1
|
Gong P, Guo Z, Wang S, Gao S, Cao Q. Histone Phosphorylation in DNA Damage Response. Int J Mol Sci 2025; 26:2405. [PMID: 40141048 PMCID: PMC11941871 DOI: 10.3390/ijms26062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The DNA damage response (DDR) is crucial for maintaining genomic stability and preventing the accumulation of mutations that can lead to various diseases, including cancer. The DDR is a complex cellular regulatory network that involves DNA damage sensing, signal transduction, repair, and cell cycle arrest. Modifications in histone phosphorylation play important roles in these processes, facilitating DNA repair factor recruitment, damage signal transduction, chromatin remodeling, and cell cycle regulation. The precise regulation of histone phosphorylation is critical for the effective repair of DNA damage, genomic integrity maintenance, and the prevention of diseases such as cancer, where DNA repair mechanisms are often compromised. Thus, understanding histone phosphorylation in the DDR provides insights into DDR mechanisms and offers potential therapeutic targets for diseases associated with genomic instability, including cancers.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shufeng Gao
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Qinhong Cao
- College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
2
|
Gachpazan M, Alashti AA, Jahantigh HR, Moghbeli M, Faezi S, Hosseini SY, Eftekharian MM, Nasimi M, Khiavi FM, Rahimi A, Mianroodi RA, Pakjoo M, Taghizadeh M, Tempesta M, Mahdavi M. Immunization with recombinant HPV16-E7d in fusion with Flagellin as a cancer vaccine: Effect of antigen-adjuvant orientation on the immune response pattern. Immunol Res 2025; 73:50. [PMID: 39939497 DOI: 10.1007/s12026-025-09598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer worldwide. The pathogenesis of HPV is mainly dependent on its E7 and E6 proteins. Up to now, different adjuvants have been used to enhance the efficacy of the immune response against these two proteins. In this study, Flagellin (FLA) was used as adjuvant to test adjuvant activity and also see whether its orientation of attachment can affect the immune response pattern. The E7d-FLA and FLA-E7d in pET28a vector were constructed and then the recombinant proteins were expressed in E. coli BL21 (DE3) bacteria under IPTG induction. The expression of recombinant E7d-FLA and FLA-E7d proteins is confirmed by SDS-PAGE and western blot. Then, recombinant fusion proteins were purified using a nickel-nitrilotriacetic acid (Ni-NTA) column. The recombinant proteins were checked for endotoxin contamination and then quantified by Bradford. Eight-to-ten-week-old male Balb/C mice were immunized subcutaneously with 10 µg recombinant E7d-FLA, FLA-E7d and HPV16E7d vaccine on days 0, 14 and 28. In addition, PBS and FLA groups were considered as control group. Then, spleen cells were harvested to assess lymphocyte proliferation and IFN-γ, IL-4 and IL-17 cytokines. In addition, mice sera were used for specific total IgG and IgG1, IgG2a, IgG2b and IgM antibodies assessment by ELISA. The results show that E7d-FLA is more potent in the induction of lymphocyte proliferation, CTL response and specific total IgG, IgG2a and IgG2b response, while the FLA-E7d vaccine was associated with more IFN-γ, and IL-17 cytokine response. The results of this study proved the ability of FLA as an adjuvant in fusion with E7d in the induction of cellular and humoral immune responses. In addition, it also emphasizes that antigen-adjuvant orientation can affect the immune response strength and polarization against HPV E7d vaccine candidate. HIGHLIGHTS: Flagellin is attached to HPV-16 E7d at the C- or N-terminus to create E7d-FLA and FLA-E7d candidate vaccines. The E7d-FLA vaccine showed a significant increase in lymphocyte proliferation, CTL response and IgG response versus FLA-E7d vaccine. The FLA-E7d vaccine is associated with a significant increase in IFN-γ and IL-17 cytokines response versus E7d-FLA vaccine. It seems that that antigen-adjuvant orientation is an important parameter in the strength and polarization of immune response in HPV E7d vaccine candidate.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
- Department of Biology, Islamic Azad University of Damghan Branch, Damghan, Iran
| | - Ali Ahmadnia Alashti
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
| | - Hamid Reza Jahantigh
- Department of Pathology, Faculty of Medicine, Emory University, Atlanta, GA, 30033, USA
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University of Damghan Branch, Damghan, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Nasimi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Motavalli Khiavi
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi-Gharbi Street, Tehran, Iran
| | - Alireza Rahimi
- Department of Recombinant Products, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Arabi Mianroodi
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Pakjoo
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
| | - Morteza Taghizadeh
- Department of Medical Vaccine, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.
| | - Maria Tempesta
- Department of Veterinary Medicine, Animal Health and Zoonosis PhD Course, University of Bari, Bari, Italy
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran.
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran.
| |
Collapse
|
3
|
Lu Y, Shi M, Huang W, Li F, Liang H, Liu W, Huang T, Xu Z. Diosmin alleviates NLRP3 inflammasome-dependent cellular pyroptosis after stroke through RSK2/CREB pathway. Brain Res 2025; 1848:149336. [PMID: 39547499 DOI: 10.1016/j.brainres.2024.149336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke. The effects of DM on MCAO rats were assessed by Zea-Longa score, Morris water maze, TTC staining, Nissl staining, immunohistochemistry, and Western blot. At the cellular level, cell counting kit-8 assay and Western blot were carried out to verify the mechanism of DM in ischemic stroke. In vivo, DM decreased neurological deficit score, cerebral infarct volume and neuronal damage, and improved cognitive function in MCAO rats. In vitro, DM increased the viability of OGD-treated cells. In addition, DM down-regulated the expressions of NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-associated proteins, while up-regulating ribosomal protein S6 kinase A3 (RSK2) level and activating cyclic-AMP response element-binding protein (CREB) signaling. Conversely, RSK2 inhibitor LJH685 reduced the viability and promoted pyroptosis-associated protein levels, which also partially reversed the effects of DM in vitro. Collectively, DM plays a therapeutic role in ischemic stroke by inhibiting NLRP3 inflammasome-mediated cellular pyroptosis via the RSK2/CREB pathway.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Min Shi
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Wei Huang
- Department of Pharmacy, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincal Hospital of Traditional Chinese Medicine), China
| | - Fenfen Li
- College of Pharmacy, Zhejiang Chinese Medical University, China
| | - Haowei Liang
- Graduate School of Zhejiang Chinese Medical University, China
| | - Wenbing Liu
- Department of Cardiopulmonary Rehabilitation, the Third Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Tianyi Huang
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Zhen Xu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China.
