1
|
Anh DV, Anh DH, Vien LT, Huong PTM, Cuong NX, Ngan NTT, Tung NN, Quang TH. An Oxazole Alkaloid, Terpenoids, and Cyclodipeptides With Cytotoxic and Nitric Oxide Inhibitory Effects From a Mangrove-Derived Fungus Trichoderma sp. GXT-22.1. Chem Biodivers 2025; 22:e202402986. [PMID: 39671217 DOI: 10.1002/cbdv.202402986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
Chemical investigation of the mangrove-derived fungus Trichoderma sp. GXT-22.1 led to the isolation and identification of 10 secondary metabolites, including one new compound, 5'-(4-methoxyphenyl)-1',3'-oxazole (1), one new natural compound, (E)-6,10-dimethyl-5-undecene-2,9,10-triol (2), along with eight known compounds, tricholumin A (3), harzianol J (4), cyclonerodiol (5), 10,11-dihydro-11-hydroxycyclonerodiol (6), cyclonerodiol B (7), epicyclonerodiol oxide (8), cyclo(Val-Pro) (9), and cyclo-(4-hydroxyprolinyl-leucine) (10). The structural feature of oxazole in 1 was unusually found among the fungal metabolites. Compounds 1 and 4 exhibited weak cytotoxicity toward HepG2 and MCF-7 human carcinoma cell lines at the concentration of 100 µM, with induction of 41.5 ± 3.0% and 39.3 ± 2.3% cell death, respectively. Compounds 1-5, 8, and 10 showed their inhibitory effect against nitric oxide (NO) overproduction in lipopolysaccharide-stimulated RAW264.7 cells, with half inhibition concentration values ranging from 37.5 ± 2.6 to 86.5 ± 5.1 µM. Molecular docking simulation suggested that 1 inhibits NO overproduction via modulating the action of the inducible NO synthase protein.
Collapse
Affiliation(s)
- Dang Viet Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Hoang Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Le Thi Vien
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Thi Mai Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Xuan Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Ngoc Tung
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Anh NM, Minh LTH, Linh NT, Dao PT, Quynh DT, Huong DTM, Van Cuong P, Huyen VTT, Dat TTH. Secondary metabolites from marine fungus Penicillium chrysogenum VH17 and their antimicrobial and cytotoxic potential. Biosci Biotechnol Biochem 2024; 88:1254-1260. [PMID: 39152047 DOI: 10.1093/bbb/zbae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
One new compound, methyl 3-((1-((2-carbamoylphenyl)amino)-1-oxopropan-2-yl)amino)-3-oxopropanoate (1), along with 9 known secondary metabolites (2-10) were isolated and elucidated chemical structures from the methanol extract of the marine-derived fungus Penicillium chrysogenum VH17. Subsequent bioassays showed the antimicrobial and cytotoxic potential of the isolated compounds. All compounds 1-10 displayed antimicrobial effects against at least one tested reference microorganism with MIC values ranging from 32 to 256 µg mL-1. Furthermore, compound 4 exhibited significant cytotoxicity against all tested cell lines, HepG2, A549, and MCF7 with IC50 values of 29.43 ± 1.37, 33.02 ± 1.53, and 36.72 ± 1.88 µM, respectively, whereas compound 3 exhibited weak cytotoxicity against MCF7 and HepG2 cell lines with IC50 values of 87.17 ± 6.31 and 97.32 ± 5.66 µM, respectively.
