1
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
2
|
Song JH, Mun SH, Yang H, Kwon YS, Kim SR, Song MY, Ham Y, Choi HJ, Baek WJ, Cho S, Ko HJ. Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway. Viruses 2023; 16:16. [PMID: 38275951 PMCID: PMC10821076 DOI: 10.3390/v16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Heejung Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Seong-Ryeol Kim
- Division of Acute Viral Diseases, Centers for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Min-young Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Won-Jin Baek
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Ren H, Zhang Y, Duan H. Recent advances in the management of postmenopausal women with non-atypical endometrial hyperplasia. Climacteric 2023; 26:411-418. [PMID: 37577792 DOI: 10.1080/13697137.2023.2226316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/30/2023] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
Non-atypical endometrial hyperplasia is a benign disease without significant somatic genetic changes. Postmenopausal women with non-atypical endometrial hyperplasia have a significant risk of progression to endometrial cancer and persistent endometrial hyperplasia. Most cases of atypical endometrial hyperplasia in postmenopausal women are treated surgically, including hysterectomy. At present, the treatment of postmenopausal women with non-atypical endometrial hyperplasia is still controversial. Correct and timely diagnosis and treatment are of great significance to prevent progression of the lesion. This study mainly provides an updated synthesis of the literature that investigates the etiology, diagnosis and treatment of postmenopausal women with non-atypical endometrial hyperplasia. As of December 2022, a literature search related to postmenopausal non-atypical endometrial hyperplasia was conducted on the PubMed database. For most postmenopausal patients with non-atypical endometrial hyperplasia, regular re-examination should be performed during conservative treatment. For postmenopausal patients with endometrial cancer risk factors, persistent non-atypical endometrial hyperplasia or progesterone contraindications, hysterectomy and bilateral salpingo-oophorectomy should be the first choice.
Collapse
Affiliation(s)
- H Ren
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Y Zhang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - H Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Cai MT, Zhou Y, Ding WL, Huang YH, Ren YS, Yang ZY, Zhang L, Sun F, Guo HB, Zhou LY, Gong ZH, Piao XH, Wang SM, Ge YW. Identification and localization of morphological feature-specific metabolites in Reynoutria multiflora roots. PHYTOCHEMISTRY 2023; 206:113527. [PMID: 36460140 DOI: 10.1016/j.phytochem.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Reynoutria multiflora roots are a classical herbal medicine with unique nourishing therapeutic effects. Anomalous vascular bundle (AVB) forming "cloudy brocade patterns" is a typical morphological feature of R. multiflora roots and has been empirically linked to its quality classification. However, scientific evidence, especially for AVB-specific specialised metabolites, has not been comprehensively revealed thus far. Herein, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) analysis was applied to carry out an in situ analysis of specialised metabolites distributed specifically at the AVB and cork of R. multiflora roots. To enlarge the scope of compounds by DESI detection, various solvent systems including acetone, acetonitrile, methanol, and water were used to assist in the discoveries of 40 specialised metabolites with determined localization. A series of bioactive constituents including stilbenes, flavonoids, anthraquinones, alkaloids, and naphthalenes were found specifically around the brocade patterns. Notably, phospholipids were detected from R. multiflora roots by in situ analysis for the first time and were found mainly in the phloem of AVB (PAB). This is the first study to use gradient solvent systems in DESI-MSI analysis to locate the specialised metabolites distribution. The discovery of feature-specific compounds will bridge the empirical identification to precision quality control of R. multiflora roots.
