1
|
Peng YC, He ZJ, Yin LC, Pi HF, Jiang Y, Li KY, Tian L, Xie J, Zhang JB, Li CY, Feng GY, Wang K, Zhou DZ, Xie XW, Zhang ZY, Fan TF. Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156337. [PMID: 39729782 DOI: 10.1016/j.phymed.2024.156337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC. PURPOSE This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action. METHODS An FDA-approved drug library and an MCE autophagy-related molecular compound library were screened through high-throughput screening to identify an effective natural compound against OSCC. The IC50 value of sanguinarine (Sang) in OSCC cells was determined using a CCK8 assay. Immunoblotting and immunofluorescence staining were used to assess the effect of Sang on autophagic flux in OSCC cells. Changes in the acidic lysosomal environment were evaluated using RFP-GFP-LC3B and LysoSensor Green DND-189. Furthermore, limited proteolysis-coupled mass spectrometry (LiP-MS) and virtual screening techniques were utilized to identify direct binding targets of Sang, which were subsequently validated by surface plasmon resonance (SPR) and microscale thermophoresis (MST). Molecular docking combined with molecular dynamics analysis identified the binding site between the target protein and Sang. In vitro and in vivo investigations with mutant plasmids confirmed this finding. RESULTS Screening led to the identification of the naturally occurring autophagy modulator Sang as a potent inhibitor of OSCC progression. Moreover, Sang impaired lysosomal function through reducing lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis, and altering the lysosomal pH. These effects contributed to defects in autophagic clearance and subsequently suppressed OSCC progression. Notably, Sang bound the phenylalanine 26 (F26) residue in pyruvate kinase M2 (PKM2) and inhibited PKM2 enzymatic activity, subsequently suppressing transcription factor EB (TFEB) expression to inhibit lysosomal function and blocking autophagic flux in OSCC cells. CONCLUSION Our results demonstrate for the first time that Sang can suppress the PKM2/TFEB axis, and influence lysosomal function, thereby blocking autophagy and inhibiting the progression of OSCC, making it a promising therapeutic option for the treatment of OSCC.
Collapse
Affiliation(s)
- Yong-Chun Peng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhi-Jing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lun-Cai Yin
- Department of Oncology, Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| | - Hui-Feng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ke-Yan Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Jian-Bo Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen-Yao Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Guan-Ying Feng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ding-Zhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, China
| | - Xiao-Wei Xie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhi-Yuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China; Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan 571700, China.
| | - Teng-Fei Fan
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
2
|
Fan CW, Luo L, Li MS, Gu YQ, Fang YL, Qin F, Wang HS. Sesquilignans PD from Zanthoxylum nitidum var. tomentosum exerts antitumor effects via the ROS/MAPK pathway in liver cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1530-1542. [PMID: 38958633 DOI: 10.1080/10286020.2024.2371032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Yi-Lin Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Yang X, Miao X, Dai L, Guo X, Jenis J, Zhang J, Shang X. Isolation, biological activity, and synthesis of isoquinoline alkaloids. Nat Prod Rep 2024; 41:1652-1722. [PMID: 39355982 DOI: 10.1039/d4np00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Covering: 2019 to 2023Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide. To follow up on our prior review (covering 2014-2018) and present the progress of this class of compounds, this review summarizes and provides updated literature on novel isoquinoline alkaloids isolated during the period of 2019-2023, together with their biological activity and underlying mechanisms of action. Moreover, with the rapid development of synthetic modification strategies, the synthesis strategies of isoquinoline alkaloids have been continuously optimized, and the total synthesis of these classes of natural products is reviewed critically herein. Over 250 molecules with a broad range of bioactivities, including antitumor, antibacterial, cardioprotective, anti-inflammatory, neuroprotective and other activities, are isolated and discussed. The total synthesis of more than nine classes of isoquinoline alkaloids is presented, and thirteen compounds constitute the first total synthesis. This survey provides new indications or possibilities for the discovery of new drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaolou Miao
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Lixia Dai
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaofei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| |
Collapse
|
4
|
Li L, Fu S, Wang J, Lu J, Tao Y, Zhao L, Fu B, Lu L, Xiang C, Sun X, Liu S, Wang D, Wang Z. SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux. Biochem Pharmacol 2024; 222:116111. [PMID: 38458329 DOI: 10.1016/j.bcp.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.
