1
|
Hollands S, Tasch J, Simon DJ, Wassouf D, Barber I, Gessner A, Bechthold A, Zechel DL. Analysis of the cryptic biosynthetic gene cluster encoding the RiPP curacozole reveals a phenylalanine-specific peptide hydroxylase. Chem Sci 2024; 15:19858-19869. [PMID: 39568915 PMCID: PMC11575548 DOI: 10.1039/d4sc02262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Curacozole is representative of a cyanobactin-like sub-family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The molecule is distinguished by its small macrocyclic structure, a poly-azole sequence that includes a phenyloxazole moiety, and a d-allo-Ile residue. The enzymatic steps required for its formation are not well understood. The predicted biosynthetic gene cluster (BGC) for curacozole in Streptomyces curacoi is cryptic, but is shown to be potently activated upon constitutive expression of the bldA-specified Leu-tRNA(UUA) molecule. Heterologous expression and gene deletion studies have defined the minimum BGC as consisting of seven genes, czlA, D, E, B1, C1, F, and BC. The biosynthetic pathway is highly substrate tolerant, accepting six variants of the precursor peptide CzlA to form new curacozole derivatives. This includes replacing the phenyloxazole moiety of curacozole with indole and p-hydroxyphenyloxazole groups by conversion of the corresponding CzlA Phe18Trp and Phe18Tyr variants. In vitro experiments with purified enzymes demonstrate that CzlD and CzlBC perform cyclodehydration and dehydrogenation reactions, respectively, to form a single oxazole from Ser 22 of CzlA. The curacozole BGC is flanked by czlI, a non-essential but conserved gene of unknown function. In vitro studies demonstrate CzlI to be a non-heme iron(ii) and 2-oxoglutarate-dependent dioxygenase, catalyzing the hydroxylation of Phe18 on CzlA to form the CzlA Phe18Tyr variant, which is then processed to form the p-hydroxyphenyloxazole derivative of curacozole. Overall, this work highlights the amenability of RiPP biosynthesis for engineering the production of new compounds and adds to the repertoire of known RiPP enzymes.
Collapse
Affiliation(s)
- Samantha Hollands
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Julia Tasch
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - David J Simon
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Dimah Wassouf
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - Isobel Barber
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Arne Gessner
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - David L Zechel
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| |
Collapse
|
2
|
Magar RT, Pham VTT, Poudel PB, Bridget AF, Sohng JK. A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius. Appl Microbiol Biotechnol 2024; 108:107. [PMID: 38217253 PMCID: PMC10786969 DOI: 10.1007/s00253-023-12923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 01/15/2024]
Abstract
Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC50 values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.
Collapse
Affiliation(s)
- Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Adzemye Fovennso Bridget
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
| |
Collapse
|
3
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
5
|
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51:kuae009. [PMID: 38439699 PMCID: PMC10949845 DOI: 10.1093/jimb/kuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate school of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Qiu S, Yang B, Li Z, Li S, Yan H, Xin Z, Liu J, Zhao X, Zhang L, Xiang W, Wang W. Building a highly efficient Streptomyces super-chassis for secondary metabolite production by reprogramming naturally-evolved multifaceted shifts. Metab Eng 2024; 81:210-226. [PMID: 38142854 DOI: 10.1016/j.ymben.2023.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Streptomyces has an extensive array of bioactive secondary metabolites (SMs). Nevertheless, devising a framework for the heterologous production of these SMs remains challenging. We here reprogrammed a versatile plug-and-play Streptomyces super-chassis and established a universal pipeline for production of diverse SMs via understanding of the inherent pleiotropic effects of ethanol shock on jadomycin production in Streptomyces venezuelae. We initially identified and characterized a set of multiplex targets (afsQ1, bldD, bldA, and miaA) that contribute to SM (jadomycin) production when subjected to ethanol shock. Subsequently, we developed an ethanol-induced orthogonal amplification system (EOAS), enabling dynamic and precise control over targets. Ultimately, we integrated these multiplex targets into functional units governed by the EOAS, generating a universal and plug-and-play Streptomyces super-chassis. In addition to achieving the unprecedented titer and yield of jadomycin B, we also evidenced the potential of this super-chassis for production of diverse heterologous SMs, including antibiotic oxytetracycline, anticancer drug doxorubicins, agricultural herbicide thaxtomin A, and plant growth regulator guvermectin, all with the yields of >10 mg/g glucose in a simple mineral medium. Given that the production of SMs all required complexed medium and the cognate yields were usually much lower, our achievement of using a universal super-chassis and engineering pipeline in a simple mineral medium is promising for convenient heterologous production of SMs.
Collapse
Affiliation(s)
- Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejin Zhao
- State Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Soares NR, Huguet-Tapia JC, Guan D, Clark CA, Yang KT, Kluchka OR, Thombal RS, Kartika R, Badger JH, Pettis GS. Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization. Appl Environ Microbiol 2023; 89:e0030823. [PMID: 38009923 PMCID: PMC10734452 DOI: 10.1128/aem.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
Collapse
Affiliation(s)
- Natasha R. Soares
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Dongli Guan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christopher A. Clark
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Kuei-Ting Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Olivia R. Kluchka
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Raju S. Thombal
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rendy Kartika
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jonathan H. Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregg S. Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
Avramova MM, Stevenson CEM, Chandra G, Holmes NA, Bush MJ, Findlay KC, Buttner MJ. Global Effects of the Developmental Regulator BldB in Streptomyces venezuelae. J Bacteriol 2023; 205:e0013523. [PMID: 37249447 PMCID: PMC10294661 DOI: 10.1128/jb.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.