| |
Collapse
|
4
|
Wu T, Chen Z, Liu X, Wu X, Wang Z, Guo W. Targeting RSK2 in Cancer Therapy: A Review of Natural Products. Anticancer Agents Med Chem 2025; 25:35-41. [PMID: 39248063 DOI: 10.2174/0118715206329546240830055233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.
Collapse
Affiliation(s)
- Tianhui Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ziming Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xin Liu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xinyan Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Zhaobo Wang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Weiqiang Guo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
5
|
Okamoto H, Mizutani S, Tsukamoto T, Katsuragawa-Taminishi Y, Kawaji-Kanayama Y, Mizuhara K, Muramatsu A, Isa R, Fujino T, Shimura Y, Ichikawa K, Kuroda J. Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities. Leukemia 2025; 39:211-221. [PMID: 39438587 DOI: 10.1038/s41375-024-02439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K. Treatment with TAS0612 exerted the anti-proliferative effect via cell cycle blockade and the induction of apoptosis in human myeloma-derived cell lines (HMCLs) with diverse cytogenetic and genetic profiles. Ex vivo treatment with TAS0612 also significantly reduced the viability of patient-derived primary myeloma cells with diverse cytogenetic profiles. TAS0612 simultaneously caused the upregulation of several tumor suppressor genes, modulated prognostic genes according to the MMRF CoMMpass data, and downregulated a series of Myc- and mTOR-related genes. Moreover, the combination of TAS0612 with venetoclax (VEN) showed the synergy in inducing apoptosis in HMCLs irrespective of the t(11;14) translocation status. TAS0612 alone and combined with VEN are new potent candidate therapeutic strategies for MM, regardless of cytogenetic/genetic profiles, facilitating its future clinical development.
Collapse
Affiliation(s)
- Haruya Okamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yoko Katsuragawa-Taminishi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
- Department of Blood Transfusion, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ichikawa
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.
| |
Collapse
|
6
|
Lee GE, Bang G, Byun J, Chen W, Jeung D, Cho H, Lee JY, Kang HC, Lee HS, Kim JY, Kim KD, Wu J, Nam SB, Kwon YJ, Lee CJ, Cho YY. SPOP-mediated RIPK3 destabilization desensitizes LPS/sMAC/zVAD-induced necroptotic cell death. Cell Mol Life Sci 2024; 81:451. [PMID: 39540935 PMCID: PMC11564579 DOI: 10.1007/s00018-024-05487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
RIPK1/RIPK3-MLKL signaling molecules are fundamental in initiating necroptotic cell death, but their roles in the development of colon cancer are unclear. This study reports that RIPK3 interacted with SPOP, a component of the E3 ligase within the Cul3 complex. This interaction leads to K48-linked ubiquitination and subsequent proteasomal degradation of RIPK3. Two distinct degron motifs, PETST and SPTST, were identified within the linker domain of RIPK3 for SPOP. RIPK3 phosphorylations at Thr403 by PIM2 and at Thr412/Ser413 by ERK2 are essential to facilitate its interaction with SPOP. Computational docking studies and immunoprecipitation analyses showed that these PIM2 and ERK2 phosphorylations bolster the stability of the RIPK3-SPOP interaction. In particular, mutations of RIPK3 at the degron motifs extended the half-life of RIPK3 by preventing its phosphorylation and subsequent ubiquitination. The deletion of SPOP, which led to increased stability of the RIPK3 protein, intensified LPS/sMAC/zVAD-induced necroptotic cell death in colon cancer cells. These findings underscore the critical role of the SPOP-mediated RIPK3 stability regulation pathway in controlling necroptotic cell death.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Jiin Byun
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Weidong Chen
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Dohyun Jeung
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Hana Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Kwang Dong Kim
- BK21-Four, Division of Applied Life Science, Gyeongsang National University, 501, Jinju-daero, Jinju- si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Juan Wu
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Soo-Bin Nam
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Cheol-Jung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea.
| | - Yong-Yeon Cho
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea.
