNA interference decreased BCl-2 expression and phosphorylation of STAT3, induced apoptosis, and increased the expression of Bax and cleaved caspase-3. The IL-22 overexpression plasmid had opposite effects to the observations in IL-22 siRNA-transfected MG63 cells. Overall, the present study indicated that IL-22 regulated the cell viability and apoptosis of osteosarcoma cells by regulating the activation of the STAT3 signaling pathway and affecting the expression of apoptosis-associated genes, and thereby mediating the sensitivity of osteosarcoma cells to cisplatin.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Renjie Xu
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Xiangxin Zhang
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Jun Shen
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Guangxiang Chen
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Tianming Zou
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| | - Xiao Yu
- Department of Orthopedics, Nanjing Medical University Affiliated Suzhou Hospital (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
35
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
36
|
Cletzer E, Klahn S, Dervisis N, LeRoith T. Identification of the JAK-STAT pathway in canine splenic hemangiosarcoma, thyroid carcinoma, mast cell tumor, and anal sac adenocarcinoma. Vet Immunol Immunopathol 2019; 220:109996. [PMID: 31958674 DOI: 10.1016/j.vetimm.2019.109996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Dysregulation of the Janus Kinase (JAK) - Signal Transducer and Activator of Transcription (STAT) cellular signaling pathway has been associated with the development and progression of multiple human cancers. STAT3 has been reported to be present and constitutively active in a number of veterinary cancers, and few studies have reported mutations or activation of JAK1 or JAK2. Archived tissue samples from 54 client-owned dogs with histologically-diagnosed HSA, MCT, TC, or AGASACA were evaluated by immunohistochemical scoring of JAK1, JAK2, STAT3, and the phosphorylated counterparts pJAK1, pJAK2, and pSTAT3. IHC scoring was retrospectively analyzed with retrospectively-collected clinical parameters, including patient characteristics, metastasis, and survival. JAK1, pJAK1, JAK2, pJAK2, STAT3, and pSTAT3 were present in all tumor types evaluated. Significant correlations between JAK 1/2 or STAT3 and activated or downstream components were identified in all tumor types. Clinically, pSTAT3 was correlated with development of metastasis in dogs with MCT, while increased JAK1 expression or activation may impact survival in dogs with MCT or HSA. These findings provide a foundation to further investigate the JAK-STAT pathway in canine malignancies for additional therapeutic options.
Collapse
Affiliation(s)
- Erin Cletzer
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA.
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| |
Collapse
|
37
|
Kim BH, Lee H, Song Y, Park JS, Gadhe CG, Choi J, Lee CG, Pae AN, Kim S, Ye SK. Development of Oxadiazole-Based ODZ10117 as a Small-Molecule Inhibitor of STAT3 for Targeted Cancer Therapy. J Clin Med 2019; 8:jcm8111847. [PMID: 31684051 PMCID: PMC6912340 DOI: 10.3390/jcm8111847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Persistently activated STAT3 is a promising target for a new class of anticancer drug development and cancer therapy, as it is associated with tumor initiation, progression, malignancy, drug resistance, cancer stem cell properties, and recurrence. Here, we discovered 3-(2,4-dichloro-phenoxymethyl)-5-trichloromethyl-[1,2,4]oxadiazole (ODZ10117) as a small-molecule inhibitor of STAT3 to be used in STAT3-targeted cancer therapy. ODZ10117 targeted the SH2 domain of STAT3 regardless of other STAT family proteins and upstream regulators of STAT3, leading to inhibition of the tyrosine phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3. The inhibitory effect of ODZ10117 on STAT3 was stronger than the known STAT3 inhibitors such as S3I-201, STA-21, and nifuroxazide. ODZ10117 suppressed the migration and invasion, induced apoptosis, reduced tumor growth and lung metastasis, and extended the survival rate in both in vitro and in vivo models of breast cancer. Overall, we demonstrated that ODZ10117 is a novel STAT3 inhibitor and may be a promising agent for the development of anticancer drugs.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
- CYTUS H&B Corporation, Cheongju 28159, Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Yeonghun Song
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Joon-Suk Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Changdev G Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jiwon Choi
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | | | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea.