Collapse
Affiliation(s)
- Lanlan Li
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Shengjun Fu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Jianliang Wang
- Department of Pharmacy, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730035, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Yan Tao
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Liangtao Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Caifei Xiang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xince Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shanhui Liu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| |
Collapse
|
5
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
6
|
Wang H, Ye J, Peng Y, Ma W, Chen H, Sun H, Feng Z, He W, Li G, Chu S, Zhang Z, Chen N. CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction. Autophagy 2024; 20:590-613. [PMID: 37908119 PMCID: PMC10936627 DOI: 10.1080/15548627.2023.2276639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Although microglial activation is induced by an increase in chemokines, the role of mitophagy in this process remains unclear. This study aimed to elucidate the role of microglial mitophagy in CKLF/CKLF1 (chemokine-like factor 1)-induced microglial activation and neuroinflammation, as well as the underlying molecular mechanisms following CKLF treatment. This study determined that CKLF, an inducible chemokine in the brain, leads to an increase in mitophagy markers, such as DNM1L, PINK1 (PTEN induced putative kinase 1), PRKN, and OPTN, along with a simultaneous increase in autophagosome formation, as evidenced by elevated levels of BECN1 and MAP1LC3B (microtubule-associated protein 1 light chain 3 beta)-II. However, SQSTM1, a substrate of autophagy, was also accumulated by CKLF treatment, suggesting that mitophagy flux was reduced and mitophagosomes accumulated. These findings were confirmed by transmission electron microscopy and confocal microscopy. The defective mitophagy observed in our study was caused by impaired lysosomal function, including mitophagosome-lysosome fusion, lysosome generation, and acidification, resulting in the accumulation of damaged mitochondria in microglial cells. Further analysis revealed that pharmacological blocking or gene-silencing of mitophagy inhibited CKLF-mediated microglial activation, as evidenced by the expression of the microglial marker AIF1 (allograft inflammatory factor 1) and the mRNA of proinflammatory cytokines (Tnf and Il6). Ultimately, defective mitophagy induced by CKLF results in microglial activation, as observed in the brains of adult mice. In summary, CKLF induces defective mitophagy, microglial activation, and inflammation, providing a potential approach for treating neuroinflammatory diseases.Abbreviation: 3-MA: 3-methyladenine; AIF1: allograft inflammatory factor 1; ANOVA: analysis of variance; BAF: bafilomycin A1; BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CKLF/CKLF1: chemokine-like factor 1; CNS: central nervous system; DMEM: Dulbecco's Modified Eagle Medium; DNM1L: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; IRF3: interferon regulatory factor 3; IgG: immunoglobulin G; LAMP1: lysosomal-associated membrane protein 1; LAPTM4A: lysosomal-associated protein transmembrane 4A; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; mRFP: monomeric red fluorescent protein; mtDNA: mitochondrial DNA; MTORC1: mechanistic target of rapamycin kinase complex 1; OPTN: optineurin; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PINK1: PTEN induced putative kinase 1; PLL: poly-L-lysine; PRKN: parkin RBR E3 ubiquitin protein ligase; qPCR: quantitative polymerase chain reaction; ROS: reactive oxygen species; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; VDAC: voltage-dependent anion channel.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junrui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wenyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haodong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongshuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhongping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wenbin He
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Shanxi, Taiyuan, China
| | - Gang Li
- Graduate school, Inner Mongolian Medical University, Hohhot, Inner Mongolia, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
8
|
Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY, Xia YZ. Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 2023; 180:3175-3193. [PMID: 37501645 DOI: 10.1111/bph.16202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteosarcoma, a primary malignant bone tumour prevalent among adolescents and young adults, remains a considerable challenge despite protracted progress made in enhancing patient survival rates over the last 40 years. Consequently, the development of novel therapeutic approaches for osteosarcoma is imperative. Sanguinarine (SNG), a compound with demonstrated potent anticancer properties against various malignancies, presents a promising avenue for exploration. Nevertheless, the intricate molecular mechanisms underpinning SNG's actions in osteosarcoma remain elusive, necessitating further elucidation. EXPERIMENTAL APPROACH Single-stranded DNA-binding protein 1 (SSBP1) was screened out by differential proteomic analysis. Apoptosis, cell cycle, reactive oxygen species (ROS) and mitochondrial changes were assessed via flow cytometry. Western blotting and quantitative real-time reverse transcription PCR (qRT-PCR) were used to determine protein and gene levels. The antitumour mechanism of SNG was explored at a molecular level using chromatin immunoprecipitation (ChIP) and dual luciferase reporter plasmids. KEY RESULTS Our investigation revealed that SNG exerted an up-regulated effect on SSBP1, disrupting mitochondrial function and inducing apoptosis. In-depth analysis uncovered a mechanism whereby SNG hindered the JAK/signal transducer and activator of transcription 3 (STAT3) signalling pathway, relieved the inhibitory effect of STAT3 on SSBP1 transcription, and inhibited the downstream PI3K/Akt/mTOR signalling axis, ultimately activating apoptosis. CONCLUSIONS AND IMPLICATIONS The study delved further into elucidating the anticancer mechanism of SNG in osteosarcoma. Notably, we unravelled the previously undisclosed apoptotic potential of SSBP1 in osteosarcoma cells. This finding holds substantial promise in advancing the development of novel anticancer drugs and identification of therapeutic targets.