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
7
|
Chen W, Lee GE, Jeung D, Byun J, Wu J, Li X, Lee JY, Kang HC, Lee HS, Kim KD, Nam SB, Lee CJ, Kwon YJ, Cho YY. RSK2-mediated cGAS phosphorylation induces cGAS chromatin-incorporation-mediated cell transformation and cancer cell colony growth. Cell Death Discov 2024; 10:442. [PMID: 39424777 PMCID: PMC11492232 DOI: 10.1038/s41420-024-02208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Cyclic guanosine-adenosine monophosphate synthase (cGAS) is a key cytosolic DNA sensor that plays a pivotal role in the innate immune response. Although a decade of research on the cGAS has advanced our understanding of inflammasome formation, cytokine production, and signaling pathways, the role of cGAS in the nucleus remains unclear. In this study, we found that the nuclear localization of endogenous and stably expressed cGAS differed from transiently expressed cGAS, which mainly localized in the cytosol. In the nucleus, cGAS is tightly bound to chromatin DNA. The chromatin DNA binding of cGAS was dependent on RSK2. Our molecular mechanism study indicated that the N-lobe of RSK2 harboring 1-323 interacted with the NTase domain of cGAS harboring residues 213-330. This interaction increased RSK2-induced cGAS phosphorylation at Ser120 and Thr130, resulting in the tightly binding of cGAS to chromatin. Importantly, epidermal growth factor (EGF)-induced cell transformation and anchorage-independent colony growth showed an increase in growth factors, such as EGF or bFGF, in cGAS stable expression compared to mock expression. Notably, the cGAS-S120A/T130A mutant abolished the increasing effect of cell transformation of JB6 Cl41 cells and colony growth of SK-MEL-2 malignant melanoma cells. The results suggested that cGAS's chromatin DNA binding, which is indispensable to RSK2-dependent phosphorylation of cGAS at Ser120/Thr130, provides the first clue to how cGAS may participate in chromatin remodeling in the nucleus.
Collapse
Affiliation(s)
- Weidong Chen
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Ga-Eun Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Dohyun Jeung
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Jiin Byun
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Juan Wu
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Xianzhe Li
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Joo Young Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Han Chang Kang
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Hye Suk Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 four), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Soo-Bin Nam
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Cheol-Jung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Department of Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Yong-Yeon Cho
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea.
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea.
| |
Collapse
|
8
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
9
|
Jeung D, Lee GE, Chen W, Byun J, Nam SB, Park YM, Lee HS, Kang HC, Lee JY, Kim KD, Hong YS, Lee CJ, Kim DJ, Cho YY. Ribosomal S6 kinase 2-forkhead box protein O4 signaling pathway plays an essential role in melanogenesis. Sci Rep 2024; 14:9440. [PMID: 38658799 PMCID: PMC11043394 DOI: 10.1038/s41598-024-60165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.
Collapse
Affiliation(s)
- Dohyun Jeung
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Ga-Eun Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Weidong Chen
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Jiin Byun
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Soo-Bin Nam
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - You-Min Park
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Hye Suk Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Joo Young Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Kwang Dong Kim
- Division of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang-eup, Cheongju-si, Chongbuk, 28116, South Korea
| | - Cheol-Jung Lee
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Dae Joon Kim
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAllen, TX, 78504, USA
| | - Yong-Yeon Cho
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
10
|
Katsuragawa‐Taminishi Y, Mizutani S, Kawaji‐Kanayama Y, Onishi A, Okamoto H, Isa R, Mizuhara K, Muramatsu A, Fujino T, Tsukamoto T, Shimura Y, Taniwaki M, Miyagawa‐Hayashino A, Konishi E, Kuroda J. Triple targeting of RSK, AKT, and S6K as pivotal downstream effectors of PDPK1 by TAS0612 in B-cell lymphomas. Cancer Sci 2023; 114:4691-4705. [PMID: 37840379 PMCID: PMC10728023 DOI: 10.1111/cas.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.
Collapse
Affiliation(s)
- Yoko Katsuragawa‐Taminishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuka Kawaji‐Kanayama
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Akio Onishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
- Department of Blood TransfusionKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | | | - Eiichi Konishi
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
11
|
Han N, Zhang Q, Tang X, Bai L, Yan L, Tang H. Hepatitis B Virus X Protein Modulates p90 Ribosomal S6 Kinase 2 by ERK to Promote Growth of Hepatoma Cells. Viruses 2023; 15:v15051182. [PMID: 37243268 DOI: 10.3390/v15051182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), one of the most prevalent malignant tumors worldwide that poses a significant threat to human health. The multifunctional regulator known as Hepatitis B virus X-protein (HBx) interacts with host factors, modulating gene transcription and signaling pathways and contributing to hepatocellular carcinogenesis. The p90 ribosomal S6 kinase 2 (RSK2) is a member of the 90 kDa ribosomal S6 kinase family involved in various intracellular processes and cancer pathogenesis. At present, the role and mechanism of RSK2 in the development of HBx-induced HCC are not yet clear. In this study, we found that HBx upregulates the expression of RSK2 in HBV-HCC tissues, HepG2, and SMMC-7721 cells. We further observed that reducing the expression of RSK2 inhibited HCC cell proliferation. In HCC cell lines with stable HBx expression, RSK2 knockdown impaired the ability of HBx to promote cell proliferation. The extracellularly regulated protein kinases (ERK) 1/2 signaling pathway, rather than the p38 signaling pathway, mediated HBx-induced upregulation of RSK2 expression. Additionally, RSK2 and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were highly expressed and positively correlated in HBV-HCC tissues and associated with tumor size. This study showed that HBx upregulates the expression of RSK2 and CREB by activating the ERK1/2 signaling pathway, promoting the proliferation of HCC cells. Furthermore, we identified RSK2 and CREB as potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingbo Zhang
