1
|
Condé T, Ramos D, Nogueira P, Pereira O. Inside out: New root endophytic Penicillium and Talaromyces species isolated from Cattleya orchids ( Orchidaceae) in Brazil. Fungal Syst Evol 2025; 15:179-200. [PMID: 40170762 PMCID: PMC11959232 DOI: 10.3114/fuse.2025.15.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/10/2024] [Indexed: 04/03/2025] Open
Abstract
The Orchidaceae family comprises a highly diverse group of flowering plants. The genus Cattleya is restricted to the Neotropics, with approximately 80 % of the species present in Brazil occurring in epiphytic, rupicolous, and terrestrial habitats. During surveys that aimed to investigate root fungal endophytes of two native orchids, C. locatellii and C. violacea, a total of 10 endophytic isolates were identified as belonging to Eurotiales. A polyphasic approach was applied for the identification and characterization of the cultured species, combining morphological and molecular data. Phylogenetic analyses were performed using the internal transcribed spacers (ITS) of the rDNA, beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase second-largest subunit (RPB2) sequences. Two new endophytic species were identified and described from roots of C. locatellii, namely Penicillium endophyticum sp. nov. (section Aspergilloides), and Talaromyces cattleyae sp. nov. (section Purpurei). In addition, P. yuyongnianii (section Lanata-Divaricata), T. amestolkiae, and T. atkinsoniae (section Talaromyces) were reported as endophytes from the genus Cattleya. Citation: Condé TO, Ramos DO, Nogueira PTS, Pereira OL (2025). Inside out: New root endophytic Penicillium and Talaromyces species isolated from Cattleya orchids (Orchidaceae) in Brazil. Fungal Systematics and Evolution 15: 179-200. doi: 10.3114/fuse.2025.15.08.
Collapse
Affiliation(s)
- T.O. Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - D.O. Ramos
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - P.T.S. Nogueira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - O.L. Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
2
|
de Oliveira JA, Custódio FA, Pereira OL. Cultivable root endophytic fungi associated with Acrocomia aculeata and its antagonistic activity against phytopathogenic oomycetes. Braz J Microbiol 2024; 55:4077-4090. [PMID: 39190259 PMCID: PMC11711853 DOI: 10.1007/s42770-024-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
Macaw palm (Acrocomia aculeata Jacq.) is a palm, native to Brazilian territory that stands out due to the amount of oil produced with applications in the biodiesel industry, cosmetics, and food. Its commercial exploitation in Brazil, including phytosanitary management is based on concepts and practices of regenerative agriculture, which has the responsibility of sustainable cultivation by avoiding, for example, the use of chemical pesticides. Recently, root and stem rot disease were reported in macaw palm seedlings caused by Phytophthora palmivora. Managing this plant pathogen is complex, and the chemical control of this soil-borne oomycete is not viable, in addition to the negative impact on the environment. Many microorganisms are studied and used as biological control agents (BCAs) against pathogens, among them the community of endophytic fungi associated with plants. This is a sustainable biotechnological alternative for plant disease control. The community of cultivable endophytic fungi associated with healthy roots of macaw palm was explored using the extinction cultivation technique and a screening was carried out to select potential antagonists against oomycetes through the dual culture test. Specific gene regions from the best isolates were amplified for identification. A total of 250 isolates were obtained, and 46 were selected for in vitro tests against representatives of phytopathogenic oomycetes. After tests against Phytophthora heterospora, Phytophthora palmivora, Pythium aphanidermatum, and Pythium deliense, two isolates were selected as potential antagonists. The phylogenetic analysis of selected isolates showed that they belong to two different species: Talaromyces sayulitensis COAD 3605 and Epicoccum italicum COAD 3608. The percentage of inhibition of phytopathogenic oomycetes testedwas until 82% in the antagonism tests conducted. From the 46 isolates selected, only 2 were selected which showed great antagonistic activity towards all oomycetes tested. These fungi will be used in upcoming studies that aim to determine the effectiveness of endophytes in controlling diseases caused by oomycetes in the field.
Collapse
Affiliation(s)
| | - Fábio Alex Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
4
|
Adeleke BS, Olowe OM, Ayilara MS, Fasusi OA, Omotayo OP, Fadiji AE, Onwudiwe DC, Babalola OO. Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon 2024; 10:e39636. [PMID: 39553612 PMCID: PMC11564013 DOI: 10.1016/j.heliyon.2024.e39636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The concept of this review underscores a significant shift towards sustainable agricultural practices, particularly from the view point of microbial biotechnology and nanotechnology. The global food insecurity that causes increasing ecological imbalances is exacerbating food insecurity, and this has necessitated eco-friendly agricultural innovations. The chemical fertilizers usage aims at boosting crop yields, but with negative environmental impact, thus pushing for alternatives. Microbial biotechnology and nanotechnology fields are gaining traction for their potential in sustainable agriculture. Endophytic fungi promise to synthesize nanoparticles (NPs) that can enhance crop productivity and contribute to ecosystem stability. Leveraging on endophytic fungi could be key to achieving food security goals. Endophytic fungi explore diverse mechanisms in enhancing plant growth and resilience to environmental stresses. The application of endophytic fungi in agricultural settings is profound with notable successes. Hence, adopting interdisciplinary research approaches by combining mycology, nanotechnology, agronomy, and environmental science can meaningfully serve as potential pathways and hurdles for the commercialization of these biotechnologies. Therefore, setting regulatory frameworks for endophytic nanomaterials use in agriculture, by considering their safety and environmental impact assessments will potentially provide future research directions in addressing the current constraints and unlock the potential of endophytic fungi in agriculture.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Microbiology Programme, Department of Biological Sciences, School of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwaseun Adeyinka Fasusi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwadara Pelumi Omotayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Hawkesbury Institute for Environment, Western Sydney University, Penrith, Australia