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
38
|
Kim BH, Yi EH, Li YC, Park IC, Park JY, Ye SK. Anticancer Activity of Tubulosine through Suppression of Interleukin-6-Induced Janus Kinase 2/Signal Transducer and Activation of Transcription 3 Signaling. J Breast Cancer 2019; 22:362-374. [PMID: 31598337 PMCID: PMC6769386 DOI: 10.4048/jbc.2019.22.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose The chemical structure of tubulosine has been known since the mid-1960s. However, little is known about its biological and pharmacological functions. The aim of this study was to investigate the novel functions of tubulosine in cancer treatment, specifically in breast cancer. Methods An Unpaired (Upd)-induced Drosophila cell line and interleukin (IL)-6-stimulated human breast cancer cell lines were used to investigate the biological and pharmacological activities of tubulosine in vitro. To investigate the activities of tubulosine, we performed molecular and cellular experiments such as Western blot and reverse transcription polymerase chain reaction analyses, immunoprecipitation and terminal deoxynucleotidyl transferase dUTP nick end labeling assays, and immunofluorescence staining using breast cancer cell lines. Results Tubulosine exhibited anticancer activity in IL-6-stimulated human breast cancer cells. Moreover, tubulosine reduced the tyrosine phosphorylation level and transcriptional activity of signal transducer and activator of transcription (STAT) protein at 92E in Upd-induced Drosophila cells. Additionally, tubulosine suppressed IL-6-induced Janus kinase 2 (JAK2)/STAT3 signaling, resulting in decreased viability and induction of apoptotic cell death in breast cancer cells. Interestingly, inhibition of IL-6-induced JAK2/STAT3 signaling by tubulosine was associated with the blocking of IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) binding. Conclusion Tubulosine exhibits anticancer activity through functional inhibition of IL-6-induced JAK2/STAT3 signaling by targeting IL-6Rα/gp130 binding in breast cancer cells. These findings suggest that tubulosine may hold promise for the treatment of inflammation-associated cancers, including breast cancer.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul, Korea
| | - Eun Hee Yi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yu-Chen Li
- Department of Oriental Rehabilitation Medicine, College of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - In-Chul Park
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jung Youl Park
- Department of Applied Chemistry, Daejeon University, Daejeon, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Xia L, Wu L, Xia H, Bao J, Li Q, Chen X, Xia R. miR-337 suppresses cutaneous T-cell lymphoma via the STAT3 pathway. Cell Cycle 2019; 18:1635-1645. [PMID: 31213131 DOI: 10.1080/15384101.2019.1629789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is associated with the downregulation of miR-337 expression, although the exact underlying mechanism is unknown. In the present work, we investigated the molecular mechanism and function of miR-337 in regulating CTCL cell viability and invasion. We observed that miR-337 expression was downregulated in both CTCL tumors and cell lines. Furthermore, CCK assay, BrdU incorporation assay, and flow cytometry revealed that transfection with the miR-337 mimic resulted in decreased proliferation and increased apoptotic levels in CTCL cells. Results of the Transwell migration assay indicated that the miR-337 mimic decreased CTCL cell invasion in vitro. Both bioinformatics prediction and the dual-luciferase reporter assay revealed that miR-337 targets the 3'-UTR of STAT3 for silencing. Overexpression of STAT3 counteracted the pro-apoptotic influence of miR-337 in CTCL cell lines and restored their invasion properties. The results thus indicate that the miR-337-STAT3 axis inhibits the proliferation of malignant T cells and that miR-337 may serve as a promising therapeutic target for CTCL.
Collapse
Affiliation(s)
- Liang Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Linlin Wu
- b Department of Hematology , Anhui Provincial NO. 2 People's Hospital , Hefei , China
| | - Hailong Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jing Bao
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Qingsheng Li
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Xiaowen Chen
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Ruixiang Xia
- a Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| |
Collapse
|
40
|
Krzyzanowska A, Don‐Doncow N, Marginean FE, Gaber A, Watson RW, Hellsten R, Bjartell A. Expression of tSTAT3, pSTAT3 727 , and pSTAT3 705 in the epithelial cells of hormone-naïve prostate cancer. Prostate 2019; 79:784-797. [PMID: 30905090 PMCID: PMC6766958 DOI: 10.1002/pros.23787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The signal transducer and activator of transcription 3 (STAT3) pathway is observed to be constitutively activated in several malignancies including prostate cancer (PCa). In the present study, we investigated the expression of total STAT3 (tSTAT3) and two forms of activated phosphorylated STAT3 (pSTAT3727 and pSTAT3705 ) in tissue microarrays (TMA) of two cohorts of localized hormone-naïve PCa patients and analyzed associations between the expression and disease outcome. METHODS The expression of tSTAT3, pSTAT3727 , and pSTAT3705 was scored in the nuclei and cytoplasm of prostatic gland epithelial cells in two TMAs of paraffin-embedded prostatic tissue. The