Collapse
Affiliation(s)
- Nguyen Mai Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Le Thi Hong Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thuy Linh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Phi Thi Dao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Do Thi Quynh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Doan Thi Mai Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Pham Van Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu Huyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientifc Research, Vietnam National Museum of Nature, VAST, Hue city, Thua Thien Hue, Vietnam
| |
Collapse
|
3
|
Qiu Y, Chen S, Yu M, Shi J, Liu J, Li X, Chen J, Sun X, Huang G, Zheng C. Natural Products from Marine-Derived Fungi with Anti-Inflammatory Activity. Mar Drugs 2024; 22:433. [PMID: 39452841 PMCID: PMC11509926 DOI: 10.3390/md22100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body's defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various diseases, such as heart disease, diabetes, Alzheimer's disease, atherosclerosis, rheumatoid arthritis, and even certain cancers. Marine-derived fungi represent promising sources of structurally novel bioactive natural products, and have been a focus of research for the development of anti-inflammatory drugs. This review covers secondary metabolites with anti-inflammatory activities from marine-derived fungi, over the period spanning August 2018 to July 2024. A total of 285 anti-inflammatory metabolites, including 156 novel compounds and 11 with novel skeleton structures, are described. Their structures are categorized into five categories: terpenoids, polyketides, nitrogen-containing compounds, steroids, and other classes. The biological targets, as well as the in vitro and in vivo screening models, were surveyed and statistically summarized. This paper aims to offer valuable insights to researchers in the exploration of natural products and the discovery of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiayu Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xiaoyang Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiaxing Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xueping Sun
- Key Laboratory of Common Technology of Traditional Chinese Medicine Preparation, College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
4
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
5
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
6
|
Cutolo EA, Campitiello R, Caferri R, Pagliuca VF, Li J, Agathos SN, Cutolo M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Mar Drugs 2024; 22:304. [PMID: 39057413 PMCID: PMC11278107 DOI: 10.3390/md22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Vittorio Flavio Pagliuca
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Jian Li
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
| | - Spiros Nicolas Agathos
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
- Bioengineering Laboratory, Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
7
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
8
|
Huang X, Wang Y, Li G, Shao Z, Xia J, Qin JJ, Wang W. Secondary metabolites from the deep-sea derived fungus Aspergillus terreus MCCC M28183. Front Microbiol 2024; 15:1361550. [PMID: 38419626 PMCID: PMC10899347 DOI: 10.3389/fmicb.2024.1361550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Aspergillus fungi are renowned for producing a diverse range of natural products with promising biological activities. These include lovastatin, itaconic acid, terrin, and geodin, known for their cholesterol-regulating, anti-inflammatory, antitumor, and antibiotic properties. In our current study, we isolated three dimeric nitrophenyl trans-epoxyamides (1-3), along with fifteen known compounds (4-18), from the culture of Aspergillus terreus MCCC M28183, a deep-sea-derived fungus. The structures of compounds 1-3 were elucidated using a combination of NMR, MS, NMR calculation, and ECD calculation. Compound 1 exhibited moderate inhibitory activity against human gastric cancer cells MKN28, while compound 7 showed similar activity against MGC803 cells, with both showing IC50 values below 10 μM. Furthermore, compound 16 exhibited moderate potency against Vibrio parahaemolyticus ATCC 17802, with a minimum inhibitory concentration (MIC) value of 7.8 μg/mL. This promising research suggests potential avenues for developing new pharmaceuticals, particularly in targeting specific cancer cell lines and combating bacterial infections, leveraging the unique properties of these Aspergillus-derived compounds.
Collapse
Affiliation(s)
- Xiaomei Huang
- Department of Marine Biology, Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
9
|
Lee TH, Yoon DH, Park KJ, Hong SM, Kim M, Kim SY, Kim CS, Lee KR. Neurotrophic phenolic glycosides from the roots of Armoracia rusticana. PHYTOCHEMISTRY 2023; 216:113886. [PMID: 37806466 DOI: 10.1016/j.phytochem.2023.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Armoracia rusticana P. G. Gaertner. belongs to the Brassicaceae family and has aroused scientific interest for its anti-inflammatory and anticancer activities. In a continuing investigation to discover bioactive constituents from A. rusticana, we isolated 19 phenolic glycosides including three undescribed flavonol glycosides and one undescribed neolignan glycoside from MeOH extract of this plant. Their structures were elucidated based on NMR spectroscopic analysis (1H, 13C, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and chemical methods. The determination of their absolute configuration was accomplished by ECD and LC-MS analysis. All the compounds were assessed for their potential neurotrophic activity through induction of nerve growth factor in C6 glioma cell lines and for their anti-neuroinflammatory activity based on the measurement of inhibition levels of nitric oxide production and pro-inflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) in lipopolysaccharide-activated microglia BV-2 cells.