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
5
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Nascimento Brito V, Lana Alves J, Sírio Araújo K, de Souza Leite T, Borges de Queiroz C, Liparini Pereira O, de Queiroz MV. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front Microbiol 2023; 14:1095199. [PMID: 37143529 PMCID: PMC10151590 DOI: 10.3389/fmicb.2023.1095199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Fungi belonging to the genus Trichoderma have been widely recognized as efficient controllers of plant diseases. Although the majority of isolates currently deployed, thus far, have been isolated from soil, endophytic Trichoderma spp. is considered to be a promising option for application in biocontrol. In this study, 30 endophytic Trichoderma isolates-obtained from the leaves, stems, and roots of wild Hevea spp. in the Brazilian Amazon-were analyzed using specific DNA barcodes: sequences of internal transcribed spacers 1 and 2 of rDNA (ITS region), genes encoding translation elongation factor 1-α (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2). The genealogical concordance phylogenetic species recognition (GCPSR) concept was used for species delimitation. A phylogenetic analysis showed the occurrence of Trichoderma species, such as T. erinaceum, T. ovalisporum, T. koningiopsis, T. sparsum, T. lentiforme, T. virens, and T. spirale. Molecular and morphological features resulted in the discovery of four new species, such as T. acreanum sp. nov., T. ararianum sp. nov., T. heveae sp. nov., and T. brasiliensis sp. nov. The BI and ML analyses shared a similar topology, providing high support to the final trees. The phylograms show three distinct subclades, namely, T. acreanum and T. ararianum being paraphyletic with T. koningiopsis; T. heveae with T. subviride; and T. brasiliensis with T. brevicompactum. This study adds to our knowledge of the diversity of endophytic Trichoderma species in Neotropical forests and reveals new potential biocontrol agents for the management of plant diseases.
Collapse
Affiliation(s)
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago de Souza Leite
- Instituto Federal do Sudeste de Minas Gerais—Campus Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
8
|
Hagh-Doust N, Färkkilä SM, Hosseyni Moghaddam MS, Tedersoo L. Symbiotic fungi as biotechnological tools: Methodological challenges and relative benefits in agriculture and forestry. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
10
|
Weeds harbor an impressive diversity of fungi, which offers possibilities for biocontrol. Appl Environ Microbiol 2022; 88:e0217721. [PMID: 35080907 DOI: 10.1128/aem.02177-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of herbicides for weed control is very common, but some of them represent a threat to human health, are environmentally detrimental and stimulate herbicide resistance. Therefore, using microorganisms as natural herbicides appears as a promising alternative. The mycoflorae colonizing different species of symptomatic and asymptomatic weeds were compared to characterize the possible mycoherbicidal candidates associated with symptomatic weeds. A collection of 475 symptomatic and asymptomatic plants belonging to 23 weed species was established. A metabarcoding approach based on amplification of the internal transcribed spacer (ITS) region combined with high-throughput amplicon sequencing revealed the diversity of fungal communities hosted by these weeds: 542 fungal genera were identified. The variability of the composition of fungal communities revealed a dispersed distribution of taxa governed neither by geographical location nor by the botanical species, suggesting a common core displaying non-specific interactions with host plants. Beyond this core, specific taxa were more particularly associated with symptomatic plants. Some of these, such as Alternaria, Blumeria, Cercospora, Puccinia, are known pathogens, while others such as Sphaerellopsis, Vishniacozyma and Filobasidium are not, at least on crops, and constitute new tracks to be followed in the search for mycoherbicidal candidates. IMPORTANCE: This approach is original because the diversity of weed-colonizing fungi has rarely been studied before. Furthermore, targeting both the ITS1 and ITS2 regions to characterize the fungal communities i) highlighted the complementarity of these two regions, ii) revealed a great diversity of weed-colonizing fungi, and iii) allowed for the identification of potential mycoherbicides, among which unexpected genera.
Collapse
|
11
|
Ignatova L, Kistaubayeva A, Brazhnikova Y, Omirbekova A, Mukasheva T, Savitskaya I, Karpenyuk T, Goncharova A, Egamberdieva D, Sokolov A. Characterization of cadmium-tolerant endophytic fungi isolated from soybean ( Glycine max) and barley ( Hordeum vulgare). Heliyon 2021; 7:e08240. [PMID: 34765771 PMCID: PMC8570957 DOI: 10.1016/j.heliyon.2021.e08240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/08/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium stress disrupts plant-microbial interactions and reduces plant growth and development. In plants, the tolerance to stress can be increased by inoculation with endophytic microorganisms. The aim of this study was to investigate the distribution of endophytic fungi in various plant organs of barley and soybean and evaluate their Cd removal ability. Two hundred fifty-three fungal strains were isolated from various organs of barley (Hordeum vulgare cv Arna) and soybean (Glycine max cv Almaty). The colonization rate ranged from 13.6% to 57.3% and was significantly higher in the roots. Ten genera were identified: Fusarium, Penicillium, Aspergillus, Metarhizium, Beauveria, Trichoderma, Rhodotorula, Cryptococcus, Aureobasidium and Metschnikowia. Twenty-three fungal strains have a Cd tolerance index from 0.24 to 1.12. Five strains (Beauveria bassiana T7, Beauveria bassiana T15, Rhodotorula mucilaginosa MK1, Rhodotorula mucilaginosa RH2, Metschnikowia pulcherrima MP2) with the highest level of Cd tolerance have minimum inhibitory concentrations from 290 to 2400 μg/ml. These fungi were able to remove Cd up to 59%. The bioaccumulation capacity ranged from 2.3 to 11.9 mg/g. Selected fungal strains could be considered as biological agents for their potential application in the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Togzhan Mukasheva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Tatyana Karpenyuk
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Alla Goncharova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | | | - Alexander Sokolov
- Center of Physico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Kazakhstan
| |
Collapse
|
12
|
Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BHLNS, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR, Degenhardt-Goldbach J, Pietsch JLM, Costa-Ribeiro MCV, Vicente VA. Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe. Curr Microbiol 2021; 78:3218-3229. [PMID: 34213615 DOI: 10.1007/s00284-021-02582-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