TMAs consisted of tissue originated from hormone-naïve radical prostatectomy patients from two different sites: Malmö, Sweden (n = 300) and Dublin, Ireland (n = 99). RESULTS The nuclear expression levels of tSTAT3, pSTAT3727 , and pSTAT3705 in the epithelial cells of benign glands were significantly higher than in the cancerous glands. Cytoplasmic tSTAT3 levels were also higher in benign glands. Patients with low pSTAT3727 and pSTAT3705 levels in the cancerous glands showed reduced times to biochemical recurrence, compared with those with higher levels. No significant trends in nuclear nor in cytoplasmic tSTAT3 were observed in relation to biochemical recurrence in the Malmö cohort. Higher cytoplasmic tSTAT3 was associated with reduced time to biochemical recurrence in the Dublin cohort. Adding the tSTAT3 and pSTAT3 expression data to Gleason score or pathological T stage did not improve their prognostic values. CONCLUSIONS Low pSTAT3727 and pSTAT3705 expression in epithelial cells of cancerous prostatic glands in hormone-naïve PCa was associated with faster disease progression. However, pSTAT3 and tSTAT3 expression did not improve the prognostic value of Gleason score or pathological T stage and may not be a good biomarker in the early hormone naïve stages of PCa.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Nicholas Don‐Doncow
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Felicia Elena Marginean
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Alexander Gaber
- Department of Clinical Sciences, Division of PathologyLund UniversityLundSweden
| | - R. William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfieldDublinIreland
| | - Rebecka Hellsten
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
- Department of UrologyMalmö University HospitalMalmöSweden
| |
Collapse
|
41
|
Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer 2019; 18:69. [PMID: 30927928 PMCID: PMC6441162 DOI: 10.1186/s12943-019-0992-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is of great concern in cancer treatment because most effective drugs are limited by the development of resistance following some periods of therapeutic administration. The tumor microenvironment (TME), which includes various types of cells and extracellular components, mediates tumor progression and affects treatment efficacy. TME-mediated drug resistance is associated with tumor cells and their pericellular matrix. Noninherent-adaptive drug resistance refers to a non-cell-autonomous mechanism in which the resistance lies in the treatment process rather than genetic or epigenetic changes, and this mechanism is closely related to the TME. A new concept is therefore proposed in which tumor cell resistance to targeted therapy may be due to non-cell-autonomous mechanisms. However, knowledge of non-cell-autonomous mechanisms of resistance to different treatments is not comprehensive. In this review, we outlined TME factors and molecular events involved in the regulation of non-cell-autonomous resistance of cancer, summarized how the TME contributes to non-cell-autonomous drug resistance in different types of antineoplastic treatment, and discussed the novel strategies to investigate and overcome the non-cell-autonomous mechanism of cancer non-cell-autonomous resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Dou
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Horyue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model. Sci Rep 2018; 8:13638. [PMID: 30206377 PMCID: PMC6134080 DOI: 10.1038/s41598-018-31835-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting.
Collapse
|
43
|
Ding X, Kong J, Xu W, Dong S, Du Y, Yao C, Gao J, Ke S, Wang S, Sun W. ATPase inhibitory factor 1 inhibition improves the antitumor of YC-1 against hepatocellular carcinoma. Oncol Lett 2018; 16:5230-5236. [PMID: 30250592 DOI: 10.3892/ol.2018.9266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
YC-1 is a synthetic compound, which serves as a hypoxia-inducible factor 1-α inhibitor or sensitizer to enhance the effect of chemotherapy. Previous studies have revealed the anti-cancer effects of YC-1 in various types of cancer, including hepatocellular carcinoma (HCC). ATPase inhibitory factor 1 (IF1) is upregulated in a number of human carcinomas and regulates mitochondrial bioenergetics and structure. However, whether IF1 is involved in the antitumor effects of YC-1 against HCC remains unclear. The present study examined the function of IF1 in HCC and its potential role in YC-1 effects within HCC cells. MTT, colony formation and Transwell assays revealed that IF1 overexpression promoted proliferation, colony formation and invasion of HCC cells, while IF1 downregulation had the opposite effects. Overexpression of IF1 reversed the inhibitory effects of YC-1 on Huh7 cell growth and invasion activities, while downregulation of IF1 increased the sensitivity of HCCLM3 cells to YC-1. YC-1 treatment of HCCLM3 and Huh7 cells reduced the levels of phosphorylated (p-) signal transducer and activator of transcription 3 (STAT3) and IF1, and increased the expression of E-cadherin. IF1 knockdown resulted in decreased p-STAT3 levels and increased E-cadherin expression, while IF1 overexpression increased p-STAT3 levels and reduced the expression of E-cadherin. The present study demonstrated that the inhibition of IF1 improves the antitumor effects of YC-1 in HCC cells. These findings support the clinical strategy of combining YC-1 and an IF1 inhibitor for the treatment of HCC.