Collapse
Affiliation(s)
- Meng-Ting Cai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Luan Ding
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Hong Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hai-Biao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Liang-Yun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co. Ltd., Shanghai, 200120, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Gu L, Cai N, Li M, Bi D, Yao L, Fang W, Wu Y, Hu Z, Liu Q, Lin Z, Lu J, Xu X. Inhibitory Effects of Macelignan on Tau Phosphorylation and Aβ Aggregation in the Cell Model of Alzheimer's Disease. Front Nutr 2022; 9:892558. [PMID: 35662922 PMCID: PMC9159362 DOI: 10.3389/fnut.2022.892558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder mainly affecting old population. In this study, two Tau overexpressing cell lines (SH-SY5Y/Tau and HEK293/Tau), N2a/SweAPP cell line, and 3× Transgene (APPswe/PS1M146V/TauP301L) mouse primary nerve cell lines were used as AD models to study the activity and molecular mechanism of macelignan, a natural compound extracted from Myristica fragrans, against AD. Our study showed that macelignan could reduce the phosphorylation of Tau at Thr 231 site, Ser 396 site, and Ser 404 site in two overexpressing Tau cell lines. It also could decrease the phosphorylation of Tau at Ser 404 site in mouse primary neural cells. Further investigation of its mechanism found that macelignan could reduce the phosphorylation of Tau by increasing the level of autophagy and enhancing PP2A activity in Tau overexpressing cells. Additionally, macelignan could activate the PERK/eIF2α signaling pathway to reduce BACE1 translation, which further inhibits the cleavage of APP and ultimately suppresses Aβ deposition in N2a/SweAPP cells. Taken together, our results indicate that macelignan has the potential to be developed as a treatment for AD.
Collapse
Affiliation(s)
- Liang Gu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Nan Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weishan Fang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand
- *Correspondence: Jun Lu
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Xu Xu
| |
Collapse
|
6
|
A Traditional Chinese Medicine for the Treatment of Endometrial Hyperplasia via Regulating the HPO Axis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5200608. [PMID: 35154346 PMCID: PMC8828340 DOI: 10.1155/2022/5200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Dysfunctional uterine bleeding, accompanied by endometrial hyperplasia (EH), is a common gynecological disease that seriously affects female physical and mental health. Some drugs have been prompted to cure the disease, but most medications have certain side effects and limitations. In the present study, we demonstrated an unexploited Chinese traditional medicine, a combination of Saururus chinensis, Celosia cristata, and Spatholobus suberectus (SCS), which could be used for the treatment of EH and associated complications in rats. We identified the active components from the three Chinese herbs via thin-layer chromatography and high-performance liquid chromatography methods. In addition, serum biochemical indexes and histologic section results found that acute high-dose SCS exerted no adverse impacts on the rats. We then showed that SCS shortened coagulation time (p=0.018) and degree of swelling (p=0.021) on rats at 30 min compared to blank control. Further studies proved that recovered endometrial thickness was associated with the modulation of four hormones (follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone). Specifically, follicle-stimulating hormone and progesterone contents increased gradually with time, and estrogen was decreased, whereas luteinizing hormone content was returned to normal after a short-term elevation (p < 0.05). Besides, SCS increased uterine endometrium's mRNA expression levels of matrix metalloproteinase-1 (p < 0.001) and tissue inhibitor of matrix metalloproteinase-1 (p < 0.001), promoting the repair of proliferating endometrium in the rats. Collectively, our study indicates that SCS harbors a profoundly curative effect on the treatment of EH and relative complications and uncovers the mechanism at molecular and gene expression levels.
Collapse
|
7
|
He L, Guo C, Peng C, Li Y. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 2021; 910:174447. [PMID: 34461126 DOI: 10.1016/j.ejphar.2021.174447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Cholestasis is a common manifestation of obstruction of bile flow in various liver diseases. If the bile acid accumulation is not treated in time, it will further lead to hepatocyte damage, liver fibrosis and ultimately to cirrhosis, which seriously affects human life. The pathogenesis of cholestatic liver injury is very complicated, mainly including oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor responsible for upregulating expression of various genes with cytoprotective functions. Nrf2 activation has been proved to inhibit oxidative stress and inflammatory reaction, modulate bile acid homeostasis, and alleviate fibrosis during cholestasis. Therefore, Nrf2 emerges as a potential therapeutic target for cholestatic liver injury. In recent years, natural products with various biological activities including anti-inflammatory, anti-oxidant, anti-tumor and anti-fibrotic effects have received growing attention for being hepatoprotective agents. Natural products like asiatic acid, diosmin, rutin, and so forth have shown significant potential in activating Nrf2 pathway which can lead to attenuate cholestatic liver injury. Therefore, this paper emphasizes the effect of Nrf2 signaling pathway on alleviating cholestasis, and summarizes recent evidence about natural Nrf2 activators with hepatoprotective effect in various models of cholestatic liver injury, thus providing theoretical reference for the development of anti-cholestatic drug.