Collapse
Affiliation(s)
- Marieta M. Avramova
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Clare E. M. Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
9
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
10
|
Haq IU, Mukhtar Z, Anwar-Ul-Haq M, Liaqat S. Deciphering host-pathogen interaction during Streptomyces spp. infestation of potato. Arch Microbiol 2023; 205:222. [PMID: 37149838 DOI: 10.1007/s00203-023-03560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
- Ayub Agricultural Research Institute, Faisalabad, Pakistan.
| | - Zahid Mukhtar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | | | - Sana Liaqat
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
11
|
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PB, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20:926-942. [PMID: 37968863 PMCID: PMC10732093 DOI: 10.1080/15476286.2023.2270812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
In Streptomyces species, the cell cycle involves a switch from an early and vegetative state to a later phase where secondary products including antibiotics are synthesized, aerial hyphae form and sporulation occurs. AdpA, which has two domains, activates the expression of numerous genes involved in the switch from the vegetative growth phase. The adpA mRNA of many Streptomyces species has a UUA codon in a linker region between 5' sequence encoding one domain and 3' sequence encoding its other and C-terminal domain. UUA codons are exceptionally rare in Streptomyces, and its functional cognate tRNA is not present in a fully modified and acylated form, in the early and vegetative phase of the cell cycle though it is aminoacylated later. Here, we report candidate recoding signals that may influence decoding of the linker region UUA. Additionally, a short ORF 5' of the main ORF has been identified with a GUG at, or near, its 5' end and an in-frame UUA near its 3' end. The latter is commonly 5 nucleotides 5' of the main ORF start. Ribosome profiling data show translation of that 5' region. Ten years ago, UUA-mediated translational bypassing was proposed as a sensor by a Streptomyces phage of its host's cell cycle stage and an effector of its lytic/lysogeny switch. We provide the first experimental evidence supportive of this proposal.
Collapse
Affiliation(s)
- Ivan V. Antonov
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinéad O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alessandro N. Gorohovski
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc Natl Acad Sci U S A 2022; 119:e2211052119. [PMID: 36161918 DOI: 10.1073/pnas.2211052119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.
Collapse
|
13
|
Chen X, Li S, Zhang B, Sun H, Wang J, Zhang W, Meng W, Chen T, Dyson P, Liu G. A new bacterial tRNA enhances antibiotic production in Streptomyces by circumventing inefficient wobble base-pairing. Nucleic Acids Res 2022; 50:7084-7096. [PMID: 35699212 PMCID: PMC9262613 DOI: 10.1093/nar/gkac502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
We report the discovery and functional characterization of a new bacterial tRNA species. The tRNA-Asp-AUC, from a fast-growing desert streptomycete, decodes GAU codons. In the absence of queuosine tRNA anticodon modification in streptomycetes, the new tRNA circumvents inefficient wobble base-pairing during translation. The tRNA, which is constitutively expressed, greatly enhances synthesis of 4 different antibiotics in the model mesophilic species Streptomyces coelicolor, including the product of a so-called cryptic pathway, and increases yields of medically-important antibiotics in other species. This can be rationalised due to increased expression of both pleiotropic and pathway-specific transcriptional activators of antibiotic biosynthesis whose genes generally possess one or more GAT codons; the frequency of this codon in these gene sets is significantly higher than the average for streptomycete genes. In addition, the tRNA enhances production of cobalamin, a precursor of S-adenosyl methionine, itself an essential cofactor for synthesis of many antibiotics. The results establish a new paradigm of inefficient wobble base-pairing involving GAU codons as an evolved strategy to regulate gene expression and, in particular, antibiotic biosynthesis. Circumventing this by expression of the new cognate tRNA offers a generic strategy to increase antibiotic yields and to expand the repertoire of much-needed new bioactive metabolites produced by these valuable bacteria.
Collapse
Affiliation(s)
- Ximing Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Shuyan Li
- School of Medical Information and Engineering, Xuzhou Medical University, Jiangsu, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Haili Sun
- School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou, Gansu, China
| | - Jinxiu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Wenbo Meng
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province; The First Clinical Medical School of Lanzhou University, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Paul Dyson
- To whom correspondence should be addressed. Tel: +44 1792 295667;
| | - Guangxiu Liu
- Correspondence may also be addressed to Guangxiu Liu.
| |
Collapse
|
14
|
System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on
Streptomyces
Development. mSystems 2022; 7:e0006122. [PMID: 35575488 PMCID: PMC9239103 DOI: 10.1128/msystems.00061-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large part of the chemical space of bioactive natural products is derived from
Actinobacteria
. Many of the biosynthetic gene clusters for these compounds are cryptic; in others words, they are expressed in nature but not in the laboratory.
Collapse
|
15
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
16
|
Nagakubo T. Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review. Int J Mol Sci 2022; 23:ijms23052595. [PMID: 35269736 PMCID: PMC8910223 DOI: 10.3390/ijms23052595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that microorganisms produce various nanoparticles that exhibit a variety of biological functions. The structure of these bacterial nanoparticles ranges from membrane vesicles composed of membrane lipids to multicomponent proteinaceous machines. Of bacterial nanoparticles, bacterial phage tail-like nanoparticles, associated with virus-related genes, are found in bacteria from various environments and have diverse functions. Extracellular contractile injection systems (eCISs), a type of bacterial phage tail-like nanostructure, have diverse biological functions that mediate the interactions between the producer bacteria and target eukaryote. Known gram-negative bacterial eCISs can act as protein translocation systems and inject effector proteins that modulate eukaryotic cellular processes by attaching to the target cells. Further investigation of the functions of eCISs will facilitate the application of these nanomachines as nano-sized syringes in the field of nanomedicine and vaccine development. This review summarises the recent progress in elucidating the structures and biological functions of nanoparticles that resemble the tail components of phages that infect bacteria and discusses directions for future research to improve the clinical applicability of virus-related bacterial nanoparticles.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan;
- Microbiology Research Centre for Sustainability (MiCS), University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
17
|
Pinatel E, Calcagnile M, Talà A, Damiano F, Siculella L, Peano C, De Benedetto GE, Pennetta A, De Bellis G, Alifano P. Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces. J Biotechnol 2022:S0168-1656(22)00029-3. [PMID: 35182607 DOI: 10.1016/j.jbiotec.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | | | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
18
|
Melnyk S, Stepanyshyn A, Yushchuk O, Mandler M, Ostash I, Koshla O, Fedorenko V, Kahne D, Ostash B. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Appl Microbiol Biotechnol 2022; 106:1543-1556. [PMID: 35147743 PMCID: PMC9528727 DOI: 10.1007/s00253-022-11814-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/15/2023]
Abstract
Streptomyces roseochromogenes NRRL 3504 is best known as a producer of clorobiocin, a DNA replication inhibitor from the aminocoumarin family of antibiotics. This natural product currently draws attention as a promising adjuvant for co-application with other antibiotics against Gram-negative multidrug-resistant pathogens. Herein, we expand the genetic toolkit for NRRL 3504 by showing that a set of integrative and replicative vectors, not tested previously for this strain, could be conjugally transferred at high frequency from Escherichia coli to NRRL 3504. Using this approach, we leverage a cumate-inducible expression of cluster-situated regulatory gene novG to increase clorobiocin titers by 30-fold (up to approximately 200 mg/L). To our best knowledge, this is the highest level of clorobiocin production reported so far. Our findings set a working ground for further improvement of clorobiocin production as well as for the application of genetic methods to illuminate the cryptic secondary metabolome of NRRL 3504. Key Points • Efficient system for conjugative transfer of plasmids into NRRL 3504 was developed. • Expression of regulatory genes in NRRL 3504 led to increase in clorobiocin titer. • Secondary metabolome of NRRL 3504 becomes an accessible target for genetic manipulations using the expanded vector set and improved intergeneric conjugation protocol.
