1
|
Tripathi SD, Mitra R, Kulshrestha S, Rabiya R, Sen R. Bicarbonate induced enhanced production of microalgal extracellular polymeric substance and its characterization. BIORESOURCE TECHNOLOGY 2025; 423:132232. [PMID: 39961520 DOI: 10.1016/j.biortech.2025.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Chlorella vulgaris, a green microalga, produces extracellular polymeric substances (EPSs) that aid in microalgal self-settling and offer protection against physicochemical stresses. To develop an efficient bioprocess for EPS production, C. vulgaris was cultivated in modified Bold's Basal Medium with varying initial concentrations of sodium bicarbonate in photobioreactors. At 130 mM bicarbonate, higher biomass concentration of 1.60 ± 0.04 g/L and productivity of 0.19 ± 0.02 g/L/d were achieved after 8 days. A relatively higher EPS yield of 183 ± 2 mg/g biomass was obtained at 190 mM bicarbonate resulting in 5-fold increase over control. EPS promoted maximum microalgal auto-flocculation within 8 h in 190 mM bicarbonate and was identified as a glycoprotein with molecular weight of 1400 kDa. This innovative strategy of utilizing bicarbonate as a source of dissolved inorganic carbon not only enhances EPS production but also demonstrates a potentially scalable method for carbon dioxide capture from flue gases.
Collapse
Affiliation(s)
- Serveshwar Dutt Tripathi
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, Paschim Medinipur, West Bengal, India.
| | - Romit Mitra
- P K Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur - 721302, Paschim Medinipur, West Bengal, India.
| | - Samridhi Kulshrestha
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, Paschim Medinipur, West Bengal, India.
| | - Rabiya Rabiya
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, Paschim Medinipur, West Bengal, India.
| | - Ramkrishna Sen
- Department of Bioscience & Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
2
|
Harbaoui A, Khelifi N, Aissaoui N, Muzard M, Martinez A, Smaali I. A novel bioactive and functional exopolysaccharide from the cyanobacterial strain Arthrospira maxima cultivated under salinity stress. Bioprocess Biosyst Eng 2025; 48:445-460. [PMID: 39688685 DOI: 10.1007/s00449-024-03120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Cyanobacterial exopolysaccharides (EPS) remain released by cyanobacteria in the surrounding environment with the main purpose of protection against harmful environmental conditions. Recently, they have received significant attention due to their unique structural characteristics, functional properties, and potential applications across various fields. The current study describes the evaluation of EPS production under salinity stress from Arthrospira maxima. The application of high salinity up to 40 g/L enhanced EPS production, which was collected and purified by alcohol precipitation followed by membrane dialysis and lyophilization. A yield of 60 mg/L was obtained. The Size exclusion chromatography gave for the purified EPS an apparent molecular weight of 2.1 × 105 Da. Monosaccharide composition showed that EPS is a heteropolymer, with mannose, xylose, and glucuronic acid identified as the predominant monosaccharides and derivatives. Nuclear magnetic resonance spectroscopy (13C and 1H) confirmed that EPS is a heteropolysaccharide, entirely in α- anomeric configuration, with glucuronic acid as a main monomer that is probably linked to mannose and xylose via α-glycosidic linkages. Bioactivity assessment of EPS revealed that it exhibits antibacterial activity against several strains, notably, Bacillus subtilis (MIC: 0.6 ± 0.05 mg/mL), Bacillus cereus (MIC: 1 ± 0.01 mg/mL), Escherichia coli (MIC: 0.8 ± 0.01 mg/mL) and Klebsiella pneumonia (MIC: 0.8 ± 0.01 mg/mL). Antioxidant activity was measured using the DPPH radical scavenging assay, yielding an IC₅₀ of 6.83 mg/mL. Besides, EPS was also found to exhibit an interesting emulsifying property with several oil types, indicating its potential as a versatile biopolymer for applications in various industrial sectors.