The presence of endophytes promotes the biosynthesis of secondary plant metabolites. In this study, endophytic fungi were isolated from Schinus terebinthifolius to investigate their diversity and antimicrobial activity. A total of 272 endophytic fungi was obtained. These belonged to nine different genera: Alternaria, Colletotrichum, Diaporthe, Epicoccum, Fusarium, Pestalotiopsis, Phyllosticta, Xylaria, and Cryptococcus. Notably, Diaporthe foliorum was introduced as a new species, with accompanying morphological descriptions, illustrations, and a multigene phylogenetic analysis (using ITS, TEF1, TUB, HIS, and CAL). Among the 26 fungal morphotypes evaluated for antimicrobial activity, five strains had inhibitory effects against pathogenic microorganisms. Xylaria allantoidea CMRP1424 extracts showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Diaporthe terebinthifolii CMRP1430 and CMRP1436 showed antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Meanwhile, D. foliorum CMRP1321 and D. malorum CMRP1438 extracts inhibited C. albicans alone. Three classes of chemical compounds were identified in D. foliorum CMRP1438 extracts: ferric chloride, potassium hydroxide, and vanillin-sulfuric acid. In conclusion, the endophytic isolates were able to produce bioactive agents with pharmaceutical potential as antibacterial and antifungal agents. As such, they may provide fresh leads in the search for new, biological sources of drug therapies.
Collapse
Affiliation(s)
- Germana D Dos Santos
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| | - Rosana Gonçalves
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gheniffer Fornari
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Beatriz H L N S Maia
- Department of Chemistry, Federal University of Paraná State, Curitiba, PR, Brazil
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Francois Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Chirlei Glienke
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Israella R Colombo
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - João L M Pietsch
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Magda C V Costa-Ribeiro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| |
Collapse
|
13
|
Gonçalves HV, Oki Y, Bordignon L, Ferreira MC, Dos Santos JE, Tameirão LBS, Santos FR, Kalapothakis E, Fernandes GW. Endophytic fungus diversity in soybean plants submitted to conditions of elevated atmospheric CO 2 and temperature. Can J Microbiol 2021; 67:290-300. [PMID: 33031708 DOI: 10.1139/cjm-2020-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Global climatic changes can have drastic impacts on plant species, including severe consequences for the agricultural species productivity. Many of these species present important mutualisms with endophytic fungi that positively influence their performance. The present study evaluated whether the increases in CO2 and temperature predicted for the year 2100 may cause changes in foliar carbon (C) and nitrogen (N) concentrations in soybean (Glycine max) and, consequently, the interactions with its endophytic fungi. The effects of elevated CO2 and temperature were evaluated in four treatments in open-top chambers: (i) control, (ii) increased temperature, (iii) increased CO2, and (iv) increased CO2 and temperature. Increased atmospheric CO2 resulted in decreased foliar N concentration, while increased temperature increased it. A total of 16 taxa of endophytic fungi were identified based on sequencing internal transcribed spacer regions of rRNA subunits. Increased atmospheric CO2 and temperature were observed to potentially modify the endophytic mycobiota of soybean plants. The results suggest that the fungi species substitution is a consequence of changes in foliar N concentration and C/N ratio. Predicted climatic changes shall affect the relationships between plant and endophytes, which in turn, will affect the performance and resistance of soybean, one of the most important crops in the world.
Collapse
Affiliation(s)
- Huberman Valadares Gonçalves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Yumi Oki
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Mariana Costa Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - José Eustáquio Dos Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lucas Barbosa Souza Tameirão
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Fabrício Rodrigues Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Geraldo Wilson Fernandes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
14
|
Boufleur TR, Ciampi‐Guillardi M, Tikami Í, Rogério F, Thon MR, Sukno SA, Massola Júnior NS, Baroncelli R. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:393-409. [PMID: 33609073 PMCID: PMC7938629 DOI: 10.1111/mpp.13036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is one of the most important cultivated plants worldwide as a source of protein-rich foods and animal feeds. Anthracnose, caused by different lineages of the hemibiotrophic fungus Colletotrichum, is one of the main limiting factors to soybean production. Losses due to anthracnose have been neglected, but their impact may threaten up to 50% of the grain production. TAXONOMY While C. truncatum is considered the main species associated with soybean anthracnose, recently other species have been reported as pathogenic on this host. Until now, it has not been clear whether the association of new Colletotrichum species with the disease is related to emerging species or whether it is due to the undergoing changes in the taxonomy of the genus. DISEASE SYMPTOMS Typical anthracnose symptoms are pre- and postemergence damping-off; dark, depressed, and irregular spots on cotyledons, stems, petioles, and pods; and necrotic laminar veins on leaves that can result in premature defoliation. Symptoms may evolve to pod rot, immature opening of pods, and premature germination of grains. CHALLENGES As accurate species identification of the causal agent is decisive for disease control and prevention, in this work we review the taxonomic designation of Colletotrichum isolated from soybean to understand which lineages are pathogenic on this host. We also present a comprehensive literature review of soybean anthracnose, focusing on distribution, symptomatology, epidemiology, disease management, identification, and diagnosis. We consider the knowledge emerging from population studies and comparative genomics of Colletotrichum spp. associated with soybean providing future perspectives in the identification of molecular factors involved in the pathogenicity process. USEFUL WEBSITE Updates on Colletotrichum can be found at http://www.colletotrichum.org/. All available Colletotrichum genomes on GenBank can be viewed at http://www.colletotrichum.org/genomics/.