Collapse
Affiliation(s)
- Sofia Melnyk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Anastasia Stepanyshyn
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Michael Mandler
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
19
|
Tan Y, Wang M, Chen Y. Reprogramming the Biosynthesis of Precursor Peptide to Create a Selenazole-Containing Nosiheptide Analogue. ACS Synth Biol 2022; 11:85-91. [PMID: 35006674 DOI: 10.1021/acssynbio.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nosiheptide (NOS), a potent bactericidal thiopeptide, belongs to a class of natural products produced by ribosomal synthesis and post-translational modifications, and its biosynthetic pathway has largely been elucidated. However, the central trithiazolylpyridine structure of NOS remains inaccessible to structural changes. Here we report the creation of a NOS analogue containing a unique selenazole ring by the construction of an artificial system in Streptomyces actuosus ATCC25421, where the genes responsible for the biosynthesis of selenoprotein from Escherichia coli and the biosynthetic gene cluster of NOS were rationally integrated to produce a selenazole-containing analogue of NOS. The thiazole at the fifth position in NOS was specifically replaced by a selenazole to afford the first selenazole-containing "unnatural" natural product. The present strategy is useful for structural manipulation of various RiPP natural products.
Collapse
Affiliation(s)
- Yingzi Tan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Miao Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
20
|
Barry CP, Gillane R, Talbo GH, Plan M, Palfreyman R, Haber-Stuk AK, Power J, Nielsen LK, Marcellin E. Multi-omic characterisation of Streptomyces hygroscopicus NRRL 30439: detailed assessment of its secondary metabolic potential. Mol Omics 2022; 18:226-236. [PMID: 34989730 DOI: 10.1039/d1mo00150g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of multidrug-resistant pathogenic bacteria creates a demand for novel antibiotics with distinct mechanisms of action. Advances in next-generation genome sequencing promised a paradigm shift in the quest to find new bioactive secondary metabolites. Genome mining has proven successful for predicting putative biosynthetic elements in secondary metabolite superproducers such as Streptomycetes. However, genome mining approaches do not inform whether biosynthetic gene clusters are dormant or active under given culture conditions. Here we show that using a multi-omics approach in combination with antiSMASH, it is possible to assess the secondary metabolic potential of a Streptomyces strain capable of producing mannopeptimycin, an important cyclic peptide effective against Gram-positive infections. The genome of Streptomyces hygroscopicus NRRL 30439 was first sequenced using PacBio RSII to obtain a closed genome. A chemically defined medium was then used to elicit a nutrient stress response in S. hygroscopicus NRRL 30439. Detailed extracellular metabolomics and intracellular proteomics were used to profile and segregate primary and secondary metabolism. Our results demonstrate that the combination of genomics, proteomics and metabolomics enables rapid evaluation of a strain's performance in bioreactors for industrial production of secondary metabolites.
Collapse
Affiliation(s)
- Craig P Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Rosemary Gillane
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Gert H Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | - Manual Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | | | - John Power
- Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| |
Collapse
|
21
|
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9:e0198121. [PMID: 34878326 PMCID: PMC8653842 DOI: 10.1128/spectrum.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
22
|
Transcriptional regulation of congocidine (netropsin) biosynthesis and resistance. Appl Environ Microbiol 2021; 87:e0138021. [PMID: 34586912 DOI: 10.1128/aem.01380-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of specialized metabolites by Streptomyces bacteria is usually temporally regulated. This regulation is complex and frequently involves both global and pathway-specific mechanisms. Streptomyces ambofaciens ATCC23877 produces several specialized metabolites, including spiramycins, stambomycins, kinamycins and congocidine. The production of the first three molecules has been shown to be controlled by one or several cluster-situated transcriptional regulators. However, nothing is known regarding the regulation of congocidine biosynthesis. Congocidine (netropsin) belongs to the family of pyrrolamide metabolites, which also includes distamycin and anthelvencins. Most pyrrolamides bind into the minor groove of DNA, specifically in A/T-rich regions, which gives them numerous biological activities, such as antimicrobial and antitumoral activities. We previously reported the characterization of the pyrrolamide biosynthetic gene clusters of congocidine (cgc) in S. ambofaciens ATCC23877, distamycin (dst) in Streptomyces netropsis DSM40846 and anthelvencins (ant) in Streptomyces venezuelae ATCC14583. The three gene clusters contain a gene encoding a putative transcriptional regulator, cgc1, dst1 and ant1 respectively. Cgc1, Dst1 and Ant1 present a high percentage of amino acid sequence similarity. We demonstrate here that Cgc1, an atypical orphan response regulator, activates the transcription of all cgc genes in the stationary phase of S. ambofaciens growth. We also show that the cgc cluster is constituted of eight main transcriptional units. Finally, we show that congocidine induces the expression of the transcriptional regulator Cgc1 and of the operon containing the resistance genes (cgc20 and cgc21, coding for an ABC transporter), and propose a model for the transcriptional regulation of the cgc gene cluster. Importance Understanding the mechanisms of regulation of specialized metabolite production can have important implications both at the level of specialized metabolism study (expression of silent gene clusters) and the biotechnological level (increase of the production of a metabolite of interest). We report here a study on the regulation of the biosynthesis of a metabolite from the pyrrolamide family, congocidine. We show that congocidine biosynthesis and resistance is controlled by Cgc1, a cluster-situated regulator. As the gene clusters directing the biosynthesis of the pyrrolamides distamycin and anthelvencin encode a homolog of Cgc1, our findings may be relevant for the biosynthesis of other pyrrolamides. In addition, our results reveal a new type of feed-forward induction mechanism, in which congocidine induces its own biosynthesis through the induction of the transcription of cgc1.