Collapse
Affiliation(s)
- Amel Harbaoui
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
| | - Nadia Khelifi
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
- University of Carthage, Higher Institute of Marine Sciences of Bizerte, BP 15, Errimel, 7080, Bizerte, Tunisia
| | - Neyssene Aissaoui
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France
| | - Agathe Martinez
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France
| | - Issam Smaali
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
3
|
Wu S, Wang F, Wang H, Shen C, Yu K. Meta-Analysis of Abiotic Conditions Affecting Exopolysaccharide Production in Cyanobacteria. Metabolites 2025; 15:131. [PMID: 39997756 PMCID: PMC11857606 DOI: 10.3390/metabo15020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Background: cyanobacterial exopolysaccharides (EPSs) exhibit diverse biological and physicochemical properties, making them valuable for applications in environmental remediation, soil improvement, wastewater treatment, and bioenergy production. Results: the production of cyanobacterial EPSs is significantly influenced by various factors, including abiotic factors and strains. Recent research has focused on optimizing EPS production by regulating key abiotic factors such as light, temperature, pH, and nutritional conditions. This review systematically compiles and analyzes published data on the effects of abiotic factors on cyanobacterial EPS biosynthesis, with a focus on genus-specific responses. Using meta-analysis techniques, we provide a comprehensive overview of the key factors influencing EPS production. Light and nutrient conditions are the most significant factors affecting EPS production, with high light intensities and optimal nutrient conditions enhancing EPS synthesis. Optimal temperature ranges and pH levels are essential for maximizing EPS production, and cyanobacteria exhibit genus-specific responses to variations in these factors. The addition of specific nutrients, such as NaCl, trace metals (e.g., Mg, Zn, Cu), and elevated CO2 levels, significantly impacts EPS production. Conclusions: the response to these factors varies among different cyanobacterial genera, highlighting the need for genus-specific optimization strategies. This review provides a theoretical basis for optimizing EPS production across diverse cyanobacterial genera and for understanding multi-factor interactions and practical applications in future research.
Collapse
Affiliation(s)
- Shijie Wu
- College of Resources and Environment and Life Sciences, Ningxia Normal University, Guyuan 756000, China; (S.W.); (H.W.); (C.S.)
- Key Laboratory of Soil Ecological Health and Microbial Regulation, Ningxia Normal University, Guyuan 756000, China
| | - Fuwen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Hong Wang
- College of Resources and Environment and Life Sciences, Ningxia Normal University, Guyuan 756000, China; (S.W.); (H.W.); (C.S.)
| | - Cong Shen
- College of Resources and Environment and Life Sciences, Ningxia Normal University, Guyuan 756000, China; (S.W.); (H.W.); (C.S.)
| | - Kaiqiang Yu
- College of Resources and Environment and Life Sciences, Ningxia Normal University, Guyuan 756000, China; (S.W.); (H.W.); (C.S.)
| |
Collapse
|
4
|
da Silva MBF, Teixeira CMLL. Cyanobacterial and microalgae polymers: antiviral activity and applications. Braz J Microbiol 2024; 55:3287-3301. [PMID: 39008244 PMCID: PMC11711419 DOI: 10.1007/s42770-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.
Collapse
Affiliation(s)
- Mariana Barbalho Farias da Silva
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
5
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Zhou Y, Cui X, Wu B, Wang Z, Liu Y, Ren T, Xia S, Rittmann BE. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction. BIORESOURCE TECHNOLOGY 2024; 406:131054. [PMID: 38944317 DOI: 10.1016/j.biortech.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Microalgae extracellular polymeric substances (EPS) are complex high-molecular-weight polymers and the physicochemical properties of EPS strongly affect the core features of microalgae cultivation and resource utilization. Revealing the key roles of EPS in microalgae life-cycle processes in an interesting and novelty topic to achieve energy-efficient practical application of microalgae. This review found that EPS showed positive effect in non-gas uptake, extracellular electron transfer, toxicity resistance and heterotrophic symbiosis, but negative impact in gas transfer and light utilization during microalgae cultivation. For biomass harvesting, EPS favored biomass flocculation and large-size cell self-flocculation, but unfavored small size microalgae self-flocculation, membrane filtration, charge neutralization and biomass dewatering. During bioproducts extraction, EPS exhibited positive impact in extractant uptake, but the opposite effect in cellular membrane permeability and cell rupture. Future research on microalgal EPS were also identified, which offer suggestions for comprehensive understanding of microalgal EPS roles in various scenarios.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America
| |
Collapse
|
7
|
Zheng Z, Wang X, Zhang W, Wang L, Lyu H, Tang J. Regulation of ARGs abundance by biofilm colonization on microplastics under selective pressure of antibiotics in river water environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120402. [PMID: 38428183 DOI: 10.1016/j.jenvman.2024.120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaolong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wenzhu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Saleem S, Sheikh Z, Iftikhar R, Zafar MI. Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119847. [PMID: 38142597 DOI: 10.1016/j.jenvman.2023.119847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.
