1
|
Ur Rahman M, Hussain HR, Akram H, Sarfraz M, Nouman M, Khan JA, Ishtiaq M. Niosomes as a targeted drug delivery system in the treatment of breast cancer: preparation, classification and mechanisms of cellular uptake. J Drug Target 2025; 33:916-932. [PMID: 39964023 DOI: 10.1080/1061186x.2025.2468750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) remains one of the significant health issues across the globe, being diagnosed in millions of women worldwide annually. Conventional therapeutic options have substantial adverse effects due to their non-specificity and limited drug bioavailability. Niosomes, being novel drug delivery systems formed from non-ionic surfactants, with or without cholesterol and charge-inducing agents, are used as therapeutic options in treating BC. Their formulation by various methods enhances the therapeutic efficacy and bioavailability and minimises side effects. Niosomal formulation of tamoxifen exhibits target drug delivery with enhanced stability, whereas docetaxel and methotrexate show sustained and controlled drug release, respectively. 5-Fluorouracil, doxorubicin, paclitaxel, cyclophosphamide and epirubicin show improved cytotoxic effects against BC when combined with other agents. Furthermore, repurposed niosomal formulations of anti-cancer drugs show improved penetration, reduced tumour volume and significantly enhanced anti-tumour effect. This review article focuses on the composition of niosomes and their application in BC treatment and then examines how niosomes could contribute to BC research.
Collapse
Affiliation(s)
| | | | - Habiba Akram
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Muhammad Nouman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Jawad Akbar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Memona Ishtiaq
- Department of Pharmacy, Lahore Institute of Professional Studies, Lahore, Pakistan
| |
Collapse
|
2
|
Zargarani N, Kavousi M, Aliasgari E. A potential new strategy for BC treatment: NPs containing solanine and evaluation of its anticancer and antimetastatic properties. BMC Cancer 2025; 25:860. [PMID: 40355870 PMCID: PMC12067669 DOI: 10.1186/s12885-025-14249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Solanine has been shown to inhibit cancer by regulating the expression of apoptosis (Bax, Bcl-2) and metastasis (CDH-1, MMP2) genes in various cancer cell types. We synthesized optimized niosome NPs (NPs) with high solubility and capacity for solanine loading. In this study, the cytotoxic, cell cycle inhibitory and apoptotic effects of solanine-loaded niosome NPs (SN-NPs) on MCF-7 were investigated. Thin-layer hydration was used to generate SN-NPs and their features were validated. The pH-dependent solanine release pattern was also examined. Synthesized SN-NPs were evaluated for cytotoxicity against MCF-7 and MCF-10 cell lines using MTT. Primary and secondary apoptosis, necrosis, and cell cycle arrest were measured using flowcytometry. Lastly, q-PCR was used to assess the expression of genes. The NPs had an average size between 50 and 70 nm, with a polydispersity index (PDI) of 0.452. Solanine was effectively incorporated into noisome NPs, as shown by the high encapsulation efficiency of 82.3%±0.24%. After a quick burst at pH 7 and 5, SN-NPs released slowly and sustainedly. The IC50 of solanine-loaded niosomes against MCF-7 cells decreased from 40 mg/100 mL to 10 mg/100 mL (48 h) and 5 mg/100 mL (72 h). After 72 h, SN-NPs caused late apoptosis in 30% of MCF-7 cells and necrosis in 5.06% (p < 0.01). SN-NPs caused 81% of cells to arrest in the G0/G1 phase, with only 12% progressing to G2/M (p < 0.01). Solanine-loaded NPs significantly increased Bax and CDH-1 gene expression in malignant cells compared to free niosomes and free solanine (p < 0.0001). Bcl-2 and MMP2 expression significantly decreased in this group compared to free niosomes and free solanine (p < 0.001). Solanine-containing niosomes showed significant anticancer effects on MCF-7 breast cancer cells, which were supported by apoptosis, cell cycle arrest and regulation of gene expression. The regulated release and precise delivery of solanine using SN-NPs show considerable translational potential. This improved nanocarrier technology may increase the bioavailability and efficacy of solanine, potentially leading to improved clinical outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Nadia Zargarani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kavousi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elahe Aliasgari