Collapse
|
23
|
Matsui N, Kawakami S, Hamamoto D, Nohara S, Sunada R, Panbangred W, Igarashi Y, Nihira T, Kitani S. Activation of cryptic milbemycin A 4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J GEN APPL MICROBIOL 2021; 67:240-247. [PMID: 34511540 DOI: 10.2323/jgam.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Streptomycetes are characterized by their ability to produce structurally diverse compounds as secondary metabolites and by their complex developmental life cycle, which includes aerial mycelium formation and sporulation. The production of secondary metabolites is growth-stage dependent, and generally coincides with morphological development on a solid culture. Streptomyces sp. BB47 produces several types of bioactive compounds and displays a bald phenotype that is devoid of an aerial mycelium and spores. Here, we demonstrated by genome analysis and gene complementation experiments that the bald phenotype arises from the bldA gene, which is predicted to encode the Leu-tRNAUUA molecule. Unlike the wild-type strain producing jomthonic acid A (1) and antarlide A (2), the strain complemented with a functional bldA gene newly produced milbemycin (3). The chemical structure of compound 3 was elucidated on the basis of various spectroscopic analyses, and was identified as milbemycin A4, which is an insecticidal/acaricidal antibiotic. These results indicate that genetic manipulation of genes involved in morphological development in streptomycetes is a valuable way to activate cryptic biosynthetic pathways.
Collapse
Affiliation(s)
- Nana Matsui
- International Center for Biotechnology, Osaka University
| | | | - Dai Hamamoto
- International Center for Biotechnology, Osaka University
| | - Sayuri Nohara
- International Center for Biotechnology, Osaka University
| | - Reina Sunada
- International Center for Biotechnology, Osaka University
| | | | | | - Takuya Nihira
- International Center for Biotechnology, Osaka University.,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
24
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
25
|
Shikura N, Darbon E, Esnault C, Deniset-Besseau A, Xu D, Lejeune C, Jacquet E, Nhiri N, Sago L, Cornu D, Werten S, Martel C, Virolle MJ. The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans. Antibiotics (Basel) 2021; 10:325. [PMID: 33804592 PMCID: PMC8003754 DOI: 10.3390/antibiotics10030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.
Collapse
Affiliation(s)
- Noriyasu Shikura
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Emmanuelle Darbon
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Catherine Esnault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Ariane Deniset-Besseau
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France;
| | - Delin Xu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (E.J.); (N.N.)
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (E.J.); (N.N.)
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria;
| | - Cécile Martel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| |
Collapse
|
26
|
Li Z, Li S, Du L, Zhang X, Jiang Y, Liu W, Zhang W, Li S. Engineering Bafilomycin High-Producers by Manipulating Regulatory and Biosynthetic Genes in the Marine Bacterium Streptomyces lohii. Mar Drugs 2021; 19:md19010029. [PMID: 33440628 PMCID: PMC7827423 DOI: 10.3390/md19010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bafilomycin A1 is the representative compound of the plecomacrolide natural product family. This 16-membered ring plecomacrolide has potent antifungal and vacuolar H+-ATPase inhibitory activities. In our previous work, we identified a bafilomycin biosynthetic gene cluster (baf) from the marine bacterium Streptomyces lohii ATCC BAA-1276, wherein a luxR family regulatory gene orf1 and an afsR family regulatory gene bafG were revealed based on bioinformatics analysis. In this study, the positive regulatory roles of orf1 and bafG for bafilomycin biosynthesis are characterized through gene inactivation and overexpression. Compared to the wild-type S. lohii strain, the knockout of either orf1 or bafG completely abolished the production of bafilomycins. The overexpression of orf1 or bafG led to 1.3- and 0.5-fold increased production of bafilomycins, respectively. A genetically engineered S. lohii strain (SLO-08) with orf1 overexpression and inactivation of the biosynthetic genes orf2 and orf3, solely produced bafilomycin A1 with the titer of 535.1 ± 25.0 mg/L in an optimized fermentation medium in shaking flasks. This recombinant strain holds considerable application potential in large-scale production of bafilomycin A1 for new drug development.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
27
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
28
|
The Streptomyces filipinensis Gamma-Butyrolactone System Reveals Novel Clues for Understanding the Control of Secondary Metabolism. Appl Environ Microbiol 2020; 86:AEM.00443-20. [PMID: 32631864 PMCID: PMC7480387 DOI: 10.1128/aem.00443-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Streptomyces GBLs are important signaling molecules that trigger antibiotic production in a quorum sensing-dependent manner. We have characterized the GBL system from S. filipinensis, finding that two key players of this system, the GBL receptor and the pseudo-receptor, each counteracts the transcription of the other for the modulation of filipin production and that such control over antifungal production involves an indirect effect on the transcription of filipin biosynthetic genes. Additionally, the two regulators bind the same sites, are self-regulated, and repress the transcription of three other genes of the GBL cluster, including that encoding the GBL synthase. In contrast to all the GBL receptors known, SfbR activates its own synthesis. Moreover, the pseudo-receptor was identified as the receptor of antimycin A, thus extending the range of examples supporting the idea of signaling effects of antibiotics in Streptomyces. The intricate regulatory network depicted here should provide important clues for understanding the regulatory mechanism governing secondary metabolism. Streptomyces γ-butyrolactones (GBLs) are quorum sensing communication signals triggering antibiotic production. The GBL system of Streptomyces filipinensis, the producer of the antifungal agent filipin, has been investigated. Inactivation of sfbR (for S. filipinensis γ-butyrolactone receptor), a GBL receptor, resulted in a strong decrease in production of filipin, and deletion of sfbR2, a pseudo-receptor, boosted it, in agreement with lower and higher levels of transcription of filipin biosynthetic genes, respectively. It is noteworthy that none of the mutations affected growth or morphological development. While no ARE (autoregulatory element)-like sequences were found in the promoters of filipin genes, suggesting indirect control of production, five ARE sequences were found in five genes of the GBL cluster, whose transcription has been shown to be controlled by both S. filipinensis SfbR and SfbR2. In vitro binding of recombinant SfbR and SfbR2 to such sequences indicated that such control is direct. Transcription start points were identified by 5′ rapid amplification of cDNA ends, and precise binding regions were investigated by the use of DNase I protection studies. Binding of both regulators took place in the promoter of target genes and at the same sites. Information content analysis of protected sequences in target promoters yielded an 18-nucleotide consensus ARE sequence. Quantitative transcriptional analyses revealed that both regulators are self-regulated and that each represses the transcription of the other as well as that of the remaining target genes. Unlike other GBL receptor homologues, SfbR activates its own transcription whereas SfbR2 has a canonical autorepression profile. Additionally, SfbR2 was found here to bind the antifungal antimycin A as a way to modulate its DNA-binding activity. IMPORTANCEStreptomyces GBLs are important signaling molecules that trigger antibiotic production in a quorum sensing-dependent manner. We have characterized the GBL system from S. filipinensis, finding that two key players of this system, the GBL receptor and the pseudo-receptor, each counteracts the transcription of the other for the modulation of filipin production and that such control over antifungal production involves an indirect effect on the transcription of filipin biosynthetic genes. Additionally, the two regulators bind the same sites, are self-regulated, and repress the transcription of three other genes of the GBL cluster, including that encoding the GBL synthase. In contrast to all the GBL receptors known, SfbR activates its own synthesis. Moreover, the pseudo-receptor was identified as the receptor of antimycin A, thus extending the range of examples supporting the idea of signaling effects of antibiotics in Streptomyces. The intricate regulatory network depicted here should provide important clues for understanding the regulatory mechanism governing secondary metabolism.