Collapse
Affiliation(s)
- Sahar Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Rashid Iftikhar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
9
|
Promising Biomolecules with High Antioxidant Capacity Derived from Cryptophyte Algae Grown under Different Light Conditions. BIOLOGY 2022; 11:biology11081112. [PMID: 35892969 PMCID: PMC9331842 DOI: 10.3390/biology11081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g−1 dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g−1 DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g−1 DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 µg mL−1. Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
Collapse
|
10
|
Laroche C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar Drugs 2022; 20:md20050336. [PMID: 35621987 PMCID: PMC9148076 DOI: 10.3390/md20050336] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic organisms that can produce/accumulate biomolecules with industrial interest. Among these molecules, EPSs are macromolecular polysaccharidic compounds that present biological activities and physico-chemical properties, allowing to consider their valorization in diverse commercial markets, such as cosmetic, therapeutic, nutraceutic, or hydrocolloids areas. The number of microalgae and cyanobacteria strains described to produce such EPSs has increased in recent years as, among the 256 producing strains gathered in this review, 86 were published in the last 10 years (~33%). Moreover, with the rise of research on microalgae EPSs, a variety of monosaccharides compositions have been discovered, highlighting the versatility of these organisms. If some production strategies can be applied to increase EPS production yields, it appears that case by case studies are needed to promote EPS synthesis by a strain, as many responses exist. This paper proposes an up-to-date state of the art of the diversity of microalgae and cyanobacteria EPS-producing strains, associated to the variability of compositions. The strategies for the production and extraction of the polymers are also discussed. Finally, an overview of the biological activities and physico-chemical properties allow one to consider their use on several commercial markets.
Collapse
Affiliation(s)
- Céline Laroche
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Jung SH, Zell N, Boßle F, Teipel U, Rauh C, McHardy C, Lindenberger C. Influence of Process Operation on the Production of Exopolysaccharides in Arthrospira platensis and Chlamydomonas asymmetrica. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.883069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular polysaccharides, or exopolysaccharides are high–molecular weight sugar-based polymers expressed and secreted by many microorganisms. As host organisms, the functions of exopolysaccharides are diverse, ranging from physical protection via biofilm formation, adhesion, and water retention to biological functions that are not entirely understood such as viral attachment inhibition. Industrial applications of exopolysaccharides can be found in food texture modification; for example, utilizing the hydrocolloidal properties of exopolysaccharides for thickening and gelling purposes to improve food quality and texture. Over the last decade, biologically active exopolysaccharides produced by microalgae have received attention for their potential as antiviral, antibacterial and antioxidative compounds and in the applications. However, relatively low yield and productivity are the limiting factors for full-scale industrial application. In this study, the well-known prokaryotic phototrophic microorganism Arthrospira platensis and the comparatively unknown eukaryotic unicellular green alga Chlamydomonas asymmetrica were used to evaluate the influence of different process parameters on exopolysaccharides formation and productivity. In addition to the essential control variables (light and temperature), the influence of operational techniques (batch and turbidostat) were also investigated. Although the two studied algae are differently affected by above parameters. The light intensity was the most influential parameter observed in the study, leading to differences in exopolysaccharides concentrations by a factor of 10, with the highest measured concentration for A. platensis of cEPS = 0.138 g L−1 at 180 μmol m−2 s−1 and for C. asymmetrica of cEPS = 1.2 g L−1 at 1,429 μmol m−2 s−1. In continuous systems, the achieved exopolysaccharides concentrations were low compared to batch process, however, slightly higher productivities were reached. Regardless of all screened process parameters, C. asymmetrica is the better organism in terms of exopolysaccharides concentrations and productivity.
