1
|
Chiu CY, Servellita V, de Lorenzi-Tognon M, Benoit P, Sumimoto N, Foresythe A, Cerqueira FM, Williams-Bouyer N, Ren P, Herrera LNS, Gaston DC, Sayyad L, Whitmer SL, Klena J, Vikram HR, Gold JAW, Gade L, Parnell L, Misas E, Chiller TM, Griffin IS, Basavaraju SV, Smith DJ, Litvintseva AP, Chow NA. Metagenomic Identification of Fusarium solani Strain as Cause of US Fungal Meningitis Outbreak Associated with Surgical Procedures in Mexico, 2023. Emerg Infect Dis 2025; 31:948-957. [PMID: 40180580 PMCID: PMC12044249 DOI: 10.3201/eid3105.241657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
We used metagenomic next-generation sequencing (mNGS) to investigate an outbreak of Fusarium solani meningitis in US patients who had surgical procedures under spinal anesthesia in Matamoros, Mexico, during 2023. Using a novel method called metaMELT (metagenomic multiple extended locus typing), we performed phylogenetic analysis of concatenated mNGS reads from 4 patients (P1-P4) in parallel with reads from 28 fungal reference genomes. Fungal strains from the 4 patients were most closely related to each other and to 2 cultured isolates from P1 and an additional case (P5), suggesting that all cases arose from a point source exposure. Our findings support epidemiologic data implicating a contaminated drug or device used for epidural anesthesia as the likely cause of the outbreak. In addition, our findings show that the benefits of mNGS extend beyond diagnosis of infections to public health outbreak investigation.
Collapse
|
2
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
3
|
Babady NE, Chiu CY, Craney A, Gaston DC, Hicklen RS, Hogan CA, John TM, Stewart AG. Diagnosis and management of invasive fungal diseases by next-generation sequencing: are we there yet? Expert Rev Mol Diagn 2024:1-14. [PMID: 39623670 DOI: 10.1080/14737159.2024.2436396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Invasive fungal diseases (IFDs) are a serious threat to immunocompromised patients. Routine diagnostic methods have limited performance in identifying IFDs. Next-generation sequencing (NGS), including metagenomic NGS (mNGS) and whole-genome sequencing (WGS), recently emerged as diagnostic methods that could provide more accurate and timely diagnoses and management of IFDs. AREAS COVERED This article describes the emergence of NGS as a diagnostic tool to address the limitations of current tests. The literature regarding its application and clinical utility in the diagnosis of IFDs is reviewed. Practical considerations, challenges, and opportunities as they relate to the development and implementation of mNGS and WGS for fungal pathogens are discussed. EXPERT OPINION NGS emerged over a decade ago with the potential to solve many of the challenges in diagnosing infectious diseases, including IFDs. However, published literature has yielded conflicting data about its clinical utility. The increased clinical adoption of NGS is improving our understanding of how to interpret and use its results to guide actionable decisions. Still, several gaps remain. As the cost, effort, and expertise involved in performing NGS decrease and the reporting of its results becomes standardized, NGS is poised to fill current gaps in the diagnosis of IFDs.
Collapse
Affiliation(s)
- N Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | | | - David C Gaston
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel S Hicklen
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Catherine A Hogan
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teny M John
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
4
|
Halioti A, Vrettou CS, Neromyliotis E, Gavrielatou E, Sarri A, Psaroudaki Z, Magira EE. Cerebrospinal Drain Infection by Candida auris: A Case Report and Review of the Literature. J Fungi (Basel) 2024; 10:859. [PMID: 39728355 DOI: 10.3390/jof10120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Candida auris is notorious for its ability to spread within healthcare environments, particularly in intensive care units (ICUs), posing significant challenges for clinicians as treatment options become limited. This is especially concerning in the context of central nervous system (CNS)-invasive infections. While rare, its involvement in nosocomial brain ventriculitis presents substantial diagnostic and therapeutic challenges, with no established guidelines for managing CNS infections caused by Candida auris. This report presents a case of Candida auris ventriculitis in an ICU patient and offers a comprehensive and targeted literature review, emphasizing diagnostic approaches, treatment strategies, and the clinical complexities of managing this emerging pathogen in CNS infections.