Collapse
Affiliation(s)
- Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Lin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Fan JY, Liu J, Zhang WQ, Lin T, Hu XR, Zhou FL, Tang L, He YC, Shi HJ. Anti-Nasopharyngeal carcinoma mechanism of sanguinarine based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e36477. [PMID: 38050231 PMCID: PMC10695581 DOI: 10.1097/md.0000000000036477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the mechanism of sanguinarine (SAN) against nasopharyngeal carcinoma (NPC) by means of network pharmacology, molecular docking technique, and experimental verification. METHODS The SAN action targets were predicted using the Swiss Target Prediction database, the related NPC targets were determined using the GEO database, and the intersection of drug and disease pathway targets were considered to be the potential targets of SAN against NPC. The target-protein interaction network map was constructed using the STRING database, and the core target genes of SAN against NPC were obtained via topological network analysis. "R" language gene ontology (GO) function and Kyoto encyclopedia of genes and genome (KEGG) pathway enrichment analyses were used to dock the core target genes with SAN with the help of AutodockVina. Cell proliferation was detected using MTT and xCELLigence real-time cell analysis. Apoptosis was identified via Hoechst 33342 staining, JC-1 mitochondrial membrane staining, and annexin V-FITC/PI double fluorescence staining, while protein expression was quantified using western blotting. RESULTS A total of 95 SAN against NPC targets were obtained using target intersection, and 8 core targets were obtained by topological analysis and included EGFR, TP53, F2, FN1, PLAU, MMP9, SERPINE1, and CDK1. Gene ontology enrichment analysis identified 530 items, and 42 items were obtained by Kyoto encyclopedia of genes and genome pathway enrichment analysis and were mainly related to the PI3K/AKT, MAPK, and p53 signaling pathways. Molecular docking results showed that SAN had good binding activity to the core target. SAN inhibited the proliferation of NPC cells, induced apoptosis, reduced the expression levels of survivin and Bcl2, and increased the expression levels of Bax and cleaved caspase-8. It also decreased the expression levels of the key proteins p-c-Raf, p-MEK, and p-ERK1/2 in the MAPK/ERK signaling pathway in NPC cells. CONCLUSION SAN inhibits the proliferation and induces the apoptosis of NPC cells through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jing-Ying Fan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Liu
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Ting Lin
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xi-Ran Hu
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Fang-Liang Zhou
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Le Tang
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Ying-Chun He
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Jian Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
11
|
Conway JW, Braden J, Lo SN, Scolyer RA, Carlino MS, Menzies AM, Long GV, da Silva IP. VEGF Inhibitors Improve Survival Outcomes in Patients with Liver Metastases across Cancer Types-A Meta-Analysis. Cancers (Basel) 2023; 15:5012. [PMID: 37894379 PMCID: PMC10605052 DOI: 10.3390/cancers15205012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liver metastases are associated with poor prognosis across cancers. Novel treatment strategies to treat patients with liver metastases are needed. This meta-analysis aimed to assess the efficacy of vascular endothelial growth factor inhibitors in patients with liver metastases across cancers. METHODS A systematic search of PubMed, Cochrane CENTRAL, and Embase was performed between January 2000 and April 2023. Randomized controlled trials of patients with liver metastases comparing standard of care (systemic therapy or best supportive care) with or without vascular endothelial growth factor inhibitors were included in the study. Outcomes reported included progression-free survival and overall survival. RESULTS A total of 4445 patients with liver metastases from 25 randomized controlled trials were included in this analysis. The addition of vascular endothelial growth factor inhibitors to standard systemic therapy or best supportive care was associated with superior progression-free survival (HR = 0.49; 95% CI, 0.40-0.61) and overall survival (HR = 0.83; 95% CI, 0.74-0.93) in patients with liver metastases. In a subgroup analysis of patients with versus patients without liver metastases, the benefit with vascular endothelial growth factor inhibitors was more pronounced in the group with liver metastases (HR = 0.44) versus without (HR = 0.57) for progression-free survival, but not for overall survival. CONCLUSION The addition of vascular endothelial growth factor inhibitors to standard management improved survival outcomes in patients with liver metastasis across cancers.