Collapse
|
12
|
Qian L, Ye X, Xiao J, Lin S, Wang H, Liu Z, Ma Y, Yang L, Zhang Z, Wu L. Nitrogen concentration acting as an environmental signal regulates cyanobacterial EPS excretion. CHEMOSPHERE 2022; 291:132878. [PMID: 34780741 DOI: 10.1016/j.chemosphere.2021.132878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
As an important carbon (C) storage in biological soil crusts (BSCs), exopolysaccharides (EPSs) are not only a part of the desert C cycle, but also the key materials for cyanobacteria to resist desert stress. In this study, the influence of initial N concentrations (10, 25 and 50 mg L-1 designated as N10, N25 and N50 respectively) on Microcoleus vaginatusis growth and the excretion of EPSs including RPS (released exopolysaccharides) and CPS (capsule exopolysaccharides) were evaluated at different growth periods. In logarithmic period, higher ratio of biomass to EPSs indicated by (DW-CPS)/EPSs was observed in the N50 group with the highest N concentration (about 40 mg L-1) in the medium, while no difference was observed among the three groups in stationary period when the N concentrations of medium were lower than 25 mg L-1. The CPS/RPS showed similar results with (DW-CPS)/EPSs, and stayed higher than 1 in each group. Notably, obvious difference displayed in the monosaccharidic composition and morphologies between CPS and RPS, but not the N levels. The changes of C/N in cells at different growth period indicate that the excretion of EPSs, a mechanism that maintains the balance of cell C/N ratio, only works when the N in the environment is sufficient. Our results showed that, as the raw material and environmental signal, environmental N concentration regulates the elements (C and N) percentage of cyanobacterial cells and its EPSs excretion pattern, but not the monosaccharidic composition or the morphologies. These results also implied that, as the essential self-protecting materials, more EPSs with higher proportion of CPS would be excreted to response the low N environment.
Collapse
Affiliation(s)
- Long Qian
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Xingwang Ye
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Jingshang Xiao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Simeng Lin
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Zhe Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Zulin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China.
| |
Collapse
|
13
|
Lamparter T, Babian J, Fröhlich K, Mielke M, Weber N, Wunsch N, Zais F, Schulz K, Aschmann V, Spohrer N, Krauß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 2022; 17:e0249509. [PMID: 35085243 PMCID: PMC8794177 DOI: 10.1371/journal.pone.0249509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| | - Jennifer Babian
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Katrin Fröhlich
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Marion Mielke
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nora Weber
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nadja Wunsch
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Finn Zais
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Kevin Schulz
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Vera Aschmann
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nina Spohrer
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
14
|
Li X, Hui R, Tan H, Zhao Y, Liu R, Song N. Biocrust Research in China: Recent Progress and Application in Land Degradation Control. FRONTIERS IN PLANT SCIENCE 2021; 12:751521. [PMID: 34899777 PMCID: PMC8656959 DOI: 10.3389/fpls.2021.751521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Desert ecosystems are generally considered lifeless habitats characterised by extreme environmental conditions, yet they are successfully colonised by various biocrust nonvascular communities. A biocrust is not only an important ecosystem engineer and a bioindicator of desert ecological restoration but also plays a vital role in linking surficial abiotic and biotic factors. Thus, extensive research has been conducted on biocrusts in critical dryland zones. However, few studies have been conducted in the vast temperate deserts of China prior to the beginning of this century. We reviewed the research on biocrusts conducted in China since 2000, which firstly focused on the eco-physiological responses of biocrusts to species composition, abiotic stresses, and anthropological disturbances. Further, research on the spatial distributions of biocrusts as well as their succession at different spatial scales, and relationships with vascular plants and soil biomes (especially underlying mechanisms of seed retention, germination, establishment and survival of vascular plants during biocrust succession, and creation of suitable niches and food webs for soil animals and microorganisms) was analysed. Additionally, studies emphasising on the contribution of biocrusts to ecological and hydrological processes in deserts as well as their applications in the cultivation and inoculation of nonvascular plants for land degradation control and ecological restoration were assessed. Finally, recent research on biocrusts was evaluated to propose future emerging research themes and new frontiers.