Collapse
Affiliation(s)
- Tae Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Minji Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Jin Y, Jeon H, Le Lam Nguyen T, Kim L, Heo KS. Human milk oligosaccharides 3'-sialyllactose and 6'-sialyllactose attenuate LPS-induced lung injury by inhibiting STAT1 and NF-κB signaling pathways. Arch Pharm Res 2023; 46:897-906. [PMID: 37940817 DOI: 10.1007/s12272-023-01470-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Acute lung injury (ALI) is the leading cause of respiratory diseases induced by uncontrolled inflammation and cell death. Lipopolysaccharide (LPS) is a major trigger of ALI in the progression through macrophage differentiation and the accelerated release of pro-inflammatory cytokines. The present study aimed to investigate the protective effects of human milk oligosaccharides, specifically 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), on LPS-induced ALI and elucidate their underlying signaling pathways. The inhibitory effects of 3'-SL and 6'-SL on inflammation were evaluated using LPS-treated RAW 264.7 macrophages. To establish the ALI model, mice were treated with 10 mg/kg LPS for 24 h. Histological changes in the lung tissues were assessed using hematoxylin and eosin staining and immunofluorescence. LPS causes thickening of the alveolar wall infiltration of immune cells in lung tissues and increased serum levels of TNF-α, IL-1β, and GM-CSF. However, these effects were significantly alleviated by 100 mg/kg of 3'-SL and 6'-SL. Consistent with the inhibitory effects of 3'-SL and 6'-SL on LPS-induced pro-inflammatory cytokine secretion in serum, 3'-SL and 6'-SL suppressed mRNA expression of TNF-α, IL-1β, MCP-1, iNOS, and COX2 in LPS-induced RAW 264.7 cells. Mechanistically, 3'-SL and 6'-SL abolished LPS-mediated phosphorylation of NF-κB and STAT1. Interestingly, fludarabine treatment, a STAT1 inhibitor, did not affect LPS-mediated NF-κB phosphorylation. In summary, 3'-SL and 6'-SL protect LPS-induced macrophage activation and ALI through the STAT1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Hyesu Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Lila Kim
- GeneChem Inc. A-201, 187 Techno 2-ro, Daejeon, 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
11
|
Ghonimy A, Chen Z, Li J. The effect of C/N ratio and its frequent addition on commensal and pathogenic bacterial abundances in shrimp Litopeaneus vanname gut in a biofloc system: Ratio and frequent addition interaction matters. PLoS One 2023; 18:e0283841. [PMID: 37011061 PMCID: PMC10069773 DOI: 10.1371/journal.pone.0283841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
The environmental biotic and abiotic factors form a complicated relationship with the host intestinal microbiota. In our study, we applied different levels of C/N ratio (10, 15, 20) and frequent addition times (once, twice, triple a day) in a factorial experimental design. GC/LC analysis of filtrated biofloc (BF) samples revealed the highest relative fold change for the untargeted bioactive molecules among different treatments, whereas the 16s rRNA analysis revealed the change in the shrimp gut microbiota composition. Based on the available literature on the relationship between the bioactive molecules and the available bacteria in this study, the next bioactive molecules were discussed. Proline was associated with Bacteroidota, Flavobacteriaceae, Gammaproteobacteria, and Flavobacteriales. Plumbagine was associated with Norcardiaceae. Phytosphingosin was associated with Bacteroidota. Phosphocholine compound was associated with Bacteroidota. The monobutyl ether, benzofuran, and piperidone were associated with Micobacteriaceae and Mycobacterium. Generally, C/N 15 and 20 once a day, and C/N 20 triple a day have showed a merit over other treatments in term of low pathogenic and unfavorable bacteria, and high commensal bacterial abundances. The revealed bioactive molecule composition showed the complicity of BF as a source for novel compounds as biosecurity agents in BF system. These molecules could be developed to feed additives upgrading the biosecurity level in aquaculture systems. Other bioactive molecules require future studies to reveal novel molecules in term of aquaculture biosecurity control.
Collapse
Affiliation(s)
- Abdallah Ghonimy
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhao Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|