Collapse
Affiliation(s)
- Jordan W. Conway
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jorja Braden
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- NSW Health Pathology, Sydney, NSW 2099, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2148, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Mater Hospital, Sydney, NSW 2060, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Mater Hospital, Sydney, NSW 2060, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2148, Australia
| |
Collapse
|
12
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
13
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Xing L, Tang Y, Li L, Tao X. ROS in hepatocellular carcinoma: What we know. Arch Biochem Biophys 2023:109699. [PMID: 37499994 DOI: 10.1016/j.abb.2023.109699] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hepatocellular carcinoma (HCC), which is a primary liver cancer subtype, has a poor prognosis due to its high degree of malignancy. The lack of early diagnosis makes systemic therapy the only hope for HCC patients with advanced disease; however, resistance to drugs is a major obstacle. In recent years, targeted molecular therapy has gained popularity as a potential treatment for HCC. An increase in reactive oxygen species (ROS), which are cancer markers and a potential target for HCC therapy, can both promote and inhibit the disease. At present, many studies have examined targeted regulation of ROS in the treatment of HCC. Here, we reviewed the latest drugs that are still in the experimental stage, including nanocarrier drugs, exosome drugs, antibody drugs, aptamer drugs and polysaccharide drugs, to provide new hope for the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuting Tang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
15
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
16
|
Kwak AW, Lee JY, Lee SO, Seo JH, Park JW, Choi YH, Cho SS, Yoon G, Lee MH, Shim JH. Echinatin induces reactive oxygen species-mediated apoptosis via JNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother Res 2023; 37:563-577. [PMID: 36184899 DOI: 10.1002/ptr.7634] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Colorectal cancer (CRC) is a very common and deadly cancer worldwide, and oxaliplatin is used as first-line chemotherapy. However, resistance usually develops, limiting treatment. Echinatin (Ech) is the main component of licorice and exhibits various therapeutic effects on inflammation-mediated diseases and cancer, ischemia/reperfusion, and liver injuries. The present study elucidated the underlying molecular mechanism of Ech-induced apoptosis in both oxaliplatin-sensitive (HT116 and HT29) and -resistant (HCT116-OxR and HT29-OxR) CRC cells. To evaluate the antiproliferative activities of Ech, we performed MTT and soft agar assays. Ech reduced viability, colony size, and numbers of CRC cells. The underlying molecular mechanisms were explored by various flow cytometry analyses. Ech-induced annexin-V stained cells, reactive oxygen species (ROS) generation, cell cycle arrest, JNK/p38 MAPK activation, endoplasmic reticulum (ER) stress, mitochondrial membrane potential depolarization, and multi-caspase activity. In addition apoptosis-, cell cycle-, and ER stress-related protein levels were confirmed by western blotting. Moreover, we verified ROS-mediated cell death by treatment with inhibitors such as N-acetyl-L-cysteine, SP600125, and SB203580. Taken together, Ech exhibits anticancer activity in oxaliplatin-sensitive and -resistant CRCs by inducing ROS-mediated apoptosis through the JNK/p38 MAPK signaling pathway. This is the first study to show that Ech has the potential to treat drug-resistant CRC, providing new directions for therapeutic strategies targeting drug-resistant CRC.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
17
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
18
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
19
|
Zhou X, Wang X, Sun Q, Zhang W, Liu C, Ma W, Sun C. Natural compounds: A new perspective on targeting polarization and infiltration of tumor-associated macrophages in lung cancer. Biomed Pharmacother 2022; 151:113096. [PMID: 35567987 DOI: 10.1016/j.biopha.2022.113096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