Collapse
|
29
|
Silov S, Zaburannyi N, Anisimova M, Ostash B. The Use of the Rare TTA Codon in Streptomyces Genes: Significance of the Codon Context? Indian J Microbiol 2020; 61:24-30. [PMID: 33505089 DOI: 10.1007/s12088-020-00902-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
Streptomycetes, Gram-positive bacteria with huge and GC-rich genomes provide an ample example of codon usage bias taken to the extreme. Particularly, in all sequenced to date streptomycete genomes leucyl codon TTA is the rarest one. It is present (usually once or twice) in 70-200 out of 7000-8000 coding sequences that make up a typical streptomycete genome. tRNALeu UAA of streptomycetes, encoded by the bldA gene, has been shown to be present in mature form only after the onset of morphological differentiation and activation of secondary metabolism. Consequently, during the early stages of cell growth, the translation of genes carrying the TTA codon can be interrupted due to the absence of tRNALeu UAA. Several reports show that mutations of TTA to synonymous codons in certain genes indeed relieve their expression from bldA dependence. However, the deletion of bldA does not always arrest the expression of TTA-containing genes. The nucleotides T/C downstream of TTA were suggested, in 2002, to favor TTA mistranslation. We tested this hypothesis using sizable datasets derived from individual Streptomyces genome and a subset of TTA+ genes for secondary metabolism known for their active expression. Our results revealed nucleotide biases downstream of NNA codons family, such as the preference for C and the avoidance of A. Yet, none of the observed biases was sufficient to claim a special case for TTA codon. Hence, the issue of codon context and TTA codon mistranslation in Streptomyces deserves further elaboration.
Collapse
Affiliation(s)
- Serhii Silov
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| | - Nestor Zaburannyi
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| |
Collapse
|
30
|
Fan JY, Huang Q, Ji QQ, Wang ED. LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor. Nucleic Acids Res 2020; 47:6369-6385. [PMID: 31114902 PMCID: PMC6614811 DOI: 10.1093/nar/gkz443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.
Collapse
Affiliation(s)
- Jia-Yi Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Qian Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Quan-Quan Ji
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
31
|
Tancos MA, Sechler AJ, Davis EW, Chang JH, Schroeder BK, Murray TD, Rogers EE. The Identification and Conservation of Tunicaminyluracil-Related Biosynthetic Gene Clusters in Several Rathayibacter Species Collected From Australia, Africa, Eurasia, and North America. Front Microbiol 2020; 10:2914. [PMID: 31998251 PMCID: PMC6965331 DOI: 10.3389/fmicb.2019.02914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
Tunicaminyluracil antibiotics are a novel class of toxigenic glycolipids that are synthesized by several soil-associated Actinomycetes. The acquisition of a tunicaminyluracil biosynthetic gene cluster (TGC) in Rathayibacter toxicus has led to the emergence of the only described, naturally occurring tunicaminyluracil-associated mammalian disease, annual ryegrass toxicity of livestock. Endemic to Australia, R. toxicus is obligately vectored by Anguinid seed gall nematodes to the developing seedheads of forage grasses, in which the bacteria synthesize tunicaminyluracils that may subsequently be consumed by livestock and result in high rates of mortality and morbidity. The potential impact of R. toxicus on U.S. agriculture has led the U.S. Department of Agriculture - Animal and Plant Health Inspection Service to list R. toxicus as a Plant Pathogen Select Agent. R. toxicus is the only characterized phytopathogenic bacterium to produce tunicaminyluracils, but numerous R. toxicus-like livestock poisonings outside Australia suggest additional bacterial sources of tunicaminyluracils may exist. To investigate the conservation of the TGC in R. toxicus and whether the TGC is present in other Rathayibacter species, we analyzed genome sequences of members of the Rathayibacter genus. Putative TGCs were identified in genome sequences of R. toxicus, R. iranicus, R. agropyri, and an undescribed South African Rathayibacter species. In the latter three species, the putative TGCs have homologs of tunicaminyluracil-related genes essential for toxin production, but the TGCs differ in gene number and order. The TGCs appear at least partially functional because in contrast to atoxigenic species, TGC-containing Rathayibacter species were each able to tolerate exogenous applications of tunicamycin from Streptomyces chartreusis. The North American R. agropyri TGC shows extensive diversity among the sequenced isolates, with presense/absense polymorphisms in multiple genes or even the whole TGC. R. agropyri TGC structure does not appear to correlate with date or location of isolate collection. The conservation and identification of tunicaminyluracil-related gene clusters in three additional Rathayibacter species isolated from South Africa, the Middle East, and the United States, suggests a wider global distribution of potentially neurotoxigenic plant-associated bacteria. This potential for additional endemic and exotic toxigenic Rathayibacter species could have widespread and severe implications for agriculture.