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Banimohammad M, Khalafi P, Gholamin D, Bangaleh Z, Akhtar N, Solomon AD, Prabhakar PK, Sanami S, Prakash A, Pazoki-Toroudi H. Exploring recent advances in signaling pathways and hallmarks of uveal melanoma: a comprehensive review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002306. [PMID: 40177537 PMCID: PMC11964777 DOI: 10.37349/etat.2025.1002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The purpose of this review was to provide a comprehensive review of the latest insights on the pathogenesis of uveal melanoma (UM) and its intracellular pathways. This article covers the epidemiology of UM, racial predispositions, cytogenetic and chromosomal alterations, gene mutations, key defective pathways, and their underlying mechanisms, as well as the application of hallmarks of cancer to UM. A key knowledge gap remains in identifying the most effective targeted therapy and determining the central pathway linking multiple signaling networks. UM is a malignant tumor arising from uveal melanocytes, predominantly affecting the choroid, with both genetic and epigenetic contributors. Key cytogenetic alterations include monosomy 3, chromosome 6p gain, chromosome 1p loss, and chromosome 8q gain. The most important UM-related signaling pathways are RAS/MAPK, PI3K/Akt/mTOR, Hippo-YAP, retinoblastoma (Rb), and p53 pathways. In the RAS/MAPK pathway, GNAQ/GNA11 mutations occur which account for more than 80% of UM cases. The PI3K/Akt/mTOR pathway promotes cyclin D1 overexpression and MDM2 upregulation, leading to p53 pathway inhibition. GNAQ/GNA11 mutations activate YAP via the Trio-RhoGTPase/RhoA/Rac1 signaling circuit in the Hippo-YAP pathway. Rb pathway dysregulation results from cyclin D1 overexpression or cyclin-dependent kinase inhibitor (CDKI) inactivation. In the p53 pathway, UM is characterized by p53 mutations, MDM2 overexpression, and Bcl-2 deregulation. Eventually, the ARF-MDM2 axis serves as a critical link between the RAS and p53 pathways. Hallmarks of cancer, such as evasion of growth suppression and self-sufficiency in growth signals, are also evident in UM. Genetic and epigenetic alterations, including NSB1, MDM2 and CCND1 amplification, and BAP1 mutations, play pivotal roles in UM pathobiology. Thus, UM exhibits a multifactorial pathology. By consolidating key mechanisms underlying UM pathogenesis, this review provides a comprehensive perspective on the involved pathways, offering insights that may facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Majid Banimohammad
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parsa Khalafi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Danial Gholamin
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zahra Bangaleh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pranav Kumar Prabhakar
- School of Allied Medical Sciences, Lovely Professional University, Phagwara 144411, India
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, India
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
4
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Yu S, Yang N, Li H, Hu X, Zhang L, Li S. Artemether ameliorates acetaminophen-induced liver injury through Nrf2 pathway. Biomed Pharmacother 2024; 179:117280. [PMID: 39236474 DOI: 10.1016/j.biopha.2024.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Acetaminophen (APAP) overdose is a prevalent cause of clinical pharmacological liver injury worldwide. Artemether (ART), a first-line antimalarial drug, has demonstrated hepatoprotective activity. However, its effect on APAP-induced acute liver injury (AILI) remains unclear. In this study, we investigated whether ART can protect against AILI and examined its underlying mechanisms. In vivo, ART mitigated APAP-induced liver histological changes, including mitochondrial damage, hepatocyte necrosis, hepatocyte apoptosis, and inflammatory infiltration. Additionally, ART reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in APAP-induced mice. ART also activated the Nrf2-HO-1/GPX4 signaling pathway, exerting antioxidant effects in both in vitro and in vivo models of AILI. To confirm Nrf2 as a target of ART in vivo, we pretreated C57BL/6 mice with the Nrf2 inhibitor, ML385. The results indicated that inhibiting Nrf2 diminishes the protective effect of ART against AILI. Overall, our findings suggest that ART's protective effect against AILI is mediated through the Nrf2-related antioxidant pathway.