Collapse
Affiliation(s)
- Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Rong Hui
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huijuan Tan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Rentao Liu
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Naiping Song
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| |
Collapse
|
15
|
Abstract
In view of high energy cost and water consumption in microalgae cultivation, microalgal-biofilm-based cultivation system has been advocated as a solution toward a more sustainable and resource friendlier system for microalgal biomass production. Algal-derived extracellular polymeric substances (EPS) form cohesive network to interconnect the cells and substrates; however, their interactions within the biofilm are poorly understood. This scenario impedes the biofilm process development toward resource recovery. Herein, this review elucidates on various biofilm cultivation modes and contribution of EPS toward biofilm adhesion. Immobilized microalgae can be envisioned by the colloid interactions in terms of a balance of both dispersive and polar interactions among three interfaces (cells, mediums and substrates). Last portion of this review is dedicated to the future perspectives and challenges on the EPS; with regard to the biopolymers extraction, biopolymers’ functional description and cross-referencing between model biofilms and full-scale biofilm systems are evaluated. This review will serve as an informative reference for readers having interest in microalgal biofilm phenomenon by incorporating the three main players in attached cultivation systems: microalgae, EPS and supporting materials. The ability to mass produce these miniature cellular biochemical factories via immobilized biofilm technology will lay the groundwork for a more sustainable and feasible production.
Collapse
Affiliation(s)
- Yi Tong Cheah
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
16
|
Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.
Collapse
|
17
|
Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. ENERGIES 2021. [DOI: 10.3390/en14134007] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microalgae are natural resources of intracellular compounds with a wide spectrum of applications in, e.g., the food industry, pharmacy, and biofuel production. The extracellular polymeric substances (EPS) released by microalgal cells are a valuable bioproduct. Polysaccharides, protein, lipids, and DNA are the main constituents of EPS. This review presents the recent advances in the field of the determinants of the synthesis of extracellular polymeric substances by microalgal cells and the EPS structure. Physical and chemical culture conditions have been analyzed to achieve useful insights into the development of a strategy optimizing EPS production by microalgal cells. The application of microalgal EPS for flocculation and mechanisms involved in this process are also discussed in terms of biomass harvesting. Additionally, the ability of EPS to remove toxic heavy metals has been analyzed. With their flocculation and sorption properties, microalgal EPS are a promising bioproduct that can potentially be used in harvesting algal biomass and wastewater management.
Collapse
|
18
|
Xiao Y, Cheng Y, He P, Wu X, Li Z. New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145680. [PMID: 33607435 DOI: 10.1016/j.scitotenv.2021.145680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
External layers, the outermost structures around cells, perform essential eco-physiological functions to support cyanobacteria and microalgae in aquatic environments. These layers have been recognized as adaptations to turbulence, a ubiquitous and inherent physical process occurring in the environments of most cyanobacteria and microalgae. However, the underlying biophysical mechanism of these layers is still poorly understood. Force measurements were performed directly on the external layers of eight living cyanobacterial and green algal strains in situ using atomic force microscopy (AFM). We developed a wavelet analysis method based on a multiscale decomposition of derivative force-distance curves to quantify the elastic responses of various external layers upon mechanical deformation. Such analysis has the advantages of detecting singularities and distinguishing the biomechanical contributions of each external layer. The elastic modulus of the same type of external layer follows the same statistical distribution. However, the elastic response among different types of external layers is challenged by our method, indicating the heterogeneity of the mechanical properties of inner and outer layers in multilayer strains. This discrepancy was due to the thickness and texture of each external layer, especially the chemical presence of ribose, hydroxyproline and glutamic acid. This study highlights a new way to elucidate more precise information about external layers and provides a biophysical mechanistic explanation for the functioning of the various external layers to protect cyanobacterial and microalgal cells in a turbulent environment.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuran Cheng
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Pan He
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
19
|
Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020; 21:E7204. [PMID: 33003478 PMCID: PMC7582838 DOI: 10.3390/ijms21197204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.
Collapse
Affiliation(s)
- Maciej Ciebiada
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
20
|
Medina-Cabrera EV, Rühmann B, Schmid J, Sieber V. Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyanobacteria have the potential to become an industrially sustainable source of functional biopolymers. Their exopolysaccharides (EPS) harbor chemical complexity, which predicts bioactive potential. Although some are reported to excrete conspicuous amounts of polysaccharides, others are still to be discovered. The production of this strain-specific trait can promote carbon neutrality while its intrinsic location can potentially reduce downstream processing costs. To develop an EPS cyanobacterial bioprocess (Cyano-EPS) three steps were explored: the selection of the cyanobacterial host; optimization of production parameters; downstream processing. Studying the production parameters allow us to understand and optimize their response in terms of growth and EPS production though many times it was found divergent. Although the extraction of EPS can be achieved with a certain degree of simplicity, the purification and isolation steps demand experience. In this review, we gathered relevant research on EPS with a focus on bioprocess development. Challenges and strategies to overcome possible drawbacks are highlighted.