Collapse
Affiliation(s)
- Asimenia Halioti
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Charikleia S Vrettou
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Eleftherios Neromyliotis
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Evdokia Gavrielatou
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Aikaterini Sarri
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Zoi Psaroudaki
- Department of Clinical Microbiology, "Evangelismos" General Hospital of Athens, 106 76 Athens, Greece
| | - Eleni E Magira
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| |
Collapse
|
5
|
Sepúlveda VE, Goldman WE, Matute DR. Genotypic diversity, virulence, and molecular genetic tools in Histoplasma. Microbiol Mol Biol Rev 2024; 88:e0007623. [PMID: 38819148 PMCID: PMC11332355 DOI: 10.1128/mmbr.00076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.
Collapse
Affiliation(s)
- Victoria E. Sepúlveda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Wang Y, Guo X, Zhang X, Chen P, Wang W, Hu S, Ma T, Zhou X, Li D, Yang Y. In Vivo Microevolutionary Analysis of a Fatal Case of Rhinofacial and Disseminated Mycosis Due to Azole-Drug-Resistant Candida Species. J Fungi (Basel) 2023; 9:815. [PMID: 37623586 PMCID: PMC10455694 DOI: 10.3390/jof9080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Ten Candida species strains were isolated from the first known fatal case of rhinofacial and rhino-orbital-cerebral candidiasis. Among them, five strains of Candida parapsilosis complex were isolated during the early stage of hospitalization, while five strains of Candida tropicalis were isolated in the later stages of the disease. Using whole-genome sequencing, we distinguished the five strains of C. parapsilosis complex as four Candida metapsilosis strains and one Candida parapsilosis strain. Antifungal susceptibility testing showed that the five strains of C. parapsilosis complex were susceptible to all antifungal drugs, while five C. tropicalis strains had high minimum inhibitory concentrations to azoles, whereas antifungal-drug resistance gene analysis revealed the causes of azole resistance in such strains. For the first time, we analyzed the microevolutionary characteristics of pathogenic fungi in human hosts and inferred the infection time and parallel evolution of C. tropicalis strains. Molecular clock analysis revealed that azole-resistant C. tropicalis infection occurred during the first round of therapy, followed by divergence via parallel evolution in vivo. The presence/absence variations indicated a potential decrease in the virulence of genomes in strains isolated following antifungal drug treatment, despite the absence of observed clinical improvement in the conditions of the patient. These results suggest that genomic analysis could serve as an auxiliary tool in guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuchen Wang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjing 300457, China;
| | - Xinran Zhang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Ping Chen
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Wenhui Wang
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Shan Hu
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Teng Ma
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xingchen Zhou
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dongming Li
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Ying Yang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| |
Collapse
|
7
|
Li X, Muñoz JF, Gade L, Argimon S, Bougnoux ME, Bowers JR, Chow NA, Cuesta I, Farrer RA, Maufrais C, Monroy-Nieto J, Pradhan D, Uehling J, Vu D, Yeats CA, Aanensen DM, d’Enfert C, Engelthaler DM, Eyre DW, Fisher MC, Hagen F, Meyer W, Singh G, Alastruey-Izquierdo A, Litvintseva AP, Cuomo CA. Comparing genomic variant identification protocols for Candida auris. Microb Genom 2023; 9:mgen000979. [PMID: 37043380 PMCID: PMC10210944 DOI: 10.1099/mgen.0.000979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies.