- Jiangxi Qiushi Forensic Science Center, Nanchang 330096, China
| | - Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Choi JS, Cho YY. Novel wiring of the AKT-RSK2 signaling pathway plays an essential role in cancer cell proliferation via a G 1/S cell cycle transition. Biochem Biophys Res Commun 2023; 642:66-74. [PMID: 36566564 DOI: 10.1016/j.bbrc.2022.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
p90 Ribosomal S6 kinase 2 (RSK2), a member of mitogen-activated protein kinase regulating cell proliferation and transformation induced by tumor promoters, such as epidermal growth factor, plays a vital role as a signaling hub to modulate cell proliferation, transformation, cell cycle transition, and chromatin remodeling by tumor promoter stimulation such as epidermal growth factor. On the other hand, the RSK2-mediated signaling networks that regulate cancer cell proliferation are unclear. In this study, SKOV3, an ovarian cancer cell that exhibits chemoresistant properties, and TOV-112D cells showed different sensitivities to colony growth in soft agar. Based on the protein profile shown in a previous report, RSK2 knockdown preferentially and significantly suppressed cell proliferation and colony growth. Moreover, RSK2 interacted with AKTs (AKT 1-3) via the N-terminal kinase domain (NTKD) of RSK2, resulting in the phosphorylation of RSK2. The AKT-mediated phosphorylation consensus sequence, RxRxxS/T, on RSK2 NTKD (Thr115) was well conserved in different species. In particular, an in vitro kinase assay showed that NTKD deleted and Thr115Ala mutants of RSK2 abolished AKT1-mediated phosphorylation. In the physiological assay of RSK2 phosphorylation at Thr115 on cell proliferation, AKT1-mediated RSK2 phosphorylation at Thr115 played an essential role in cell proliferation. The re-introduction of RSK2-T115A to RSK2-/- MEF attenuated the EGF-induced G1/S cell cycle transition compared to RSK2-wt introducing RSK2-/- MEFs. This attenuation was observed by EGF stimulations and insulin-like growth factor-1. Overall, these results show that novel wiring of the AKT/RSKs signaling axis plays an important role in cancer cell proliferation by modulating the G1/S cell cycle transition.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Integrated Research Institute of Pharmaceutical Sciences & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmu-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Yong-Yeon Cho
- Integrated Research Institute of Pharmaceutical Sciences & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmu-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
14
|
Osteoblast-specific inactivation of p53 results in locally increased bone formation. PLoS One 2021; 16:e0249894. [PMID: 34793446 PMCID: PMC8601510 DOI: 10.1371/journal.pone.0249894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022] Open
Abstract
Inactivation of the tumor suppressor p53 (encoded by the Trp53 gene) is relevant for development and growth of different cancers, including osteosarcoma, a primary bone tumor mostly affecting children and young adolescents. We have previously shown that deficiency of the ribosomal S6 kinase 2 (Rsk2) limits osteosarcoma growth in a transgenic mouse model overexpressing the proto-oncogene c-Fos. Our initial aim for the present study was to address the question, if Rsk2 deficiency would also influence osteosarcoma growth in another mouse model. For that purpose, we took advantage of Trp53fl/fl mice, which were crossed with Runx2Cre transgenic mice in order to inactivate p53 specifically in osteoblast lineage cells. However, since we unexpectedly identified Runx2Cre-mediated recombination also in the thymus, the majority of 6-month-old Trp53fl/fl;Runx2-Cre (thereafter termed Trp53Cre) animals displayed thymic lymphomas, similar to what has been described for Trp53-deficient mice. Since we did not detect osteosarcoma formation at that age, we could not follow our initial aim, but we studied the skeletal phenotype of Trp53Cre mice, with or without additional Rsk2 deficiency. Here we unexpectedly observed that Trp53Cre mice display a unique accumulation of trabecular bone in the midshaft region of the femur and the humerus, consistent with its previously established role as a negative regulator of osteoblastogenesis. Since this local bone mass increase in Trp53Cre mice was significantly reduced by Rsk2 deficiency, we isolated bone marrow cells from the different groups of mice and analyzed their behavior ex vivo. Here we observed a remarkable increase of colony formation, osteogenic differentiation and proliferation in Trp53Cre cultures, which was unaffected by Rsk2 deficiency. Our data thereby confirm a critical and tumorigenesis-independent function of p53 as a key regulator of mesenchymal cell differentiation.
Collapse
|
15
|
Kaempferol sensitizes cell proliferation inhibition in oxaliplatin-resistant colon cancer cells. Arch Pharm Res 2021; 44:1091-1108. [PMID: 34750753 DOI: 10.1007/s12272-021-01358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Resolution to chemoresistance is a major challenge in patients with advanced-stage malignancies. Thus, identification of action points and elucidation of molecular mechanisms for chemoresist human cancer are necessary to overcome this challenge. In this study, we provide important evidence that kaempferol targeting RSKs might be a strategy to reduce the oxaliplatin-resistant colon cancer cells. We found that MAPK and PI3K-AKT signaling were increased in oxaliplatin (Ox)-resistant HCT116 (HCT116-OxR) cells compared to Ox-sensitive HCT116 (HCT116-OxS) cells. Comparison of cell sensitivities using SP600125 (JNK inhibitor), SB206580 (p38 kinase inhibitor), or MK-2206 (AKT inhibitor) revealed that cell proliferation inhibition was strongly observed in HT29 cells compared to that in HCT116 cells in both OxS and OxR cells. Interestingly, SP600125, SB206580, and MK-2206 treatment showed higher cell proliferation inhibition in OxS cells than that in OxR cells in both HCT116 and HT29 cells, except following treatments with 10 µM of SP600125, and 30 µM of SB206580. In comparison to magnolin and aschantin, kaempferol showed the strongest inhibitory effect on cell proliferation in both HCT116 and HT29 cells. Importantly, HCT116- and HT29-OxR cells showed higher sensitivities to cell proliferation inhibition than those of HCT116- and HT29-OxS cells, resulting in the accumulation of cells at the G2/M-phases of the cell cycle. Finally, we showed that AP-1 transactivation activity was markedly decreased by kaempferol in HCT116- and HT29-OxR cells compared to the activity levels in HCT116- and HT29-OxS cells. Taken together, the results demonstrate that kaempferol-mediated AP-1 inhibition might be an important signaling mechanism to resolve the chemoresistance of Ox-resistant colon cancer cells.