With the development in tumor immunology, people are gradually understanding the complexity and diversity of the tumor microenvironment immune status and its important effect on tumors. Tumor-associated macrophages (TAMs), an important part of the tumor immune microenvironment, have a double effect on tumor growth and metastasis. Many studies have focused on lung cancer, especially non-small cell lung cancer and other "hot tumors" with typical inflammatory characteristics. The polarization and infiltration of TAMs is an important mechanism in the occurrence and development of malignant tumors, such as lung cancer, and in the tumor immune microenvironment. Therapeutic drugs designed for these reasons are key to targeting TAMs in the treatment of lung cancer. A large number of reports have suggested that natural compounds have a strong potential of affecting immunity by targeting the polarization and infiltration of TAMs to improve the immune microenvironment of lung cancer and exert a natural antitumor effect. This paper discusses the infiltration and polarization effects of natural compounds on lung cancer TAMs, provides a detailed classification and systematic review of natural compounds, and summarizes the bias of different kinds of natural compounds by affecting their antitumor mechanism of TAMs, with the aim of providing new perspectives and potential therapeutic drugs for targeted macrophages in the treatment of lung cancer.
Collapse
Affiliation(s)
- Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
20
|
Zhang J, Tong Y, Lu X, Dong F, Ma X, Yin S, He Y, Liu Y, Liu Q, Fan D. A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma. Life Sci 2022; 304:120698. [PMID: 35690105 DOI: 10.1016/j.lfs.2022.120698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yangliu Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xun Lu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Fangming Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Shiyu Yin
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Ying He
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Yonghong Liu
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
21
|
Shi Y, Zhong L, Chen K, Fan Y, Xie K, Zhang J, Dai J, Hu Y. Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 125:190-199. [PMID: 35569777 DOI: 10.1016/j.fsi.2022.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 μg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 μg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 μg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-β1 mRNA expression, downregulated il-1β, il-6, il-8, and il-12β mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 μg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 μg/kg SAN addition is better than 375 μg/kg.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kaijian Chen
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Kai Xie
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
22
|
Gu J, Zhao L, Chen YZ, Guo YX, Sun Y, Guo Q, Duan GX, Li C, Tang ZB, Zhang ZX, Qin LQ, Xu JY. Preventive effect of sanguinarine on intestinal injury in mice exposed to whole abdominal irradiation. Biomed Pharmacother 2021; 146:112496. [PMID: 34959117 DOI: 10.1016/j.biopha.2021.112496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal injury is one of the major side effects that are induced by medical radiation exposure, and has limited effective therapies. In this study, we investigated the beneficial effects of sanguinarine (SAN) on intestinal injury induced by ionizing radiation (IR) both in vitro and in vivo. Mice were exposed to whole abdominal irradiation (WAI) to mimic clinical scenarios. SAN was injected intraperitoneally to mitigate IR-induced injury. Histological examination was performed to assess the tissue injuries of the spleen and small intestine. A small intestinal epithelial cell line-6 (IEC-6) was analyzed for its viability and apoptosis in vitro under different treatments. Inflammation-related pathways and serum inflammatory cytokines were detected via Western blot analysis and ELISA, respectively. High-throughput sequencing was used to characterize the gut microbiota profile. High-performance liquid chromatography was performed to assess short-chain fatty acid contents in the colon. In vitro, SAN pretreatment protected cell viability and reduced apoptosis in IEC-6 cells. In vivo, SAN pretreatment protected immune organs, alleviated intestinal injury, and promoted intestinal recovery. SAN also reduced the levels of inflammatory cytokines, suppressed high mobility group box 1 (HMGB1)/ Toll-like receptor 4 (TLR4) pathway activation, and modulated gut microbiota composition. Our findings demonstrate that the beneficial properties of SAN alleviated intestinal radiation injury. Thus, SAN represents a therapeutic option for protecting against IR-induced intestinal injury in preclinical settings.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yu-Zhong Chen
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Yue Sun
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Xin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhi-Bing Tang
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zi-Xiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China.
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|