Collapse
Affiliation(s)
- Thais R. Boufleur
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Maisa Ciampi‐Guillardi
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Ísis Tikami
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Flávia Rogério
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Michael R. Thon
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Serenella A. Sukno
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Nelson S. Massola Júnior
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Riccardo Baroncelli
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| |
Collapse
|
15
|
Araújo KS, Brito VN, Veloso TGR, de Leite TS, Alves JL, da Hora Junior BT, Moreno HLA, Pereira OL, Mizubuti ESG, de Queiroz MV. Diversity and distribution of endophytic fungi in different tissues of Hevea brasiliensis native to the Brazilian Amazon forest. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01613-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Fungal Planet description sheets: 1042-1111. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:301-459. [PMID: 33116344 PMCID: PMC7567971 DOI: 10.3767/persoonia.2020.44.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|
17
|
Sun X, Kosman E, Sharon O, Ezrati S, Sharon A. Significant host- and environment-dependent differentiation among highly sporadic fungal endophyte communities in cereal crops-related wild grasses. Environ Microbiol 2020; 22:3357-3374. [PMID: 32483901 DOI: 10.1111/1462-2920.15107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Endophytic fungi compose a significant part of plant microbiomes. However, while a small number of fungal taxa have proven beneficial impact, the vast majority of fungal endophytes remain uncharacterized, and the drivers of fungal endophyte community (FEC) assembly are not well understood. Here, we analysed FECs in three cereal crops-related wild grasses - Avena sterilis, Hordeum spontaneum and Aegilops peregrina - that grow in mixed populations in natural habitats. Taxa in Ascomycota class Dothideomycetes, particularly the genera Alternaria and Cladosporium, were the most abundant and prevalent across all populations, but there was also high incidence of basidiomyceteous yeasts of the class Tremellomycetes. The fungal community was shaped to large extent by stochastic processes, as indicated by high level of variation even between individuals from local populations of the same plant species, and confirmed by the neutral community model and Raup-Crick index. Nevertheless, we still found strong determinism in FEC assembly with both incidence and abundance data sets. Substantial differences in community composition across host species and locations were revealed. Our research demonstrated that assembly of FECs is affected by stochastic as well as deterministic processes and suggests strong effects of environment heterogeneity and plant species on community composition. In addition, a small number of taxa had high incidence and abundance in all of the 15 populations. These taxa represent an important part of the core FEC and might be of general functional importance.
Collapse
Affiliation(s)
- Xiang Sun
- Institute of Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evsey Kosman
- Institute of Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or Sharon
- Institute of Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Smadar Ezrati
- Institute of Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- Institute of Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
da Silva LL, Moreno HLA, Correia HLN, Santana MF, de Queiroz MV. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 2020; 104:1891-1904. [PMID: 31932894 DOI: 10.1007/s00253-020-10363-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hanna Lorena Alvarado Moreno
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilberty Lucas Nunes Correia
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
19
|
Batzer JC, Mueller DS. Soybean Fungal Endophytes Alternaria and Diaporthe spp. are Differentially Impacted by Fungicide Application. PLANT DISEASE 2020; 104:52-59. [PMID: 31738691 DOI: 10.1094/pdis-05-19-1001-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In field trials in Iowa, we investigated the association of a fungicide applied at early pod set to the diversity and composition of foliar endophytic fungi in presenescent soybeans. The main purpose of our study was to determine whether fungicides affect the microbiome of soybean plants during the pod-fill reproductive stage. In a replicated experiment focused on the impact of a fungicide application including a quinone outside inhibitor (QoI) and a pyrazole-carboxamide spanning two growing seasons, healthy stems and leaves near the tops of soybean were sampled for endophytic fungi. The survey yielded 1,791 isolates belonging to 17 putative species, identified by morphology and sequence analysis of the ribosomal DNA internal transcribed spacer region. Taxa were grouped by genus into operational taxonomic units: Alternaria, Colletotrichum, and Diaporthe were the dominant genera isolated. Plant parts were analyzed separately using a multivariate community analysis of isolate counts per plant. The 14.3% fluxapyroxad and 28.6% pyraclostrobin fungicide spray significantly increased the proportion of Diaporthe isolates over no-spray controls, whereas the inverse occurred for foliar Alternaria isolates. In addition, seed harvested from fields with shorter-season varieties and sprayed with fungicide showed higher percentages of Diaporthe isolates than fields with no fungicide spray. In conclusion, soybean farmers may want to consider that the application of a QoI fungicide in the absence of disease pressure might adversely impact seed quality.
Collapse
Affiliation(s)
- Jean Carlson Batzer
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Daren S Mueller
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
- Integrated Pest Management Program, Iowa State University, Ames, IA
| |
Collapse
|
20
|
Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic microbiota plays a role not only in supplying plants with the basic nutrients indispensable for their growth, but also helps them in the mechanisms of adaptation to various environmental stresses (i.e., salinity, drought), which is important in the aspect of crop yields. From the agricultural and biotechnological points of view, the knowledge of endophytes and their roles in increasing crop yields, plant resistance to diseases, and helping to survive environmental stress is extremely desirable. This paper reviews some of the beneficial plant–microbe interactions that might be potentially used in both agriculture (plant growth stimulation effect, adaptation of host organisms in salinity and drought conditions, and support of defense mechanisms in plants), and in biotechnology (bioactive metabolites, application of endophytes for bioremediation and biotransformation processes, and production of biofertilizers and biopreparations). Importantly, relatively recent reports on endophytes from the last 10 years are summarized in this paper.