Collapse
Affiliation(s)
- Matthew A. Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| | - Aaron J. Sechler
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brenda K. Schroeder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Timothy D. Murray
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth E. Rogers
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| |
Collapse
|
32
|
Koshla O, Yushchuk O, Ostash I, Dacyuk Y, Myronovskyi M, Jäger G, Süssmuth RD, Luzhetskyy A, Byström A, Kirsebom LA, Ostash B. Gene miaA for post-transcriptional modification of tRNA XXA is important for morphological and metabolic differentiation in Streptomyces. Mol Microbiol 2019; 112:249-265. [PMID: 31017319 DOI: 10.1111/mmi.14266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Members of actinobacterial genus Streptomyces possess a sophisticated life cycle and are the deepest source of bioactive secondary metabolites. Although morphogenesis and secondary metabolism are subject to transcriptional co-regulation, streptomycetes employ an additional mechanism to initiate the aforementioned processes. This mechanism is based on delayed translation of rare leucyl codon UUA by the only cognate tRNALeu UAA (encoded by bldA). The bldA-based genetic switch is an extensively documented example of translational regulation in Streptomyces. Yet, after five decades since the discovery of bldA, factors that shape its function and peculiar conditionality remained elusive. Here we address the hypothesis that post-transcriptional tRNA modifications play a role in tRNA-based mechanisms of translational control in Streptomyces. Particularly, we studied two Streptomyces albus J1074 genes, XNR_1074 (miaA) and XNR_1078 (miaB), encoding tRNA (adenosine(37)-N6)-dimethylallyltransferase and tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase respectively. These enzymes produce, in a sequential manner, a hypermodified ms2 i6 A37 residue in most of the A36-A37-containing tRNAs. We show that miaB and especially miaA null mutant of S. albus possess altered morphogenesis and secondary metabolism. We provide genetic evidence that miaA deficiency impacts translational level of gene expression, most likely through impaired decoding of codons UXX and UUA in particular.
Collapse
Affiliation(s)
- Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Yuriy Dacyuk
- Department of Physics of Earth, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Maksym Myronovskyi
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, Saarbrucken, 66123, Germany
| | - Gunilla Jäger
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 90197, Sweden
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straβe des 17 Juni 124/TC2, Berlin, 10623, Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, Saarbrucken, 66123, Germany
| | - Anders Byström
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 90197, Sweden
| | - Leif A Kirsebom
- Uppsala Biomedicinska Centrum BMC, Uppsala University, Husargatan 3, Box 596, Uppsala, 75124, Sweden
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| |
Collapse
|
33
|
Sehin Y, Koshla O, Dacyuk Y, Zhao R, Ross R, Myronovskyi M, Limbach PA, Luzhetskyy A, Walker S, Fedorenko V, Ostash B. Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672. MICROBIOLOGY (READING, ENGLAND) 2019; 165:233-245. [PMID: 30543507 PMCID: PMC7003650 DOI: 10.1099/mic.0.000747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Streptomyces ghanaensis ATCC14672 is remarkable for its production of phosphoglycolipid compounds, moenomycins, which serve as a blueprint for the development of a novel class of antibiotics based on inhibition of peptidoglycan glycosyltransferases. Here we employed mariner transposon (Tn) mutagenesis to find new regulatory genes essential for moenomycin production. We generated a library of 3000 mutants which were screened for altered antibiotic activity. Our focus centred on a single mutant, HIM5, which accumulated lower amounts of moenomycin and was impaired in morphogenesis as compared to the parental strain. HIM5 carried the Tn insertion within gene ssfg_01967 for putative tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase, or MiaB, and led to a reduced level of thiomethylation at position 37 in the anticodon of S. ghanaensis transfer ribonucleic acid (tRNA). It is likely that the mutant phenotype of HIM5 stems from the way in which ssfg_01967::Tn influences translation of the rare leucine codon UUA in several genes for moenomycin production and life cycle progression in S. ghanaensis. This is the first report showing that quantitative changes in tRNA modification status in Streptomyces have physiological consequences.
Collapse
Affiliation(s)
- Yuliia Sehin
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Yuriy Dacyuk
- Department of Physics of the Earth, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Robert Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Maksym Myronovskyi
- Helmholtz Institute for Pharmaceutical Research Saarland Campus, Building C2.3, 66123 Saarbrucken, Germany
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research Saarland Campus, Building C2.3, 66123 Saarbrucken, Germany
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| |
Collapse
|
34
|
Zhang S, Klementz D, Zhu J, Makitrynskyy R, Ola Pasternak AR, Günther S, Zechel DL, Bechthold A. Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452. J Biotechnol 2019; 292:23-31. [PMID: 30641108 DOI: 10.1016/j.jbiotec.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
Streptomyces asterosporus DSM 41452 is a producer of the polyketide annimycin and the non-ribosomal depsipeptide WS9326A. This strain is also notable for exhibiting a bald phenotype that is devoid of spores and aerial mycelium when grown on solid media. Based on the similarity of the 16S rRNA sequence to Streptomyces calvus, the only known producer of the fluorometabolite nucleocidin, the genome of S. asterosporus DSM 41452 was sequenced and analyzed. Twenty-nine natural product gene clusters were detected in the genome, including a gene cluster predicted to encode the fluorometabolite nucleocidin. Through genome analysis and gene complementation experiments, we demonstrate that the bald phenotype arises from a transposon gene inserted within the promoter sequence for the pleiotropic regulator adpA. Complementation of S. asterosporus DSM 41452 with a functional adpA sequence restored morphological differentiation and promoted the production of nucleocidin.
Collapse
Affiliation(s)
- Songya Zhang
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Dennis Klementz
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Jing Zhu
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Roman Makitrynskyy
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - A R Ola Pasternak
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada.
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany.
| |
Collapse
|
35
|
Thuan NH, Dhakal D, Pokhrel AR, Chu LL, Van Pham TT, Shrestha A, Sohng JK. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect. Appl Microbiol Biotechnol 2018; 102:4355-4370. [PMID: 29602983 DOI: 10.1007/s00253-018-8957-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung Street, Da Nang City, Vietnam
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luan Luong Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Thi Thuy Van Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
36
|
Global regulator BldA regulates morphological differentiation and lincomycin production in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2018; 102:4101-4115. [PMID: 29549449 DOI: 10.1007/s00253-018-8900-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Global regulator BldA, the only tRNA for a rare leucine codon UUA, is best known for its ability to affect morphological differentiation and secondary metabolism in the genus Streptomyces. In this study, we confirmed the regulatory function of the bldA gene (Genbank accession no. EU124663.1) in Streptomyces lincolnensis. Disruption of bldA hinders the sporulation and lincomycin production, that can recur when complemented with a functional bldA gene. Western blotting assays demonstrate that translation of the lmbB2 gene which encodes a L-tyrosine hydroxylase is absolutely dependent on BldA; however, mistranslation of the lmbU gene which encodes a cluster-situated regulator (CSR) is observed in a bldA mutant. Intriguingly, when the preferential cognate codon CTG was used, the expression level of LmbU was not the highest compared to the usage of rare codon TTA or CTA, indicating the rare codon in this position is significant for the regulation of lmbU expression. Moreover, replacement of TTA codons in both genes with another leucin codon in the bldA mutant did not restore lincomycin production. Thus, we believe that the bldA gene regulates lincomycin production via controlling the translation of not only lmbB2 and lmbU, but also the other TTA-containing genes. In conclusion, the present study demonstrated the importance of the bldA gene in morphological differentiation and lincomycin production in S. lincolnensis.