Collapse
|
23
|
Tiwari ON, Sasmal S, Kataria AK, Devi I. Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech 2020; 10:221. [PMID: 32355595 PMCID: PMC7188750 DOI: 10.1007/s13205-020-02200-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Extracellular polymeric substances (EPS) are biopolymers, composed of polysaccharides, nucleic acids, proteins and lipids, which possess unique functional properties. Despite significant strides made in chemical production processes for polymers, the niche occupied by exopolysaccharides produced by bacteria, yeast or algae is steadily growing in its importance. With the availability of modern tools, a lot of information has been generated on the physico-chemical and biological properties using spectrometric tools, while advanced microscopic techniques have provided valuable insights into the structural-functional aspects. The size of EPS generally ranges between 10 and 10,000 kDa. The wide spectra of applications of EPS as adhesives, stabilizer, gelling, suspending, thickening agent, and surfactants in food and pharmaceutical industries are observed. The health benefits of these EPS enable the improvement of dual function, added value, and green products. This review summarizes previous work on the structural composition, rheological and thermal behaviour, and biosynthetic pathways of EPS and bioprocesses developed for their production. This review also considers each of the above factors and presents the current knowledge on the importance and refinement of available downstream protocols and genetic engineering towards specific food applications, which can help to diversify their prospects in different food and allied industries.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Soumya Sasmal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Ajay Kumar Kataria
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Indrama Devi
- DBT-Institute of Bioresources and Sustainable Development, Imphal, Manipur 795001 India
| |
Collapse
|
24
|
Jaroszuk-Ściseł J, Nowak A, Komaniecka I, Choma A, Jarosz-Wilkołazka A, Osińska-Jaroszuk M, Tyśkiewicz R, Wiater A, Rogalski J. Differences in Production, Composition, and Antioxidant Activities of Exopolymeric Substances (EPS) Obtained from Cultures of Endophytic Fusarium culmorum Strains with Different Effects on Cereals. Molecules 2020; 25:E616. [PMID: 32019268 PMCID: PMC7037457 DOI: 10.3390/molecules25030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Exopolymeric substances (EPS) can determine plant-microorganism interactions and have great potential as bioactive compounds. The different amounts of EPS obtained from cultures of three endophytic Fusarium culmorum strains with different aggressiveness-growth promoting (PGPF), deleterious (DRMO), and pathogenic towards cereal plants-depended on growth conditions. The EPS concentrations (under optimized culture conditions) were the lowest (0.2 g/L) in the PGPF, about three times higher in the DRMO, and five times higher in the pathogen culture. The EPS of these strains differed in the content of proteins, phenolic components, total sugars, glycosidic linkages, and sugar composition (glucose, mannose, galactose, and smaller quantities of arabinose, galactosamine, and glucosamine). The pathogen EPS exhibited the highest total sugar and mannose concentration. FTIR analysis confirmed the β configuration of the sugars. The EPS differed in the number and weight of polysaccharidic subfractions. The EPS of PGPF and DRMO had two subfractions and the pathogen EPS exhibited a subfraction with the lowest weight (5 kDa). The three EPS preparations (ethanol-precipitated EP, crude C, and proteolysed P) had antioxidant activity (particularly high for the EP-EPS soluble in high concentrations). The EP-EPS of the PGPF strain had the highest antioxidant activity, most likely associated with the highest content of phenolic compounds in this EPS.