Collapse
Affiliation(s)
- Linfeng He
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Chaocheng Guo
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Cheng Peng
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Yunxia Li
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.
| |
Collapse
|
8
|
Zhang J, Rho Y, Kim MY, Cho JY. TAK1 in the AP-1 pathway is a critical target of Saururus chinensis (Lour.) Baill in its anti-inflammatory action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114400. [PMID: 34245837 DOI: 10.1016/j.jep.2021.114400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saururus chinensis (Lour.) Baill (Saururaceae), also known as Asian lizard's tail, is a plant commonly found in East Asia. Its leaves have been used in traditional medicine to treat many diseases such as edema, pneumonia, hypertension, leproma, jaundice, gonorrhea, and rheumatoid arthritis. AIM OF THE STUDY Based on the efficacies of S. chinensis, the anti-inflammatory effects of this plant and the molecular mechanism were evaluated using the ethanol extract of S. chinensis leaves (Sc-EE). MATERIALS AND METHODS The production of pro-inflammatory mediators and cytokines in response to Sc-EE was evaluated using Griess and semi-quantitative reverse transcription-polymerase chain reactions. Furthermore, relevant proteins including c-Jun, c-Fos, p38, JNK, ERK, MEK1/2, MKK3/6, MKK4/7, and TAK1 were detected through immunoblotting. RESULTS Sc-EE diminished production of nitric oxide (NO); decreased expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, inducible NO synthase (iNOS), and IL-1β in LPS-stimulated RAW264.7 cells; and attenuated activator protein 1 (AP-1)-mediated luciferase activities. The extract markedly downregulated the phosphorylation of TAK1, upregulated thermal stability of TAK1, and reduced TAK1/AP-1-mediated luciferase activity in LPS-treated RAW264.7 cells and TAK1-overexpressing HEK293T cells. CONCLUSIONS These results demonstrated that Sc-EE suppresses pro-inflammatory gene expression through blockade of the TAK1/AP-1 pathway in LPS-treated RAW264.7 macrophages, implying that inhibition of TAK1/AP-1 signaling by S. chinensis is a key event in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yangkook Rho
- Development Center, Dadang and Bio Co., Suwon, 16679, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Chen H, Luo Y, Liu J, Chen J, Chen Y, Li X. Comparative pharmacokinetic study of six lignans in normal and diabetic rats after oral administration of Saururus chinensis extract by LC-MS/MS. Biomed Chromatogr 2021; 36:e5253. [PMID: 34596250 DOI: 10.1002/bmc.5253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Saururus chinensis (SC) possesses significant anti-diabetic activity and lignans were its major bioactive compounds. In this study, a rapid and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for simultaneous quantification of six lignans, namely (-)-(7R,8R)-machilin D (1), verrucesin (2), rel-(7S,8S,7'R,8'R)-3,3',4,4',5,5'-hexamethoxy-7.O.7',8.8'-lignan (3), manassantin A (4), manassantin B (5), and saucerneol F (6) in rat's plasma. It was validated with acceptable linearity (r ≥ 0.9922), accuracy (80.42-95.17%), precision (RSD ≤ 12.08%), and extraction recovery (80.36-93.45%). The method was successfully applied to the comparative pharmacokinetic study of the six lignans in normal and diabetic rats after oral administration of SC extract. Results showed that the areas under the plasma concentration-time curve (AUC0 → t and AUC0 → ∞ ) of (-)-(7R,8R)-machilin D, rel-(7S,8S,7'R,8'R)-3,3',4,4',5,5'-hexamethoxy-7.O.7',8.8'-lignan, manassantin B, and saucerneol F in diabetic rats were significantly increased, and the plasma clearance (CL) of (-)-(7R,8R)-machilin D in diabetic rats was significantly decreased. However, the AUC0 → t and AUC0 → ∞ of verrucesin were significantly decreased, and its CL was significantly increased in diabetic rats compared with those in normal rats. These results indicated that there were remarkable differences in the pharmacokinetic parameters between the normal and diabetic rats. The pharmacokinetic studies might be beneficial for the clinical use of SC as hypoglycemic agent.