Collapse
Affiliation(s)
- Sijie Yu
- Department of Infectious Diseases, Affiliated Zhoushan Hospital, Wenzhou Medicine University, Zhoushan, Zhejiang 316004, China
| | - Na Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Hongling Li
- Department of Infectious Diseases, Affiliated Zhoushan Hospital, Wenzhou Medicine University, Zhoushan, Zhejiang 316004, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Affiliated Zhoushan Hospital, Wenzhou Medicine University, Zhoushan, Zhejiang 316004, China
| | - Li Zhang
- Experimental Teaching Center of Basic Hospital, Affiliated Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Shibo Li
- Department of Infectious Diseases, Affiliated Zhoushan Hospital, Wenzhou Medicine University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
6
|
Barlas FB, Olceroglu B, Ag Seleci D, Gumus ZP, Siyah P, Dabbek M, Garnweitne G, Stahl F, Scheper T, Timur S. Enhancing chemotherapeutic efficacy: Niosome-encapsulated Dox-Cis with MUC-1 aptamer. Cancer Med 2024; 13:e70079. [PMID: 39118454 PMCID: PMC11310550 DOI: 10.1002/cam4.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Firat Baris Barlas
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Bilge Olceroglu
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Didem Ag Seleci
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
| | - Pinar Siyah
- Department of Biochemistry, School of PharmacyBahçeşehir UniversityIstanbulTurkey
| | - Meriam Dabbek
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Georg Garnweitne
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Frank Stahl
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Thomas Scheper
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
- Department of Biochemistry, Faculty of ScienceEge UniversityIzmirTurkey
| |
Collapse
|
7
|
Jetti R, Vaca Cárdenas ML, Al-Saedi HFS, Hussein SA, Abdulridui HA, Al-Abdeen SHZ, Radi UK, Abdulkadhim AH, Hussein SB, Alawadi A, Alsalamy A. Ultrasonic synthesis of green lipid nanocarriers loaded with Scutellaria barbata extract: a sustainable approach for enhanced anticancer and antibacterial therapy. Bioprocess Biosyst Eng 2024; 47:1321-1334. [PMID: 38647679 DOI: 10.1007/s00449-024-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Ultrasonic manufacturing has emerged as a promising eco-friendly approach to synthesize lipid-based nanocarriers for targeted drug delivery. This study presents the novel ultrasonic preparation of lipid nanocarriers loaded with Scutellaria barbata extract, repurposed for anticancer and antibacterial use. High-frequency ultrasonic waves enabled the precise self-assembly of DSPE-PEG, Span 40, and cholesterol to form nanocarriers encapsulating the therapeutic extract without the use of toxic solvents, exemplifying green nanotechnology. Leveraging the inherent anticancer and antibacterial properties of Scutellaria barbata, the study demonstrates that lipid encapsulation enhances the bioavailability and controlled release of the extract, which is vital for its therapeutic efficacy. Dynamic light scattering and transmission electron microscopy analyses confirmed the increase in size and successful encapsulation post-loading, along with an augmented negative zeta potential indicating enhanced stability. A high encapsulation efficiency of 91.93% was achieved, and in vitro assays revealed the loaded nanocarriers' optimized release kinetics and improved antimicrobial potency against Pseudomonas aeruginosa, compared to the free extract. The combination of ultrasonic synthesis and Scutellaria barbata in an eco-friendly manufacturing process not only advances green nanotechnology but also contributes to sustainable practices in pharmaceutical manufacturing. The data suggest that this innovative nanocarrier system could provide a robust platform for the development of nanotechnology-based therapeutics, enhancing drug delivery efficacy while aligning with environmental sustainability.
Collapse
Affiliation(s)
- Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Maritza Lucia Vaca Cárdenas
- Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur Km 1½, Riobamba, 060155, Ecuador
| | | | | | | | | | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Adnan Hashim Abdulkadhim
- Department of Computer Engineering, Technical Engineering College, Al-Ayen University, Dhi Qar, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq.
- College of Technical Engineering, The Islamic University of Al-Diwaniyah, Al-Diwaniyah, Iraq.
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq.
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
8
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
9
|
Niroumand U, Motazedian MH, Ahmadi F, Asgari Q, Bahreini MS, Ghasemiyeh P, Mohammadi-Samani S. Preparation and characterization of artemether-loaded niosomes in Leishmania major-induced cutaneous leishmaniasis. Sci Rep 2024; 14:10073. [PMID: 38698123 PMCID: PMC11065877 DOI: 10.1038/s41598-024-60883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
11
|
Giuli MV, Hanieh PN, Forte J, Fabiano MG, Mancusi A, Natiello B, Rinaldi F, Del Favero E, Ammendolia MG, Marianecci C, Checquolo S, Carafa M. pH-sensitive niosomes for ATRA delivery: A promising approach to inhibit Pin1 in high-grade serous ovarian cancer. Int J Pharm 2024; 649:123672. [PMID: 38052280 DOI: 10.1016/j.ijpharm.2023.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery. In the present study, niosomes have been employed for improving ATRA delivery in HGSOC cell lines. Characterization of niosomes including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency and stability over time and in culture media was performed. Furthermore, pH-sensitiveness and ATRA release profile were investigated to demonstrate the capability of these vesicles to release ATRA in a stimuli-responsive manner. Obtained results documented a nanometric and monodispersed samples with negative ζ-potential. ATRA was efficiently entrapped, and a substantial release was observed in the presence of acidic pH (pH 5.5). Finally, unloaded niosomes showed good biocompatibility while ATRA-loaded niosomes significantly increased ATRA Pin1 inhibitory activity, which was consistent with cell growth inhibition. Taken together, ATRA-loaded niosomes might represent an appealing therapeutic strategy for HGSOC therapy.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Gioia Fabiano
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Angelica Mancusi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Bianca Natiello
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, Italy.