Collapse
Affiliation(s)
- Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Iwona Komaniecka
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Adam Choma
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Renata Tyśkiewicz
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
- Military Institute of Hygiene and Epidemiology, Lubelska St. 2, 24-100 Puławy, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| |
Collapse
|
25
|
Gaignard C, Laroche C, Pierre G, Dubessay P, Delattre C, Gardarin C, Gourvil P, Probert I, Dubuffet A, Michaud P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101711] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Mota R, Vidal R, Pandeirada C, Flores C, Adessi A, De Philippis R, Nunes C, Coimbra MA, Tamagnini P. Cyanoflan: A cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydr Polym 2019; 229:115525. [PMID: 31826510 DOI: 10.1016/j.carbpol.2019.115525] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
The extracellular polysaccharides produced by cyanobacteria have distinctive characteristics that make them promising for applications ranging from bioremediation to biomedicine. In this study, a sulfated polysaccharide produced by a marine cyanobacterial strain and named cyanoflan was characterized in terms of morphology, chemical composition, and rheological and emulsifying properties. Cyanoflan has a 71 % carbohydrate content, with 11 % of sulfated residues, while the protein account for 4 % of dry weight. The glycosidic-substitution analysis revealed a highly branched complex chemical structure with a large number of sugar residues. The cyanoflan high molecular mass fractions (above 1 MDa) and entangled structure is consistent with its high apparent viscosity in aqueous solutions and high emulsifying activity. It showed to be a typical non-Newtonian fluid with pseudoplastic behavior. Altogether, these results confirm that cyanoflan is a versatile carbohydrate polymer that can be used in different biotechnological applications, such as emulsifying/thickening agent in food or cosmetic industries.
Collapse
Affiliation(s)
- Rita Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Carolina Pandeirada
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Cláudia Nunes
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CICECO, Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| |
Collapse
|
27
|
Lu H, Dong S, Zhang G, Han T, Zhang Y, Li B. Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2019; 40:2147-2156. [PMID: 29421961 DOI: 10.1080/09593330.2018.1439107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Photosynthetic bacteria (PSB) wastewater treatment technology can simultaneously realize wastewater purification and biomass production. The produced biomass contains high value-added products, which can be used in medical and agricultural industry. However, because of the small size and high electronegativity, PSB are hard to be collected from wastewater, which hampers the commercialization of PSB-based industrial processes. Auto-flocculation is a low cost, energy saving, non-toxic biomass collection method for microbiology. In this work, the influence factors with their optimal levels and mechanism for enhancing the auto-flocculation of PSB were investigated in pure cultivation medium. Then PSB auto-flocculation performance in real brewery wastewater was probed. Results showed that Na+ concentration, pH and light intensity were three crucial factors except the initial inoculum sizes and temperature. In the pure medium cultivation system, the optimal condition for PSB auto-flocculation was as follows: pH was 9.5, inoculum size was 420 mg l-1, Na+ concentration was 0.067 mol l-1, light intensity was 5000 lux, temperature was 30°C. Under the optimal condition, the auto-flocculation ratio and biomass recovery reached 85.0% and 1488 mg l-1, which improved by 1.67-fold and 2.14-fold compared with the PSB enrichment cultivation conditions, respectively. Mechanism analysis showed that the protein/polysaccharides ratio and absolute Zeta potential value had a liner relationship. For the brewery wastewater treatment, under the above optimal condition, the chemical oxygen demand removal reached 94.3% with the auto-flocculation ratio and biomass recovery of 89.6% and 1510 mg l-1, which increased 2.75-fold and 2.77-fold, respectively.