Collapse
|
37
|
Genomic Insights into Evolution of AdpA Family Master Regulators of Morphological Differentiation and Secondary Metabolism in Streptomyces. J Mol Evol 2018. [PMID: 29536136 DOI: 10.1007/s00239-018-9834-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The AdpA protein from a streptomycin producer Streptomyces griseus is a founding member of the AdpA family of pleiotropic regulators, known to be ubiquitously present in streptomycetes. Functional genomic approaches revealed a huge number of AdpA targets, leading to the claim that the AdpA regulon is the largest one in bacteria. The expression of adpA is limited at the level of translation of the rare leucyl UUA codon. All known properties of AdpA regulators were discovered on a few streptomycete strains. There are open questions about the true abundance and diversity of AdpA across actinobacterial taxa (and beyond) and about the possible evolutionary forces that shape the AdpA orthologous group in Streptomyces. Here we show that, with respect to the TTA codon, streptomycete adpA is more diverse than has been previously thought, as the genes differ in presence/position of this codon. Reciprocal best hits to AdpA can be found in many actinobacterial orders, with a domain organization resembling that of the prototypical AdpA, but other configurations also exist. Diversifying positive selection was detected within the DNA-binding (AraC) domain in adpA of Streptomyces origin, most likely affecting residues enabling AdpA to recognize a degenerate operator. Sequence coding for putative glutamine amidotransferase (GATase-1) domain also shows signs of positive selection. The two-domain organization of AdpA most likely arose from a fusion of genes encoding separate GATase-1 and AraC domains. Indeed, we show that the AraC domain retains a biological function in the absence of the GATase-1 part. We suggest that acquisition of the regulatory role by TTA codon is a relatively recent event in the evolution of AdpA, which coincided with the rise of the Streptomycetales clade and, at present, is under relaxed selective constraints. Further experimental scrutiny of our findings is invited, which should provide new insights into the evolution and prospects for engineering of an AdpA-centered regulatory network.
Collapse
|
38
|
Kallifidas D, Jiang G, Ding Y, Luesch H. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb Cell Fact 2018; 17:25. [PMID: 29454348 PMCID: PMC5816538 DOI: 10.1186/s12934-018-0874-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing revealed that Streptomyces sp. can dedicate up to ~ 10% of their genomes for the biosynthesis of bioactive secondary metabolites. However, the majority of these biosynthetic gene clusters are only weakly expressed or not at all. Indeed, the biosynthesis of natural products is highly regulated through integrating multiple nutritional and environmental signals perceived by pleiotropic and pathway-specific transcriptional regulators. Although pathway-specific refactoring has been a proved, productive approach for the activation of individual gene clusters, the construction of a global super host strain by targeting pleiotropic-specific genes for the expression of multiple diverse gene clusters is an attractive approach. RESULTS Streptomyces albus J1074 is a gifted heterologous host. To further improve its secondary metabolite expression capability, we rationally engineered the host by targeting genes affecting NADPH availability, precursor flux, cell growth and biosynthetic gene transcriptional activation. These studies led to the activation of the native paulomycin pathway in engineered S. albus strains and importantly the upregulated expression of the heterologous actinorhodin gene cluster. CONCLUSIONS Rational engineering of Streptomyces albus J1074 yielded a series of mutants with improved capabilities for native and heterologous expression of secondary metabolite gene clusters.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Guangde Jiang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Yousong Ding
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
39
|
Koshla O, Lopatniuk M, Rokytskyy I, Yushchuk O, Dacyuk Y, Fedorenko V, Luzhetskyy A, Ostash B. Properties of Streptomyces albus J1074 mutant deficient in tRNALeu UAA gene bldA. Arch Microbiol 2017; 199:1175-1183. [DOI: 10.1007/s00203-017-1389-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/06/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022]
|
40
|
Yan L, Zhang Q, Virolle MJ, Xu D. In conditions of over-expression, WblI, a WhiB-like transcriptional regulator, has a positive impact on the weak antibiotic production of Streptomyces lividans TK24. PLoS One 2017; 12:e0174781. [PMID: 28358920 PMCID: PMC5373594 DOI: 10.1371/journal.pone.0174781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022] Open
Abstract
Regulators of the WhiB-like (wbl) family are playing important role in the complex regulation of metabolic and morphological differentiation in Streptomyces. In this study, we investigated the role of wblI, a member of this family, in the regulation of secondary metabolite production in Streptomyces lividans. The over-expression of wblI was correlated with an enhanced biosynthesis of undecylprodigiosin and actinorhodin and with a reduction of the biosynthesis of yCPK and of the grey spore pigment encoded by the whiE locus. Five regulatory targets of WblI were identified using in vitro formaldehyde crosslinking and confirmed by EMSA and qRT-PCR. These included the promoter regions of wblI itself, two genes of the ACT cluster (actVA3 and the intergenic region between the divergently orientated genes actII-1 and actII-2) and that of wblA, another member of the Wbl family. Quantitative RT-PCR analysis indicated that the expression of actVA3 encoding a protein of unknown function as well as that of actII-1, a TetR regulator repressing the expression of actII-2, encoding the ACT transporter, were down regulated in the WblI over-expressing strain. Consistently the expression of the transporter actII-2 was up-regulated. The expression of WblA, that is known to have a negative impact on ACT biosynthesis, was strongly down regulated in the WblI over-expressing strain. These data are consistent with the positive impact that WblI over-expression has on ACT biosynthesis. The latter might result from direct activation of ACT biosynthesis and export and from repression of the expression of WblA, a likely indirect, repressor of ACT biosynthesis.