Collapse
|
16
|
Wu S, Shao M, Zhang Y, Shi D. Activation of RSK2 upregulates SOX8 to promote methotrexate resistance in gestational trophoblastic neoplasia. J Transl Med 2021; 101:1494-1504. [PMID: 34373588 DOI: 10.1038/s41374-021-00651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Resistance to chemotherapy is frequently driven by aberrantly activated kinases in cancer. Herein, we characterized the global phosphoproteomic alterations associated with methotrexate (MTX) resistance in gestational trophoblastic neoplastic (GTN) cells. A total of 1111 phosphosites on 713 proteins were significantly changed, with highly elevated Ribosomal S6 Kinase 2 (RSK2) phosphorylation (pS227) observed in MTX-resistant GTN cells. Activation of RSK2 promoted cell proliferation and survival after MTX treatment in GTN cell models. Interestingly, RSK2 might play an important role in the regulation of reactive oxygen species (ROS) homeostasis, as manipulation of RSK2 activation affected ROS accumulation and SOX8 expression in GTN cells. In addition, overexpression of SOX8 partly rescued cell proliferation and survival in RSK2-depleted MTX-resistant GTN cells, suggesting that SOX8 might serve as a downstream effector of RSK2 to promote MTX resistance in GTN cells. Highly activated RSK2/SOX8 signaling was observed in MTX-resistant GTN specimens. Further, the RSK2 inhibitor BIX02565 effectively reduced SOX8 expression, induced ROS accumulation, and enhanced MTX-induced cytotoxicity in vitro and in vivo. Collectively, our findings suggested that RSK2 activation could promote MTX resistance via upregulating SOX8 and attenuating MTX-induced ROS in GTN cells, which may help to develop experimental therapeutics to treat MTX-resistant GTN.
Collapse
Affiliation(s)
- Shaobin Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Shao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Dazun Shi
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Lee CJ, Lee GE, An HJ, Cho ES, Chen W, Lee JY, Kang HC, Lee HS, Cho YY. F-box Protein βTrCP1 Is a Substrate of Extracellular Signal-regulated Kinase 2. J Cancer Prev 2021; 26:174-182. [PMID: 34703820 PMCID: PMC8511579 DOI: 10.15430/jcp.2021.26.3.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins, consisting of 69 members which are organized into the three subclasses FBXW, FBXL, and FBXO, are the substrate specific recognition subunits of the SKP1-Cullin 1-F-box protein E3 ligase complex. Although βTrCP 1 and 2, members of the FBXW subfamily, are known to regulate some protein stability, molecular mechanisms by which these proteins can recognize proper substrates are unknown. In this study, it was found that βTrCP1 showed strong interaction with members of mitogen-activated protein kinases. Although extracellular signal-regulated kinase (ERK) 3, p38β, and p38δ showed weak interactions, ERK2 specifically interacted with βTrCP1 as assessed by immunoprecipitation. In interaction domain determination experiments, we found that ERK2 interacted with two independent ERK docking sites located in the F-box domain and linker domain, but not the WD40 domain, of βTrCP1. Notably, mutations of βTrCP1 at the ERK docking sites abolished the interaction with ERK2. βTrCP1 underwent phosphorylation by EGF stimulation, while the presence of the mitogen-activated protein kinase kinases inhibitor U0126, genetic silencing by sh-ERK2, and mutation of the ERK docking site of βTrCP1 inhibited phosphorylation. This inhibition of βTrCP1 phosphorylation resulted in a shortened half-life and low protein levels. These results suggest that ERK2-mediated βTrCP1 phosphorylation may induce the destabilization of βTrCP1.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea.,Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Ga-Eun Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hyun-Jung An
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Eun Suh Cho
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Weidong Chen
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Joo Young Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Han Chang Kang
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hye Suk Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Yong-Yeon Cho
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
18
|
A Novel Protein-Protein Interaction between RSK3 and IκBα and a New Binding Inhibitor That Suppresses Breast Cancer Tumorigenesis. Cancers (Basel) 2021; 13:cancers13122973. [PMID: 34198590 PMCID: PMC8231827 DOI: 10.3390/cancers13122973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple cancer-related biological processes are mediated by protein-protein interactions (PPIs). Through interactions with a variety of factors, members of the ribosomal S6 kinase (RSK) family play roles in cell cycle progression and cell proliferation. In particular, RSK3 contributes to cancer viability, but the underlying mechanisms remain unknown. We performed a kinase library screen to find IκBα PPI binding partners and identified RSK3 as a novel IκBα binding partner using a cell-based distribution assay. In addition, we discovered a new PPI inhibitor using mammalian two-hybrid (MTH) analysis. We assessed the antitumor effects of the new inhibitor using cell proliferation and colony formation assays and monitored the rate of cell death by FACS apoptosis assay. IκBα is phosphorylated by the active form of the RSK3 kinase. A small-molecule inhibitor that targets the RSK3/IκBα complex exhibited antitumor activity in breast cancer cells and increased their rate of apoptosis. RSK3 phosphorylation and RSK3/IκBα complex formation might be functionally important in breast tumorigenesis. The RSK3/IκBα-specific binding inhibitor identified in this study represents a lead compound for the development of new anticancer drugs.