Collapse
Affiliation(s)
- Xiao Li
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - José F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, 30329, USA
| | - Silvia Argimon
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Cité, Hôpital Necker-Enfants-Malades, Unité de Parasitologie-Mycologie, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jolene R. Bowers
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, 30329, USA
| | - Isabel Cuesta
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Rhys A. Farrer
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4PY, UK
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS USR 3756, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Juan Monroy-Nieto
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Dibyabhaba Pradhan
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jessie Uehling
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
| | - Corin A. Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David M. Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - David W. Eyre
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wieland Meyer
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Gagandeep Singh
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Anastasia P. Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, 30329, USA
| | | |
Collapse
|
8
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
9
|
Molecular Markers: An Overview of Data Published for Fungi over the Last Ten Years. J Fungi (Basel) 2022; 8:jof8080803. [PMID: 36012792 PMCID: PMC9410331 DOI: 10.3390/jof8080803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Fungi are amongst the most abundant and diverse organisms. Despite being widely known for their adverse role in food spoilage or as pathogens for humans, animals, or plants, they also present several beneficial effects. Fungi contribute to human well-being due to their role as decomposers, degrading decay matter into smaller molecules which can be easily used by other ecosystem members. These organisms can produce medicinal compounds or modulate protective immune responses in human intestine. Fungi intervene in diverse food processes or act as a food supply. Due to fungal diversity, the unequivocal identification of these organisms is crucial to increasing their practical applications and decreasing their adverse effects. The process of identification could be achieved through the integral sequencing of fungi genomes. However, this procedure would be time-consuming and rather cost-inefficient. Therefore, several molecular markers have been developed to overcome these limitations. The chronology of DNA-based molecular markers development can be divided into three main steps: (1) prior to the development of the PCR technique (RFLP); (2) after the development of the PCR technique (RAPD, AFLP, ISSR, VNTR, SNP, InDels, and DNA barcoding); (3) after the development of the massive parallel sequencing technique (Metabarcoding and WGS). Therefore, the present review covers an overview of the most recently developed molecular markers used for fungal detection and identification.
Collapse
|
10
|
Senchyna F, Hogan CA, Murugesan K, Moreno A, Ho DY, Subramanian A, Schwenk HT, Budvytiene I, Costa HA, Gombar S, Banaei N. Clinical Accuracy and Impact of Plasma Cell-Free DNA Fungal PCR Panel for Non-Invasive Diagnosis of Fungal Infection. Clin Infect Dis 2021; 73:1677-1684. [PMID: 33606010 DOI: 10.1093/cid/ciab158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) is a growing cause of morbidity and mortality in oncology and transplant patients. Diagnosis of IFI is often delayed due to need for invasive biopsy and low sensitivity of conventional diagnostic methods. Fungal cell-free DNA (cfDNA) detection in plasma is a novel testing modality for the non-invasive diagnosis of IFI. METHODS A novel bioinformatic pipeline was created to interrogate fungal genomes and identify multicopy sequences for cfDNA PCR targeting. A real-time PCR panel was developed for 12 genera and species most commonly causing IFI. Sensitivity and specificity of the fungal PCR panel were determined using plasma samples from patients with IFI and non-IFI controls. Clinical impact of fungal PCR panel was evaluated prospectively based on the treating team's interpretation of the results. RESULTS Overall, the sensitivity and specificity were 56.5% (65/115, 95% confidence interval [CI], 47.4%-65.2%) and 99.5% (2064/2075; 95% CI, 99.0%-99.7%), respectively. In the subset of patients with an optimized plasma volume (2mL), sensitivity was 69.6% (48/69; 95% CI, 57.9%-79.2%). Sensitivity was 91.7% (11/12; 95% CI, 62.5%-100%) for detection of Mucorales agents, 56.3% (9/16; 95% CI, 33.2%-76.9%) for Aspergillus species, and 84.6% (11/13; 95% CI, 56.5%-96.9%) for Candida albicans. In a prospective evaluation of 226 patients with suspected IFI, cfDNA testing was positive in 47 (20.8%) patients and resulted in a positive impact on clinical management in 20/47 (42.6%). CONCLUSIONS The fungal cfDNA PCR panel offers a non-invasive approach to early diagnosis of IFI, providing actionable results for personalized care.