Collapse
Affiliation(s)
- Haifeng Lu
- a College of Water Resource and Civil Engineering, China Agriculture University , Beijing , China
- b Ministry of Agriculture, Key Laboratory of Agricultural Engineering in Structure and Environment , Beijing , China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , China
| | - Shan Dong
- d State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology , Harbin , China
| | - Guangming Zhang
- e School of Environment and Natural Resources, Renmin University of China , Beijing , China
| | - Ting Han
- a College of Water Resource and Civil Engineering, China Agriculture University , Beijing , China
- b Ministry of Agriculture, Key Laboratory of Agricultural Engineering in Structure and Environment , Beijing , China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , China
| | - Yuanhui Zhang
- a College of Water Resource and Civil Engineering, China Agriculture University , Beijing , China
- b Ministry of Agriculture, Key Laboratory of Agricultural Engineering in Structure and Environment , Beijing , China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , China
- f Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Baoming Li
- a College of Water Resource and Civil Engineering, China Agriculture University , Beijing , China
- b Ministry of Agriculture, Key Laboratory of Agricultural Engineering in Structure and Environment , Beijing , China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , China
| |
Collapse
|
28
|
Quijano G, Arcila JS, Buitrón G. Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnol Adv 2017; 35:772-781. [DOI: 10.1016/j.biotechadv.2017.07.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
|
29
|
Arcila JS, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Cui L, Xu H, Zhu Z, Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biol Open 2017; 6:1329-1335. [PMID: 28916705 PMCID: PMC5612240 DOI: 10.1242/bio.026955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terrestrial cyanobacterium Nostoc flagelliforme, which contributes to carbon and nitrogen supplies in arid and semi-arid regions, adopts a filamentous colony form. Owing to its herbal and dietary values, this species has been overexploited. Largely due to the lack of understanding on its morphogenesis, artificial cultivation has not been achieved. Additionally, it may serve as a useful model for recognizing the morphological adaptation of colonial cyanobacteria in terrestrial niches. However, it shows very slow growth in native habitats and is easily disintegrated under laboratory conditions. Thus, a novel experimental system is necessary to explore its morphogenetic mechanism. Liquid-cultured N. flagelliforme has been well developed for exopolysaccharide (EPS) production, in which microscopic colonies (micro-colonies) are generally formed. In this study, we sought to gain some insight into the morphogenesis of N. flagelliforme by examining the effects of two external factors, the EPS and environmental stress-related growth rate, on the morphological shaping of micro-colonies. Our findings indicate that the EPS matrix could act as a basal barrier, leading to the bending of trichomes during their elongation, while very slow growth is conducive to their straight elongation. These findings will guide future cultivation and application of this cyanobacterium for ecological improvement.
Collapse
Affiliation(s)
- Lijuan Cui
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, P. R. China
| | - Haiyan Xu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhaoxia Zhu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang Gao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
31
|
Han PP, Yao SY, Guo RJ, Shen SG, Yan RR, Tan ZL, Jia SR. The relationship between monosaccharide composition of extracellular polysaccharide and activities of related enzymes in Nostoc flagelliforme under different culture conditions. Carbohydr Polym 2017; 174:111-119. [PMID: 28821034 DOI: 10.1016/j.carbpol.2017.05.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The relationship between monosaccharide composition of Nostoc flagelliforme extracellular polysaccharide (EPS) and activities of EPS synthesis enzymes under various carbon sources, nitrogen sources and light culture condition was investigated. Culture conditions showed significant influences on both monosaccharide composition and related enzyme activities. Under both carbon and nitrogen sources conditions, mannose mole percentage was increased with the increase of initial mole ratio of C/N and positively related to fructose-1, 6-bisphosphatase activity, and glucuronic acid and galactose mole percentages were positively correlated with UDP-glucose dehydrogenase, while arabinose and rhamnose mole percentages were negatively associated with UDP-glucose pyrophosphorylase. Different correlation between monosaccharide composition and enzymes activity from carbon and nitrogen sources conditions was found under light condition. These findings will be helpful to establish a novel fermentation process aimed to produce the N. flagelliforme EPS with desired monosaccharide composition.
Collapse
Affiliation(s)
- Pei-Pei Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Shun-Yu Yao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Rong-Jun Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shi-Gang Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Rong-Rong Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhi-Lei Tan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shi-Ru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
32
|
Terán Hilares R, Orsi CA, Ahmed MA, Marcelino PF, Menegatti CR, da Silva SS, Dos Santos JC. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. BIORESOURCE TECHNOLOGY 2017; 230:76-81. [PMID: 28161623 DOI: 10.1016/j.biortech.2017.01.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L-1 of pullulan with high melanin content (45.70UA540nm.g-1) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L-1 of pullulan with reduced content of melanin (4.46UA540nm.g-1). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L-1) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil.
| | - Camila Ayres Orsi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Muhammad Ajaz Ahmed
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Paulo Franco Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Carlos Renato Menegatti
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| |
Collapse
|
33
|
Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 2016; 34:1159-1179. [DOI: 10.1016/j.biotechadv.2016.08.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
|
34
|
High-resolution imaging of the microbial cell surface. J Microbiol 2016; 54:703-708. [PMID: 27796933 DOI: 10.1007/s12275-016-6348-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.
Collapse
|