Collapse
|
21
|
Cañón ERP, de Albuquerque MP, Alves RP, Pereira AB, Victoria FDC. Morphological and Molecular Characterization of Three Endolichenic Isolates of Xylaria (Xylariaceae), from Cladonia curta Ahti & Marcelli (Cladoniaceae). PLANTS (BASEL, SWITZERLAND) 2019; 8:E399. [PMID: 31597306 PMCID: PMC6843379 DOI: 10.3390/plants8100399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022]
Abstract
Endophyte biology is a branch of science that contributes to the understanding of the diversity and ecology of microorganisms that live inside plants, fungi, and lichen. Considering that the diversity of endolichenic fungi is little explored, and its phylogenetic relationship with other lifestyles (endophytism and saprotrophism) is still to be explored in detail, this paper presents data on axenic cultures and phylogenetic relationships of three endolichenic fungi, isolated in laboratory. Cladonia curta Ahti & Marcelli, a species of lichen described in Brazil, is distributed at three sites in the Southeast of the country, in mesophilous forests and the Cerrado. Initial hyphal growth of Xylaria spp. on C. curta podetia started four days after inoculation and continued for the next 13 days until the hyphae completely covered the podetia. Stromata formation and differentiation was observed, occurring approximately after one year of isolation and consecutive subculture of lineages. Phylogenetic analyses indicate lineages of endolichenic fungi in the genus Xylaria, even as the morphological characteristics of the colonies and anamorphous stromata confirm this classification. Our preliminary results provide evidence that these endolichenic fungi are closely related to endophytic fungi, suggesting that the associations are not purely incidental. Further studies, especially phylogenetic analyses using robust multi-locus datasets, are needed to accept or reject the hypothesis that endolichenic fungi isolated from Xylaria spp. and X. berteri are conspecific.
Collapse
Affiliation(s)
- Ehidy Rocio Peña Cañón
- Grupo de Investigación Biología para la Conservación, Departamento de Biología, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, 150003 Tunja, Colombia.
| | - Margeli Pereira de Albuquerque
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha, 1847, 97300-000 São Gabriel CEP, Brazil.
| | - Rodrigo Paidano Alves
- Max Planck Institute for Chemistry, Andre Araujo Avenue, 2936, 69067-375 Manaus, Brazil.
| | - Antonio Batista Pereira
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha, 1847, 97300-000 São Gabriel CEP, Brazil.
| | - Filipe de Carvalho Victoria
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha, 1847, 97300-000 São Gabriel CEP, Brazil.
| |
Collapse
|
22
|
|
23
|
Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_6] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Kaliane SA, Vanessa NB, Tomás GRV, Tiago DSL, Olinto LP, Eduardo SGM, Marisa VDQ. Diversity of culturable endophytic fungi of Hevea guianensis: A latex producer native tree from the Brazilian Amazon. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
da Silva Ribeiro A, Polonio JC, Costa AT, Dos Santos CM, Rhoden SA, Azevedo JL, Pamphile JA. Bioprospection of Culturable Endophytic Fungi Associated with the Ornamental Plant Pachystachys lutea. Curr Microbiol 2018; 75:588-596. [PMID: 29299623 DOI: 10.1007/s00284-017-1421-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023]
Abstract
Endophytes are fungi and bacteria that inhabit plant tissues without causing disease. Endophytes have characteristics that are important for the health of the plant and have been isolated from several plants of economic and medicinal interest but rarely from ornamental plants. The current study isolates and identifies endophytic fungi from the leaves of Pachystachys lutea and evaluates the antagonistic activity of these endophytes as well as cellulase production by the endophytes. Fungi were isolated by fragmentation from surface-disinfected leaves and were identified by the sequencing of the ITS gene and the genes coding for EF 1-α and β-tubulin followed by multilocus sequence analysis. Molecular taxonomic analysis revealed that 78% of the identified fungi belonged to the genus Diaporthe. We also identified strains belonging to the genera Colletotrichum, Phyllosticta, Xylaria, Nemania, and Alternaria. Most of the strains tested were able to inhibit the growth of pathogenic fungi, especially PL09 (Diaporthe sp.), which inhibited the growth of Colletotrichum sp., and PL03 (Diaporthe sp.), which inhibited the growth of Fusarium oxysporum. The production of cellulase ranged from 0.87 to 1.60 μmol/min. Foliar endophytic fungal isolates from P. lutea showed promising results for the in vitro control of plant pathogens and for cellulase production. This paper is the first report on culturable endophytic fungi isolated from the ornamental plant P. lutea.
Collapse
Affiliation(s)
- Amanda da Silva Ribeiro
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Alessandra Tenório Costa
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Caroline Menicoze Dos Santos
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Sandro Augusto Rhoden
- Federal Institute of Santa Catarina, Km 9 da Rodovia Duque de Caxias, São Francisco do Sul, SC, CEP 89240991, Brazil
| | - João Lúcio Azevedo
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ/USP), Piracicaba, SP, CEP 13418-900, Brazil
| | - João Alencar Pamphile
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil.
| |
Collapse
|
27
|
Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 2017; 207:8-18. [PMID: 29458872 DOI: 10.1016/j.micres.2017.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Accepted: 10/27/2017] [Indexed: 02/03/2023]
Abstract
Endophytic bacteria occupy the same niche of phytopathogens and may produce metabolites that induce the host plant systemic resistance and growth. Host and environmental variables often determine the endophytic community's structure and composition. In this study, we addressed whether the plant genotype, organ, and geographic location influence the structure, composition, and functionality of endophytic bacterial communities in Paullinia cupana. To characterize the communities and identify strains with potential application in agriculture, we analyzed two P. cupana genotypes cultivated in two cities of the State of Amazonas, Brazil. Endophytic bacteria were isolated from surface-disinfested root, leaf, and seed tissues through the fragmentation and maceration techniques. The colonization rate, number of bacteria, richness, diversity, and functional traits were determined. The plant growth-promoting ability of selected bacterial strains was assessed in Sorghum bicolor. We identified 95 bacterial species distributed in 29 genera and 3 phyla (Proteobacteria, Actinobacteria, and Firmicutes). The colonization rate, richness, diversity, and species composition varied across the plant organs; the last parameter also varied across the plant genotype and location. Some strains exhibited relevant plant growth-promoting traits and antagonistic traits against the main phytopathogens of P. cupana, but they were not separated by functional traits. The main bacterial strains with plant growth-promoting traits induced S. bicolor growth. Altogether, our findings open opportunities to study the application of isolated endophytic bacterial strains in the bioprospection of processes and products.