Collapse
Affiliation(s)
- Xuemei Ding
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenlei Xu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Yingrui Du
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shan Ke
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shaohong Wang
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
44
|
Do NN, Willenborg S, Eckes B, Jüngst C, Sengle G, Zaucke F, Eming SA. Myeloid Cell–Restricted STAT3 Signaling Controls a Cell-Autonomous Antifibrotic Repair Program. THE JOURNAL OF IMMUNOLOGY 2018; 201:663-674. [DOI: 10.4049/jimmunol.1701791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
|
45
|
Shu G, Hao J, Li W, Zhang L, Qiu Y, Yang X. Liensinine suppresses STAT3-dependent HK2 expression through elevating SHP-1 to induce apoptosis in hepatocellular carcinoma cells in vitro and in vivo. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
46
|
Alshamsan A. STAT3-siRNA induced B16.F10 melanoma cell death: more association with VEGF downregulation than p-STAT3 knockdown. Saudi Pharm J 2018; 26:1083-1088. [PMID: 30532628 PMCID: PMC6260487 DOI: 10.1016/j.jsps.2018.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
STAT3 knockdown by small interfering RNA (siRNA) has been described to inhibit carcinogenic growth in various types of tumors. Earlier we have reported delivery of siRNA by oleic acid- and stearic acid-modified-polyethylenimine and enhancement of silencing of STAT3 by small interfering RNA (siRNA) in B16.F10 melanoma cell lines and consequent tumor suppression. Present investigation mainly focused on the downstream events involved in B16.F10 melanoma cell death and consequent tumor suppression following knockdown of p-STAT3 by siRNA. Lipid-substituted polyethylenimine (PEI)-p-STAT3-siRNA were prepared and characterized by measuring its N/P ratio, zeta potential, size, association and dissociation with siRNA. B16.F10 melanoma cells were treated with six different concentrations of PEI-p-STAT3-siRNA (200, 100, 50, 25, 12.5 and 6.25 nM). Downregulation of p-STAT3 and VEGF were studied using western blot and ELISA in association with the melanoma cell death. PEI-p-STAT3-siRNA hydrodynamic diameter ranged from 110 to 270 nm. PEI assisted p-STAT3-siRNA delivery exhibited increased uptake by B16.F10, when analyzed by fluorescent and confocal microscopy along with flowcytometry. It induced concentration-dependent knockdown of the p-STAT3 that also downregulated VEGF expression in similar fashion and induced B16.F10 cell death. Higher concentrations of p-STAT3-siRNA appear to significantly downregulate the VEGF expression via p-STAT3 knockdown. Decreasing survival of B16.F10 cells with the increasing concentration of p-STAT3-siRNA significantly correlated with VEGF downregulation, not with p-STAT3 expression. Data suggest that VEGF downregulation following knockdown of p-STAT3 may be a key event in survival reduction in B16.F10 melanoma cells and.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Saudi Arabia
| |
Collapse
|
47
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
48
|
|
49
|
Jonker DJ, Nott L, Yoshino T, Gill S, Shapiro J, Ohtsu A, Zalcberg J, Vickers MM, Wei AC, Gao Y, Tebbutt NC, Markman B, Price T, Esaki T, Koski S, Hitron M, Li W, Li Y, Magoski NM, Li CJ, Simes J, Tu D, O'Callaghan CJ. Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol Hepatol 2018; 3:263-270. [DOI: 10.1016/s2468-1253(18)30009-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 02/03/2023]
|
50
|
Chen W, He W, Cai H, Hu B, Zheng C, Ke X, Xie L, Zheng Z, Wu X, Wang H. A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer. Oncotarget 2018; 8:39417-39429. [PMID: 28455960 PMCID: PMC5503622 DOI: 10.18632/oncotarget.17034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer-associated protein (BLCAP) gene is a highly conserved gene with tumor-suppressor function in different carcinomas. It is also a novel ADAR-mediated editing substrate undergoes multiple A-to-I RNA editing events. Although the anti-tumorigenic role of BLCAP has been examined in preliminarily studies, the relationship between BLCAP function and A-to-I RNA editing in cervical carcinogenesis still require further exploration. Herein, we analyzed the coding sequence of BLCAP transcripts in 35 paired cervical cancer samples using high-throughput sequencing. Of note, editing levels of three novel editing sites were statistically different between cancerous and adjacent cervical tissues, and editing of these three sites was closely correlated. Moreover, two editing sites of BLCAP coding region were mapped-in the key YXXQ motif which can bind to SH2 domain of STAT3. Further studies revealed that BLCAP interacted with signal transducer and activator of transcription 3 (STAT3) and inhibited its phosphorylation, while A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer cell lines. Our findings reveal that A-to-I RNA editing events alter the genetically coded amino acid in BLCAP YXXQ motif, which drive the progression of cervical carcinogenesis through regulating STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenrong He
- Department of Gynaecology and Obstetrics, The First People's Hospital of Jingzhou, Yangtze University, Jingzhou 434000, China
| | - Hongbing Cai
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bicheng Hu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Caishang Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xianliang Ke
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li Xie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinxing Wu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|