Collapse
|
19
|
Chan LK, Ho DWH, Kam CS, Chiu EYT, Lo ILO, Yau DTW, Cheung ETY, Tang CN, Tang VWL, Lee TKW, Wong CCL, Chok KSH, Chan ACY, Cheung TT, Wong CM, Ng IOL. RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. J Hepatol 2021; 74:360-371. [PMID: 32918955 DOI: 10.1016/j.jhep.2020.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Mutational profiling of patient tumors has suggested that hepatocellular carcinoma (HCC) development is mainly driven by loss-of-function mutations in tumor suppressor genes. p90 ribosomal S6 kinase 2 (RSK2) functions as a direct downstream kinase of ERK1/2 and elevated RSK2 expression has been reported to support oncogenic functions in some cancers. We investigated if RSK2 was also dysregulated by inactivating mutations in cancers including HCC. METHODS We performed exome sequencing and targeted DNA sequencing on HBV-associated HCCs to examine recurrent RSK2 mutations. The functional significance and mechanistic consequences of RSK2 mutations were examined in natural RSK2-null HCC cells, and RSK2-knockout HCC cells. The potential downstream pathways underlying RSK2 mutations were investigated by RNA sequencing, qRT-PCR and mass spectrometry. RESULTS We detected recurrent somatic RSK2 mutations at a rate of 6.3% in our HCC cohorts and revealed that, among many cancer types, HCC was the cancer most commonly harboring RSK2 mutations. The RSK2 mutations were inactivating and associated with a more aggressive tumor phenotype. We found that, functionally, restoring RSK2 expression in natural RSK2-null HBV-positive Hep3B cells suppressed proliferation and migration in vitro and tumorigenicity in vivo. Mechanistically, RSK2-inactivating mutations attenuated a SOS1/2-dependent negative feedback loop, leading to the activation of MAPK signaling. Of note, this RSK2 mutation-mediated MAPK upregulation rendered HCC cells more sensitive to sorafenib, a first-line multi-kinase inhibitor for advanced HCC. Furthermore, such activation of MAPK signaling enhanced cholesterol biosynthesis-related gene expression in HCC cells. CONCLUSIONS Our findings reveal the mechanistic and functional significance of RSK2-inactivating mutations in HCC. These inactivating mutations may serve as an alternative route to activate MAPK signaling and cholesterol metabolism in HCC. LAY SUMMARY In this study, we identified and functionally characterized RSK2-inactivating mutations in human hepatocellular carcinoma and demonstrated their association with aggressive tumor behavior. Mutations in RSK2 drive signaling pathways with known oncogenic potential, leading to enhanced cholesterol biosynthesis and potentially sensitizing tumors to sorafenib treatment.
Collapse
Affiliation(s)
- Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Charles Shing Kam
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Elley Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | | | | | | | - Chung-Ngai Tang
- Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Victor Wai-Lun Tang
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Kenneth Siu-Ho Chok
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Chun-Ming Wong
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Zong Q, Jing P, Sun S, Wang H, Wu S, Bao W. Effects of HSP27 gene expression on the resistance to Escherichia coli infection in piglets. Gene 2021; 773:145415. [PMID: 33444678 DOI: 10.1016/j.gene.2021.145415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 and RSK2 gene. Results revealed that the expression level of HSP27 gene in resistant individuals in 11 tissues was higher than sensitive type. At the cellular level, the relative expression levels of HSP27 gene were increased after F18ab, F18ac bacterial supernatant, F18ab thallus infection, and LPS induction for 4 h (P < 0.01). The adhesion ability of E. coli F18ab to IPEC-J2 was significantly reduced after HSP27 gene overexpression (P < 0.01), and the concentration of pro-inflammatory factors in the HSP27 gene overexpression group was significantly reduced compared with the control group after F18ab infection (P < 0.05). Furthermore, the expression of RSK2 was significantly increased in HSP27 overexpression group upon F18ab infection (P < 0.01). The colonies quantitative results also showed that the number of colonies was significantly reduced after co-transfection of HSP27 and RSK2 gene. We indicated that the high expression of HSP27 gene may resist the inflammatory response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.
Collapse
Affiliation(s)
- Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Pengfei Jing
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Shouyong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
21
|
Im JY, Kim DM, Park H, Kang MJ, Kim DY, Chang KY, Kim BK, Won M. VGLL1 phosphorylation and activation promotes gastric cancer malignancy via TGF-β/ERK/RSK2 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118892. [PMID: 33069758 DOI: 10.1016/j.bbamcr.2020.118892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
We previously reported that vestigial-like 1 (VGLL1), a cofactor of transcriptional enhanced associate domain 4 (TEAD4), is transcriptionally regulated by PI3K and β-catenin signaling and is involved in gastric cancer malignancy. However, the precise mechanism underlying the regulation of VGLL1 activation remains unknown. Therefore, we aimed to investigate the molecular mechanism underlying the transforming growth factor-β (TGF-β)-mediated activation of VGLL1 and the VGLL1-TEAD4 interaction in gastric cancer cells. We showed that TGF-β enhanced VGLL1 phosphorylation and that this phosphorylated VGLL1 functioned as a transcription cofactor of TEAD4 in NUGC3 cells. TGF-β also increased the phosphorylation of ERK and ribosomal S6 kinase 2 (RSK2) in NUGC3 cells, thereby triggering the translocation of phosphorylated RSK2 to the nucleus. Site-directed mutagenesis and immunoprecipitation experiments revealed that RSK2 phosphorylated VGLL1 at S84 in the presence of TGF-β. Mutation of VGLL1 at S84 suppressed VGLL1-TEAD4 binding and the subsequent transcriptional activation of matrix metalloprotease 9 (MMP9). Moreover, VGLL1 peptide containing S84 suppressed the TGF-β-induced MMP9 expression and reduced the invasion and proliferation of gastric cancer cells, whereas VGLL1 peptide containing S84A did not. Furthermore, suppression of expression or activation of VGLL1 enhances the therapeutic effects of lapatinib. Collectively, these results indicate that VGLL1 phosphorylation via TGF-β/ERK/RSK2 signaling plays a crucial role in MMP9-mediated malignancy of gastric cancer. In addition, our study highlights the therapeutic potential of the peptide containing VGLL1 S84 for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Da-Yoon Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Kwan Young Chang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea,.