Collapse
|
28
|
Prior R, Mittelbach M, Begerow D. Impact of three different fungicides on fungal epi- and endophytic communities of common bean (Phaseolus vulgaris) and broad bean (Vicia faba). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:376-386. [PMID: 28277075 DOI: 10.1080/03601234.2017.1292093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the impacts of three different fungicides to fungal phyllosphere communities on broad bean (Vicia faba, Fabaceae) and common bean (Phaseolus vulgaris, Fabaceae) were analyzed. The fungicides included copper, sulfur, and azoxystrobin. The plants were sowed, grown, and treated under conditions occurring in conventional and organic farming. A culture-based approach was used to identify changes in the phyllosphere fungal community after the treatment. Different effects on species richness and growth index of the epiphytic and endophytic communities for common bean and broad bean could be shown. Treatments with sulfur showed the weakest effect, followed by those based on copper and the systemic azoxystrobin, which showed the strongest effect especially on endophytic communities. The epiphytic fungal community took five weeks to recover after treatment with azoxystrobin. However, the effect of azoxystrobin on the endophytic community lasted more than five weeks. Finally, the data suggest that the surface structure of the host leaves have a huge impact on the mode of action that the fungicides exert.
Collapse
Affiliation(s)
- René Prior
- a Ruhr-Universität Bochum , Bochum , Germany
| | | | | |
Collapse
|
29
|
Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee IJ. Gibberellins Producing Endophytic Fungus Porostereum spadiceum AGH786 Rescues Growth of Salt Affected Soybean. Front Microbiol 2017; 8:686. [PMID: 28473818 PMCID: PMC5397423 DOI: 10.3389/fmicb.2017.00686] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
In the pursuit of sustainable agriculture through environment and human health friendly practices, we evaluated the potential of a novel gibberellins (GAs) producing basidiomycetous endophytic fungus Porostereum spadiceum AGH786, for alleviating salt stress and promoting health benefits of soybean. Soybean seedlings exposed to different levels of NaCl stress (70 and 140 mM) under greenhouse conditions, were inoculated with the AGH786 strain. Levels of phytohormones including GAs, JA and ABA, and isoflavones were compared in control and the inoculated seedlings to understand the mechanism through which the stress is alleviated. Gibberellins producing endophytic fungi have been vital for promoting plant growth under normal and stress conditions. We report P. spadiceum AGH786 as the ever first GAs producing basidiomycetous fungus capable of producing six types of GAs. In comparison to the so for most efficient GAs producing Gibberella fujikuroi, AGH786 produced significantly higher amount of the bioactive GA3. Salt-stressed phenotype of soybean seedlings was characterized by low content of GAs and high amount of ABA and JA with reduced shoot length, biomass, leaf area, chlorophyll contents, and rate of photosynthesis. Mitigation of salt stress by AGH786 was always accompanied by high GAs, and low ABA and JA, suggesting that this endophytic fungus reduces the effect of salinity by modulating endogenous phytohormones of the seedlings. Additionally, this strain also enhanced the endogenous level of two isoflavones including daidzen and genistein in soybean seedlings under normal as well as salt stress conditions as compared to their respective controls. P. spadiceum AGH786 boosted the NaCl stress tolerance and growth in soybean, by modulating seedlings endogenous phytohormones and isoflavones suggesting a valuable contribution of this potent fungal biofertilizer in sustainable agriculture in salt affected soils.
Collapse
Affiliation(s)
- Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Sumera A. Khan
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Ho-Youn Kim
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Abdul L. Khan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Irshad
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Amjad Iqbal
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University MardanMardan, Pakistan
| | - Samin Jan
- Department of Botany, Islamia College University PeshawarPeshawar, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
30
|
Black LJ, Lucas RM, Sherriff JL, Björn LO, Bornman JF. In Pursuit of Vitamin D in Plants. Nutrients 2017; 9:nu9020136. [PMID: 28208834 PMCID: PMC5331567 DOI: 10.3390/nu9020136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/20/2023] Open
Abstract
Vitamin D deficiency is a global concern. Much research has concentrated on the endogenous synthesis of vitamin D in human skin following exposure to ultraviolet-B radiation (UV-B, 280–315 nm). In many regions of the world there is insufficient UV-B radiation during winter months for adequate vitamin D production, and even when there is sufficient UV-B radiation, lifestyles and concerns about the risks of sun exposure may lead to insufficient exposure and to vitamin D deficiency. In these situations, dietary intake of vitamin D from foods or supplements is important for maintaining optimal vitamin D status. Some foods, such as fatty fish and fish liver oils, certain meats, eggs, mushrooms, dairy, and fortified foods, can provide significant amounts of vitamin D when considered cumulatively across the diet. However, little research has focussed on assessing edible plant foods for potential vitamin D content. The biosynthesis of vitamin D in animals, fungi and yeasts is well established; it is less well known that vitamin D is also biosynthesised in plants. Research dates back to the early 1900s, beginning with in vivo experiments showing the anti-rachitic activity of plants consumed by animals with induced rickets, and in vitro experiments using analytical methods with limited sensitivity. The most sensitive, specific and reliable method for measuring vitamin D and its metabolites is by liquid chromatography tandem mass spectrometry (LC-MS/MS). These assays have only recently been customised to allow measurement in foods, including plant materials. This commentary focuses on the current knowledge and research gaps around vitamin D in plants, and the potential of edible plants as an additional source of vitamin D for humans.