Collapse
Affiliation(s)
- Hongjiang Chen
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, People's Republic of China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yiyuan Luo
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, People's Republic of China
| | - Jianan Liu
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, People's Republic of China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yong Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Cai J, Qiong G, Li C, Sun L, Luo Y, Yuan S, Gonzalez FJ, Xu J. Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB J 2021; 35:e21496. [PMID: 33904622 PMCID: PMC9813681 DOI: 10.1096/fj.202002126rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023]
Abstract
Saururus chinensis (S chinensis) has been used as an herb to treat edema, jaundice, and gonorrhea. Manassantin B (MNSB), a dineolignan isolated from S chinensis, was identified as a potent adipogenesis/lipogenesis inhibitor (IC50 = 9.3 nM). To explore the underlying mechanism, both adipogenesis and lipogenesis were measured in differentiated 3T3-L1 preadipocytes, murine primary preadipocytes and adipose tissue explants upon MNSB treatment. Key regulators of adipogenesis/lipogenesis were downregulated by MNSB treatment, mainly resulting from increased phosphorylation of AMPK which was identified as a vital regulator of adipogenesis and lipogenesis. Moreover, MNSB did not increase AMPK phosphorylation in 3T3-L1 cells transfected with Prkaa1 (encoding protein kinase AMP-activated catalytic subunit alpha 1) siRNA or adipose tissue explants isolated from adipose-specific Prkaa1-disrupted mice (Prkaa1Δad ). In diet-induced obese C57BL/6N mice, MNSB displayed preventive and therapeutic effects on obesity accompanied by decreased adipocyte size. MNSB was also found to increase AMPK phosphorylation both in subcutaneous white adipose tissue and brown adipose tissue in vivo. These findings suggest that MNSB can be a new therapeutic agent for the prevention and treatment of obesity and other related metabolic disorders.
Collapse
Affiliation(s)
- Jie Cai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China,Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gu Qiong
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chanjuan Li
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Ha MT, Vu NK, Tran TH, Kim JA, Woo MH, Min BS. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: an updated review. Arch Pharm Res 2020; 43:1067-1092. [DOI: 10.1007/s12272-020-01285-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
|
12
|
Inhibitory Effects of Chemical Constituents from Actinidia kolomikta on LPS-Induced Inflammatory Responses. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43450-020-00004-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Zhen X, Choi HS, Kim JH, Kim SL, Liu R, Yun BS, Lee DS. Machilin D, a Lignin Derived from Saururus chinensis, Suppresses Breast Cancer Stem Cells and Inhibits NF-κB Signaling. Biomolecules 2020; 10:biom10020245. [PMID: 32033472 PMCID: PMC7072518 DOI: 10.3390/biom10020245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells are responsible for breast cancer initiation, metastasis, and relapse. Targeting breast cancer stem cells (BCSCs) using phytochemicals is a good strategy for the treatment of cancer. A silica gel, a reversed-phase C18 column (ODS), a Sephadex LH-20 gel, thin layer chromatography, and high-performance liquid chromatography (HPLC) were used for compound isolation from Saururus chinensis extracts. The isolated compound was identified as machilin D by mass spectrometry and nuclear magnetic resonance (NMR). Machilin D inhibited the growth and mammosphere formation of breast cancer cells and inhibited tumor growth in a xenograft mouse model. Machilin D reduced the proportions of CD44+/CD24- and aldehyde dehydrogenase 1 (ALDH1)-positive cells. Furthermore, this compound reduced the nuclear localization of the NF-κB protein and decreased the IL-6 and IL-8 secretion in mammospheres. These results suggest that machilin D blocks IL-6 and IL-8 signaling and induces CSC death and thus may be a potential agent targeting BCSCs.
Collapse
Affiliation(s)
- Xing Zhen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (J.-H.K.); (S.-L.K.); (R.L.)
| | - Hack Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
| | - Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (J.-H.K.); (S.-L.K.); (R.L.)
| | - Su-Lim Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (J.-H.K.); (S.-L.K.); (R.L.)
| | - Ren Liu
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (J.-H.K.); (S.-L.K.); (R.L.)
| | - Bong-Sik Yun
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Korea;
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (J.-H.K.); (S.-L.K.); (R.L.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Correspondence:
| |
Collapse
|