| |
Collapse
|
22
|
Guttula PK, Agrawal K, Natarajan P, Gupta MK. Pharmacophore modeling coupled with scaffold hopping to identify novel and potent ribosomal S6 kinase (RSK2) protein antagonists as anti-cancer agents. J Biomol Struct Dyn 2020; 38:4947-4955. [PMID: 31684835 DOI: 10.1080/07391102.2019.1689172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Praveen Kumar Guttula
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Kirti Agrawal
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Pradeep Natarajan
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
23
|
Wang HL, Liu PF, Yue J, Jiang WH, Cui YL, Ren H, Wang H, Zhuang Y, Liu Y, Jiang D, Dong Q, Zhang H, Mi JH, Xu ZM, Tian CJ, Zhang ZZ, Wang XW, Su MN, Lu W. Somatic gene mutation signatures predict cancer type and prognosis in multiple cancers with pan-cancer 1000 gene panel. Cancer Lett 2019; 470:181-190. [PMID: 31765737 DOI: 10.1016/j.canlet.2019.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Most cancers are caused by somatic mutations. Some common mutations in the same cancer type can form a "signature" to specifically predict the prognosis or to distinguish it from other cancers. In this study, 710 somatic cell mutations were identified in 142 cases, including digestive, lung and urogenital cancers, and the digestive cancers were further divided into liver, stomach, intestinal, esophageal and cardia cancer. The above mutations were located in 166 genes. In addition, a group of high-frequency mutation genes with specific characteristics were screened to form predictive signatures for each cancer. Verification using TCGA suggested that the signatures could predict the stages, progression-free survival, and overall survival of digestive, intestinal, and liver cancers (P < 0.05). The validation cases further confirmed the predictive role of digestive and liver cancers signatures in diagnosis and prognosis. Overall, this study established predictive signatures for different cancer systems and their subtypes. These findings enable a better understanding in cancer genome, and contribute to the personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Long Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Peng-Fei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jie Yue
- Department of Esophageal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wen-Hua Jiang
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| | - Yun-Long Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - He Ren
- Department of Pathology, Center of Tumour Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Han Wang
- Department of Applied Statistics, College of Science, Hebei University of Technology, Tianjin, China
| | - Yan Zhuang
- Department of Colorectal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yong Liu
- Department of Gastric Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Dong
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Division of Biostatistics, Department of Prevebtive Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jia-Hui Mi
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Zan-Mei Xu
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Cai-Juan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Zhen-Zhen Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Xiao-Wei Wang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Mei-Na Su
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
24
|
Zhang X, Cai L, Zhao S, Long J, Li J, Wu L, Su J, Zhang J, Tao J, Zhou J, Chen X, Peng C. CX-F9, a novel RSK2 inhibitor, suppresses cutaneous melanoma cells proliferation and metastasis through regulating autophagy. Biochem Pharmacol 2019; 168:14-25. [DOI: 10.1016/j.bcp.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
25
|
Villegas SN, Ferres-Marco D, Domínguez M. Using Drosophila Models and Tools to Understand the Mechanisms of Novel Human Cancer Driver Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:15-35. [PMID: 31520347 DOI: 10.1007/978-3-030-23629-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The formation, overgrowth and metastasis of tumors comprise a complex series of cellular and molecular events resulting from the combined effects of a variety of aberrant signaling pathways, mutations, and epigenetic alterations. Modeling this complexity in vivo requires multiple genes to be manipulated simultaneously, which is technically challenging. Here, we analyze how Drosophila research can further contribute to identifying pathways and elucidating mechanisms underlying novel cancer driver (risk) genes associated with tumor growth and metastasis in humans.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - María Domínguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain
| |
Collapse
|
26
|
Zu X, Xie X, Zhang Y, Liu K, Bode AM, Dong Z, Kim DJ. Lapachol is a novel ribosomal protein S6 kinase 2 inhibitor that suppresses growth and induces intrinsic apoptosis in esophageal squamous cell carcinoma cells. Phytother Res 2019; 33:2337-2346. [PMID: 31225674 DOI: 10.1002/ptr.6415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022]
Abstract
Lapachol is a 1,4-naphthoquinone that is isolated from the Bignoniaceae family. It has been reported to exert anti-inflammatory, antibacterial, and anticancer activities. However, the anticancer activity of lapachol and its molecular mechanisms against esophageal squamous cell carcinoma (ESCC) cells have not been fully investigated. Herein, we report that lapachol is a novel ribosomal protein S6 kinase 2 (RSK2) inhibitor that suppresses growth and induces intrinsic apoptosis in ESCC cells. We found that lapachol strongly attenuates downstream signaling molecules of RSK2 in ESCC cells and also directly inhibits RSK2 activity in vitro. The RSK protein is highly activated in ESCC cells and knockdown of RSK2 significantly suppresses anchorage-dependent and anchorage-independent growth of ESCC cells. Additionally, lapachol inhibits anchorage-dependent and anchorage-independent growth of ESCC cells, and the inhibition of cell growth by lapachol is dependent on the expression of RSK2. We also found that lapachol induces mitochondria-mediated cellular apoptosis by activating caspases-3, -7, and PARP, inducing the expression of cytochrome c and BAX by inhibiting downstream molecules of RSK2. Overall, lapachol is a potent RSK2 inhibitor that might be used for chemotherapy against ESCC.
Collapse
Affiliation(s)
- Xueyin Zu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Xie
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zhang
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,International Joint Research Center Of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
27
|
RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity. Int J Mol Sci 2019; 20:ijms20081994. [PMID: 31018569 PMCID: PMC6515335 DOI: 10.3390/ijms20081994] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth.