Collapse
Affiliation(s)
- Lucinda J Black
- School of Public Health, Curtin University, Bentley 6102, Australia.
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra 0200, Australia.
| | - Jill L Sherriff
- School of Public Health, Curtin University, Bentley 6102, Australia.
| | - Lars Olof Björn
- Department of Biology, Lund University, SE-223 62 Lund, Sweden.
| | - Janet F Bornman
- International Institute of Agri-Food Security (IIAFS), Curtin University, Bentley 6102, Australia.
| |
Collapse
|
31
|
Dos Santos TT, de Souza Leite T, de Queiroz CB, de Araújo EF, Pereira OL, de Queiroz MV. High genetic variability in endophytic fungi from the genus Diaporthe isolated from common bean (Phaseolus vulgaris L.) in Brazil. J Appl Microbiol 2016; 120:388-401. [PMID: 26541097 DOI: 10.1111/jam.12985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 01/11/2023]
Abstract
AIMS The goals of the present study were to identify, to analyse the phylogenetic relations and to evaluate the genetic variability in Diaporthe endophytic isolates from common bean. METHODS AND RESULTS Diaporthe sp., D. infecunda and D. phaseolorum strains were identified using multilocus phylogeny (rDNA ITS region; EF1-α, β-tubulin, and calmodulin genes). IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) molecular markers reveal the existence of high genetic variability, especially among D. infecunda isolates. CONCLUSIONS It was concluded that the multilocus phylogenetic approach was more effective than individual analysis of ITS sequences, in identifying the isolates to species level, and that IRAP and REMAP markers can be used for studying the genetic variability in the genus Diaporthe particularly at the intraspecific level. SIGNIFICANCE AND IMPACT OF THE STUDY The combined use of molecular tools such as multilocus phylogenetic approach and molecular markers, as performed in this study, is the best way to distinguish endophytic strains of Diaporthe isolated from common bean (Phaseolus vulgaris L.).
Collapse
Affiliation(s)
- T T Dos Santos
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil.,Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - T de Souza Leite
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - C B de Queiroz
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - E F de Araújo
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - O L Pereira
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - M V de Queiroz
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
32
|
Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0377-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Fernandes EG, Pereira OL, da Silva CC, Bento CBP, de Queiroz MV. Diversity of endophytic fungi in Glycine max. Microbiol Res 2015; 181:84-92. [PMID: 26111593 DOI: 10.1016/j.micres.2015.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 01/13/2023]
Abstract
Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal community in G. max leaves and roots, and identifies the genetic relationships among the isolated species.
Collapse
Affiliation(s)
- Elio Gomes Fernandes
- Departamento de Microbiologia - Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, CEP 36570 900 Viçosa, MG, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, CEP 36570 900 Viçosa, MG, Brazil
| | - Cynthia Cânedo da Silva
- Departamento de Microbiologia - Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, CEP 36570 900 Viçosa, MG, Brazil
| | - Claudia Braga Pereira Bento
- Departamento de Microbiologia - Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, CEP 36570 900 Viçosa, MG, Brazil
| | - Marisa Vieira de Queiroz
- Departamento de Microbiologia - Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, CEP 36570 900 Viçosa, MG, Brazil.
| |
Collapse
|
34
|
Genetic diversity of endophytic fungi from Coffea arabica cv. IAPAR-59 in organic crops. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1168-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
|
36
|
Murphy BR, Martin Nieto L, Doohan FM, Hodkinson TR. Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology 2015; 6:139-150. [PMID: 30151322 PMCID: PMC6106079 DOI: 10.1080/21501203.2015.1070213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/02/2015] [Indexed: 01/29/2023] Open
Abstract
Endophytes associated with crops have potential as beneficial inoculants in agriculture, but little is known about their genetic diversity and phylogenetic relationships. We carried out the first ever ecological and phylogenetic survey of the culturable fungal root endophytes of a wild barley species. Fungal root endophytes were isolated from 10 populations of wall barley (Hordeum murinum), and 112 taxa of fungi were identified based on internal transcribed spacer sequence similarity. We found representatives from 8 orders, 12 families and 18 genera. Within this group, only 34 isolates (30% of the total) could be confidently assigned to a species, and 23 of the isolates (21% of the total) had no significant match to anything deposited in GenBank (based on <85% sequence similarity). These results suggest a high proportion of novel fungi, with 28% not assigned to a known fungal order. This includes three endophytes that have been shown to significantly improve agronomic traits in cultivated barley. This study has, therefore, revealed a profound diversity of fungal root endophytes in a single wild relative of barley. Extrapolating from this, the study highlights the largely unknown, hugely diverse and potentially useful resource of crop wild relative endophytes.