Collapse
Affiliation(s)
- Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Hogan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dora Y Ho
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aruna Subramanian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayden T Schwenk
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Helio A Costa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Saurabh Gombar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
12
|
|
13
|
El-Kamand S, Papanicolaou A, Morton CO. The Use of Whole Genome and Next-Generation Sequencing in the Diagnosis of Invasive Fungal Disease. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00363-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology - A systematic literature review. Clin Microbiol Infect 2019; 25:1086-1095. [PMID: 31039443 DOI: 10.1016/j.cmi.2019.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microbial whole genome sequencing (WGS) has many advantages over standard microbiological methods. However, it is not yet widely implemented in routine hospital diagnostics due to notable challenges. OBJECTIVES The aim was to extract managerial, financial and clinical criteria supporting the decision to implement WGS in routine diagnostic microbiology, across different operational models of implementation in the hospital setting. METHODS This was a systematic review of literature identified through PubMed and Web of Science. English literature studies discussing the applications of microbial WGS without limitation on publication date were eligible. A narrative approach for categorization and synthesis of the sources identified was adopted. RESULTS A total of 98 sources were included. Four main alternative operational models for incorporating WGS in clinical microbiology laboratories were identified: full in-house sequencing and analysis, full outsourcing of sequencing and analysis and two hybrid models combining in-house/outsourcing of the sequencing and analysis components. Six main criteria (and multiple related sub-criteria) for WGS implementation emerged from our review and included cost (e.g. the availability of resources for capital and operational investment); manpower (e.g. the ability to provide training programmes or recruit trained personnel), laboratory infrastructure (e.g. the availability of supplies and consumables or sequencing platforms), bioinformatics requirements (e.g. the availability of valid analysis tools); computational infrastructure (e.g. the availability of storage space or data safety arrangements); and quality control (e.g. the existence of standardized procedures). CONCLUSIONS The decision to incorporate WGS in routine diagnostics involves multiple, sometimes competing, criteria and sub-criteria. Mapping these criteria systematically is an essential stage in developing policies for adoption of this technology, e.g. using a multicriteria decision tool. Future research that will prioritize criteria and sub-criteria that were identified in our review in the context of operational models will inform decision-making at clinical and managerial levels with respect to effective implementation of WGS for routine use. Beyond WGS, similar decision-making challenges are expected with respect to future integration of clinical metagenomics.
Collapse
Affiliation(s)
- V Mintzer
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; Leumit Health Services, Israel
| | - J Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - T Simon-Tuval
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
16
|
Pavlov IY, Bobrov KS, Sumacheva AD, Masharsky AE, Polev DE, Zhurishkina EV, Kulminskaya AA. Scytalidium candidum 3C is a new name for the Geotrichum candidum Link 3C strain. J Basic Microbiol 2018; 58:883-891. [PMID: 30067294 DOI: 10.1002/jobm.201800066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Abstract
In the 1970s, the strain Geotrichum candidum Link 3C was isolated from rotting rope and since then has been extensively studied as a source of cellulose and xylan-degrading enzymes. The original identification of the strain was based only on morphological characters of the fungal mycelium in culture. Recent comparison of the internal transcribed spacer (ITS) fragments derived from the draft genome published in 2015 did not show its similarity to G. candidum species. Given the value of the strain 3C in lignocellulosic biomass degradation, we performed morphological and molecular studies to find the appropriate taxonomic placement for this fungal strain within the Ascomycota phylum. ITS, 18S rDNA, 28S rDNA sequences, and RPB2 encoding genes were used to construct phylogenetic trees with Maximum likelihood and Bayesian inference methods. Based on sequence comparison and multiple gene sequencing, we conclude that the fungal strain designated as Geotrichum candidum Link 3C should be placed into the genus Scytalidium (Pezizomycotina, Leotiomycetes) and is redescribed herein as Scytalidium candidum 3C comb. nov.
Collapse
Affiliation(s)
- Ivan Yu Pavlov
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Kirill S Bobrov
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Anastasiya D Sumacheva
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Alexey E Masharsky
- Centre for Molecular and Cell Technologies, The Research Park, St. Petersburg State University, St. Petersburg, Petergof, Russia
| | - Dmitrii E Polev
- Resource Centre "Centre Biobank", Research Park, St. Petersburg State University, St. Petersburg, Petergof, Russia
| | - Elena V Zhurishkina
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Anna A Kulminskaya
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia.,Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
17
|
Cuomo CA, Rhodes J, Desjardins CA. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis. Mem Inst Oswaldo Cruz 2018. [PMID: 29513784 PMCID: PMC5851040 DOI: 10.1590/0074-02760170473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.
Collapse
Affiliation(s)
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | |
Collapse
|