Collapse
Affiliation(s)
- Lan Yan
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, PR China
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, PR China
| | - Marie-Joelle Virolle
- Group "Energetic Metabolism of Streptomyces ", Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, INRA, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
- * E-mail: (DLX); (MJV)
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, PR China
- * E-mail: (DLX); (MJV)
| |
Collapse
|
41
|
Abstract
The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to becoming a plant pathogen. More subtle mutations are also required for the perception of cues signifying the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not "taken lightly" and involves efficient systems monitoring environmental conditions. But how can a pathogen trigger the expression of virulence genes in a timely manner if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies, which is responsible for common scab disease on tuber and root crops. We propose here a series of hypotheses of how S. scabies could optimally distinguish whether cello-oligosaccharides originate from decomposing lignocellulose (nutrient sources, saprophyte) or, instead, emanate from living and expanding plant tissue (virulence signals, pathogen) and accordingly adapt its physiological response.
Collapse
|
42
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
43
|
Pokhrel AR, Chaudhary AK, Nguyen HT, Dhakal D, Le TT, Shrestha A, Liou K, Sohng JK. Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiol Res 2016; 192:96-102. [DOI: 10.1016/j.micres.2016.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 12/14/2022]
|
44
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Gorgoni B, Ciandrini L, McFarland MR, Romano MC, Stansfield I. Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation. Nucleic Acids Res 2016; 44:9231-9244. [PMID: 27407108 PMCID: PMC5100601 DOI: 10.1093/nar/gkw630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/02/2016] [Indexed: 01/11/2023] Open
Abstract
tRNA gene copy number is a primary determinant of tRNA abundance and therefore the rate at which each tRNA delivers amino acids to the ribosome during translation. Low-abundance tRNAs decode rare codons slowly, but it is unclear which genes might be subject to tRNA-mediated regulation of expression. Here, those mRNA targets were identified via global simulation of translation. In-silico mRNA translation rates were compared for each mRNA in both wild-type and a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document}sup70-65 mutant, which exhibits a pseudohyphal growth phenotype and a 75% slower CAG codon translation rate. Of 4900 CAG-containing mRNAs, 300 showed significantly reduced in silico translation rates in a simulated tRNA mutant. Quantitative immunoassay confirmed that the reduced translation rates of sensitive mRNAs were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentration-dependent. Translation simulations showed that reduced \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentrations triggered ribosome queues, which dissipated at reduced translation initiation rates. To validate this prediction experimentally, constitutive gcn2 kinase mutants were used to reduce in vivo translation initiation rates. This repaired the relative translational rate defect of target mRNAs in the sup70-65 background, and ameliorated sup70-65 pseudohyphal growth phenotypes. We thus validate global simulation of translation as a new tool to identify mRNA targets of tRNA-specific gene regulation.
Collapse
Affiliation(s)
- Barbara Gorgoni
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Luca Ciandrini
- DIMNP - UMR 5235 & CNRS, Université de Montpellier, 34095 Montpellier, France.,Laboratoire Charles Coulomb UMR5221 & CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Matthew R McFarland
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - M Carmen Romano
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.,University of Aberdeen, Institute for Complex Systems and Mathematical Biology, King's College, Aberdeen AB24 3UE, UK
| | - Ian Stansfield
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
46
|
Yan Q, Philmus B, Hesse C, Kohen M, Chang JH, Loper JE. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5. Front Microbiol 2016; 7:497. [PMID: 27148187 PMCID: PMC4836200 DOI: 10.3389/fmicb.2016.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/27/2016] [Indexed: 11/24/2022] Open
Abstract
The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNAUCUArg, the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | | | - Cedar Hesse
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service Corvallis, OR, USA
| | - Max Kohen
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research ServiceCorvallis, OR, USA
| |
Collapse
|
47
|
He J, Van Treeck B, Nguyen HB, Melançon CE. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439. ACS Synth Biol 2016; 5:125-32. [PMID: 26562751 DOI: 10.1021/acssynbio.5b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development.
Collapse
Affiliation(s)
- Jingxuan He
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Briana Van Treeck
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Han B. Nguyen
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Charles E. Melançon
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
48
|
Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis. Appl Environ Microbiol 2016; 82:1945-1957. [PMID: 26773087 DOI: 10.1128/aem.03011-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr-) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.
Collapse
|
49
|
Zhu C, Kang Q, Bai L, Cheng L, Deng Z. Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 2015; 100:1811-1821. [PMID: 26521251 DOI: 10.1007/s00253-015-7082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Kasugamycin, produced by Streptomyces kasugaensis and Streptomyces microaureus, is an important amino-glycoside family antibiotic and widely used for veterinary and agricultural applications. In the left flanking region of the previously reported kasugamycin gene cluster, four additional genes (two-component system kasW and kasX, MerR-family kasV, and isoprenylcysteine carboxyl methyltransferase kasS) were identified both in the low-yielding S. kasugaensis BCRC12349 and high-yielding S. microaureus XM301. Deletion of regulatory gene kasT abolished kasugamycin production, and its overexpression in BCRC12349 resulted in an increased titer by 186 %. Deletion of kasW, kasX, kasV, and kasS improved kasugamycin production by 12, 19, 194, and 22 %, respectively. qRT-PCR analysis demonstrated that the transcription of kas genes was significantly increased in all the four mutants. Similar gene inactivation was performed in the high-yielding strain S. microaureus XM301. As expected, the deletion of kasW/X resulted in a 58 % increase of the yield from 6 to 9.5 g/L. However, the deletion of kasV and over-expression of kasT had no obvious effect, and the disruption of kasS surprisingly decreased kasugamycin production. In addition, trans-complementation of the kasS mutant with a TTA codon-mutated kasS increased the kasugamycin yield by 20 %. A much higher transcription of kas genes was detected in the high-yielding XM301 than in the low-yielding BCRC12349, which may partially account for the discrepancy of gene inactivation effects between them. Our work not only generated engineered strains with improved kasugamycin yield, but also pointed out that different strategies on manipulating regulatory-related genes should be considered for low-yielding or high-yielding strains.
Collapse
Affiliation(s)
- Chenchen Zhu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lin Cheng
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
50
|
c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13:749-60. [PMID: 26499894 DOI: 10.1038/nrmicro3546] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complex life cycle of streptomycetes involves two distinct filamentous cell forms: the growing (or vegetative) hyphae and the reproductive (or aerial) hyphae, which differentiate into long chains of spores. Until recently, little was known about the signalling pathways that regulate the developmental transitions leading to sporulation. In this Review, we discuss important new insights into these pathways that have led to the emergence of a coherent regulatory network, focusing on the erection of aerial hyphae and the synchronous cell division event that produces dozens of unigenomic spores. In particular, we highlight the role of cyclic di-GMP (c-di-GMP) in controlling the initiation of development, and the role of the master regulator BldD in mediating c-di-GMP signalling.
Collapse
|