Collapse
|
28
|
Song J, Lee C, An H, Yoo S, Kang HC, Lee JY, Kim KD, Kim DJ, Lee HS, Cho Y. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells. Mol Carcinog 2019; 58:88-101. [PMID: 30230030 PMCID: PMC6585859 DOI: 10.1002/mc.22909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022]
Abstract
Ras/Raf/MEKs/ERKs and PI3 K/Akt/mTOR signaling pathways have key roles in cancer development and growth processes, as well as in cancer malignance and chemoresistance. In this study, we screened the therapeutic potential of magnolin using 15 human cancer cell lines and combined magnolin sensitivity with the CCLE mutaome analysis for relevant mutation information. The results showed that magnolin efficacy on cell proliferation inhibition were lower in TOV-112D ovarian cancer cells than that in SKOV3 cells by G1 and G2/M cell cycle phase accumulation. Notably, magnolin suppressed colony growth of TOV-112D cells in soft agar, whereas colony growth of SKOV3 cells in soft agar was not affected by magnolin treatment. Interestingly, phospho-protein profiles in the MAPK and PI3 K signaling pathways indicated that SKOV3 cells showed marked increase of Akt phosphorylation at Thr308 and Ser473 and very weak ERK1/2 phosphorylation levels by EGF stimulation. The phospho-protein profiles in TOV-112D cells were the opposite of those of SKOV3 cells. Importantly, magnolin treatment suppressed phosphorylation of RSKs in TOV-112D, but not in SKOV3 cells. Moreover, magnolin increased SA-β-galactosidase-positive cells in a dose-dependent manner in TOV-112D cells, but not in SKOV3 cells. Notably, oral administration of Shin-Yi fraction 1, which contained magnolin approximately 53%, suppressed TOV-112D cell growth in athymic nude mice by induction of p16Ink4a and p27Kip1 . Taken together, targeting of ERK1 and ERK2 is suitable for the treatment of ovarian cancer cells that do not harbor the constitutive active P13 K mutation and the loss-of-function mutations of the p16 and/or p53 tumor suppressor proteins.
Collapse
Affiliation(s)
- Ji‐Hong Song
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Cheol‐Jung Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Hyun‐Jung An
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Sun‐Mi Yoo
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Han C. Kang
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Joo Y. Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Kwang D. Kim
- Division of Applied Life Science (BK21 Plus)PMBBRCGyeongsang National UniversityJinju‐daero, Jinju‐siGyeongsangnam‐doKorea
| | - Dae J. Kim
- Department of Biomedical Sciences, School of MedicineUniversity of Texas Rio Grande ValleyTexas
| | - Hye S. Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Yong‐Yeon Cho
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| |
Collapse
|
29
|
Yu S, Du Z, Dong C, Ren J. In situ study of RSK2 kinase activity in a single living cell by combining single molecule spectroscopy with activity-based probes. Analyst 2019; 144:3756-3764. [DOI: 10.1039/c9an00178f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FCS with the ABP strategy is a very promising method for studying endogenous protein kinases in living cells.
Collapse
Affiliation(s)
- Shengrong Yu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
30
|
Fischer M, Raabe T. Animal Models for Coffin-Lowry Syndrome: RSK2 and Nervous System Dysfunction. Front Behav Neurosci 2018; 12:106. [PMID: 29875643 PMCID: PMC5974046 DOI: 10.3389/fnbeh.2018.00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023] Open
Abstract
Loss of function mutations in the rsk2 gene cause Coffin-Lowry syndrome (CLS), which is associated with multiple symptoms including severe mental disabilities. Despite the characterization of ribosomal S6 kinase 2 (RSK2) as a protein kinase acting as a downstream effector of the well characterized ERK MAP-kinase signaling pathway, it turns out to be a challenging task to link RSK2 to specific neuronal processes dysregulated in case of mutation. Animal models such as mouse and Drosophila combine advanced genetic manipulation tools with in vivo imaging techniques, high-resolution connectome analysis and a variety of behavioral assays, thereby allowing for an in-depth analysis for gene functions in the nervous system. Although modeling mental disability in animal systems has limitations because of the complexity of phenotypes, the influence of genetic variation and species-specific characteristics at the neural circuit and behavioral level, some common aspects of RSK2 function in the nervous system have emerged, which will be presented. Only with this knowledge our understanding of the pathophysiology of CLS can be improved, which might open the door for development of potential intervention strategies.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res 2018; 41:594-616. [PMID: 29804279 DOI: 10.1007/s12272-018-1038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.
Collapse
|
32
|
Yan L, Yu Y, Zhang Q, Tang X, Bai L, Huang F, Tang H. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics. Proteomics Clin Appl 2018; 12:e1700090. [PMID: 29350888 PMCID: PMC5947307 DOI: 10.1002/prca.201700090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/28/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. EXPERIMENTAL DESIGN Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. RESULTS In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. CONCLUSION AND CLINICAL RELEVANCE Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication.
Collapse
Affiliation(s)
- Li‐Bo Yan
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - You‐Jia Yu
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Qing‐Bo Zhang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Xiao‐Qiong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - Lang Bai
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - FeiJun Huang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Hong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| |
Collapse
|
33
|
Maegawa S, Chinen Y, Shimura Y, Tanba K, Takimoto T, Mizuno Y, Matsumura-Kimoto Y, Kuwahara-Ota S, Tsukamoto T, Kobayashi T, Horiike S, Taniwaki M, Kuroda J. Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol 2018; 59:72-81.e2. [DOI: 10.1016/j.exphem.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
|