Collapse
Affiliation(s)
- Brian R. Murphy
- School of Natural Sciences & Trinity Centre for Biodiversity Research, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Lucia Martin Nieto
- Agricultural and Environmental Sciences Faculty, Salamanca University, 37007Salamanca, Spain
| | - Fiona M. Doohan
- UCD Earth Institute and School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Trevor R. Hodkinson
- School of Natural Sciences & Trinity Centre for Biodiversity Research, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
37
|
Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 2015; 6:8-27. [PMID: 26000195 PMCID: PMC4409047 DOI: 10.1080/21501203.2015.1009186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/13/2015] [Indexed: 01/30/2023] Open
Abstract
Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
Collapse
Affiliation(s)
- Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Amninder Kaur
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico, DF04510, Mexico
| | - Rahul Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Stanley H. Faeth
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| |
Collapse
|
38
|
Gonzaga LL, Costa LEO, Santos TT, Araújo EF, Queiroz MV. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 2014; 118:485-96. [PMID: 25410007 DOI: 10.1111/jam.12696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/04/2014] [Accepted: 11/10/2014] [Indexed: 01/18/2023]
Abstract
AIMS To evaluate the diversity of endophytic fungi from the leaves of the common bean and the genetic diversity of endophytic fungi from the genus Colletotrichum using IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism) analyses. METHODS AND RESULTS The fungi were isolated by tissue fragmentation and identified by analysing the morphological features and sequencing the internal transcribed spacer (ITS) regions and the rDNA large subunit (LSU). Twenty-seven different taxa were identified. Colletotrichum was the most commonly isolated genera from the common bean (32.69% and 24.29% of the total isolates from the Ouro Negro and Talismã varieties, respectively). The IRAP and REMAP analyses revealed a high genetic diversity in the Colletotrichum endophytic isolates and were able to discriminate these isolates from the phytopathogen Colletotrichum lindemuthianum. CONCLUSIONS Fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris endophytic community, and the IRAP and REMAP markers can be used to rapidly distinguish between C. lindemuthianum and other Colletotrichum members that are frequently found as endophytes. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the diversity of endophytic fungi present in the common bean and the use of IRAP and REMAP markers to assess the genetic diversity of endophytic fungi from the genus Colletotrichum.
Collapse
Affiliation(s)
- L L Gonzaga
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
39
|
Updating on the fungal composition in Sardinian sheep's milk by culture-independent methods. J DAIRY RES 2014; 81:233-7. [PMID: 24666807 DOI: 10.1017/s0022029914000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work applies culture-independent methods for the characterization of fungal populations (yeasts and moulds) naturally occurring in Sardinian ewe's milk sampled in the Italian areas with the largest dairy production (Sardinia and Lazio regions). Sequences of the D1/D2 variable domains at the 5' end of the 26S rRNA gene were obtained by amplification of DNA directly isolated from milk, and this allowed identification of a total of 6 genera and 15 species of fungi. Among the 6 identified genera Geotrichum spp., Candida spp., Phaeosphaeriopsis spp., Pestalotiopsis spp. and Cladosporium spp. belong to the phylum of Ascomycota, while Cryptococcus spp. is part of the phylum of Basidiomycota. In particular, two genera (Pestalotiopsis and Phaeosphaeriopsis) and two species (Plectosphaerella cucumerina and Pryceomyces carsonii) have never been reported in dairy ecosystems before. Results provide evidence that several moulds and yeasts, previously described only in ovine cheeses, are transferred directly from raw milk. The knowledge of fungal consortia inhabiting sheep raw milk is a particularly relevant issue because several species are directly involved in cheese making and ripening, determining the typical aroma. On the other hand, spoilage yeasts and moulds are involved in anomalous fermentation of cheese and may be responsible for considerable economic losses and serious risks for consumers' health.
Collapse
|
40
|
Barcelos QL, Pinto JMA, Vaillancourt LJ, Souza EA. Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil. PLoS One 2014; 9:e90910. [PMID: 24633173 PMCID: PMC3954623 DOI: 10.1371/journal.pone.0090910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Anthracnose caused by Colletotrichum lindemuthianum is an important disease of common bean, resulting in major economic losses worldwide. Genetic diversity of the C. lindemuthianum population contributes to its ability to adapt rapidly to new sources of host resistance. The origin of this diversity is unknown, but sexual recombination, via the Glomerella teleomorph, is one possibility. This study tested the hypothesis that Glomerella strains that are frequently recovered from bean anthracnose lesions represent the teleomorph of C. lindemuthianum. A large collection of Glomerella isolates could be separated into two groups based on phylogenetic analysis, morphology, and pathogenicity to beans. Both groups were unrelated to C. lindemuthianum. One group clustered with the C. gloeosporioides species complex and produced mild symptoms on bean tissues. The other group, which belonged to a clade that included the cucurbit anthracnose pathogen C. magna, caused no symptoms. Individual ascospores recovered from Glomerella perithecia gave rise to either fertile (perithecial) or infertile (conidial) colonies. Some pairings of perithecial and conidial strains resulted in induced homothallism in the conidial partner, while others led to apparent heterothallic matings. Pairings involving two perithecial, or two conidial, colonies produced neither outcome. Conidia efficiently formed conidial anastomosis tubes (CATs), but ascospores never formed CATs. The Glomerella strains formed appressoria and hyphae on the plant surface, but did not penetrate or form infection structures within the tissues. Their behavior was similar whether the beans were susceptible or resistant to anthracnose. These same Glomerella strains produced thick intracellular hyphae, and eventually acervuli, if host cell death was induced. When Glomerella was co-inoculated with C. lindemuthianum, it readily invaded anthracnose lesions. Thus, the hypothesis was not supported: Glomerella strains from anthracnose lesions do not represent the teleomorphic phase of C. lindemuthianum, and instead appear to be bean epiphytes that opportunistically invade and sporulate in the lesions.
Collapse
Affiliation(s)
- Quélen L. Barcelos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Joyce M. A. Pinto
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Sinop, Mato Grosso, Brazil
| | - Lisa J. Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Elaine A. Souza
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
41
|
Characteristics of foliar fungal endophyte assemblages and host effective components in Salvia miltiorrhiza Bunge. Appl Microbiol Biotechnol 2013; 98:3143-55. [DOI: 10.1007/s00253-013-5300-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
|