| | - Maria Grazia Ammendolia
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
12
|
Saeidi Z, Giti R, Rostami M, Mohammadi F. Nanotechnology-Based Drug Delivery Systems in the Transdermal Treatment of Melanoma. Adv Pharm Bull 2023; 13:646-662. [PMID: 38022807 PMCID: PMC10676549 DOI: 10.34172/apb.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence rate of melanoma is dramatically increasing worldwide, raising it to the fifth most common cancer in men and the sixth in women currently. Resistance generally occurs to the agents used in chemotherapy; besides their high toxicity destroys the normal cells. This study reviewed a detailed summary of the structure, advantages, and disadvantages of nanotechnology-based drug delivery systems in the treatment of melanoma, as well as some nanocarrier applications in animal models or clinical studies. Respective databases were searched for the target keywords and 93 articles were reviewed and discussed. A close study of the liposomes, niosomes, transferosomes, ethosomes, transethosomes, cubosomes, dendrimers, cyclodextrins, solid lipid nanoparticles, and carbon nanotubes (CNTs) was conducted. It was found that these nanocarriers could inhibit metastasis and migration of melanoma cells and decrease cell viability. Conclusively, some nanocarriers like liposomes, niosomes, and transferosomes have been discussed as superior to conventional therapies for melanoma treatment.
Collapse
Affiliation(s)
- Zahra Saeidi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rostami
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Bakand A, Moghaddam SV, Naseroleslami M, André H, Mousavi-Niri N, Alizadeh E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: potential application in colon cancer therapy. J Biol Eng 2023; 17:58. [PMID: 37749603 PMCID: PMC10521571 DOI: 10.1186/s13036-023-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
A number of molecular biofactors have been documented in pathogenesis and poor prognosis of colorectal cancer (CRC). Among them, the Hypoxia-Inducible Factor (HIF-1a) is frequently reported to become over-expressed, and its targeting could restrict and control a variety of essential hallmarks of CRC. Niosomes are innovative drug delivery vehicles with the encapsulating capacity for co-loading both hydrophilic and hydrophobic drugs at the same time. Also, they can enhance the local accumulation while minimizing the dose and side effects of drugs. YC-1 and PX-12 are two inhibitors of HIF-1a. The purpose of this work was to synthesize dual-loaded YC-1 and PX-12 niosomes to efficiently target HIF-1α in CRC, HT-29 cells. The niosomes were prepared by the thin-film hydration method, then the niosomal formulation of YC-1 and PX-12 (NIO/PX-YC) was developed and optimized by the central composition method (CCD) using the Box-Behnken design in terms of size, polydispersity index (PDI), entrapment efficiency (EE). Also, they are characterized by DLS, FESEM, and TEM microscopy, as well as FTIR spectroscopy. Additionally, entrapment efficiency, in vitro drug release kinetics, and stability were assessed. Cytotoxicity, apoptosis, and cell cycle studies were performed after the treatment of HT-29 cells with NIO/PX-YC. The expression of HIF-1αat both mRNA and protein levels were studied after NIO/PX-YC treatment. The prepared NIO/PX-YC showed a mean particle size of 185 nm with a zeta potential of about-7.10 mv and a spherical morphology. Also, PX-12 and YC-1 represented the entrapment efficiency of about %78 and %91, respectively, with a sustainable and controllable release. The greater effect of NIO/PX-YC than the free state of PX-YC on the cell survival rate, cell apoptosis, and HIF-1α gene/protein expression were detected (p < 0.05). In conclusion, dual loading of niosomes with YC-1 and PX-12 enhanced the effect of drugs on HIF-1α inhibition, thus boosting their anticancer effects.
Collapse
Affiliation(s)
- Azar Bakand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282, Stockholm, Sweden
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
15
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
16
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
17
|
Yadav K, Singh D, Singh MR, Chauhan NS, Minz S, Pradhan M. Nanobiomaterials as novel modules in the delivery of artemisinin and its derivatives for effective management of malaria. NATURAL PRODUCTS IN VECTOR-BORNE DISEASE MANAGEMENT 2023:447-466. [DOI: 10.1016/b978-0-323-91942-5.00003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
van Jaarsveld E, du Plessis J, du Preez JL, Shahzad Y, Gerber M. Formulation and characterisation of artemether-loaded nano-emulsion for topical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. BIOTECHNOLOGY REPORTS 2022; 34:e00730. [PMID: 35686000 PMCID: PMC9171451 DOI: 10.1016/j.btre.2022.e00730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
|
20
|
Fazli B, Irani S, Bardania H, Moosavi MS, Rohani B. Prophylactic effect of topical (slow-release) and systemic curcumin nano-niosome antioxidant on oral cancer in rat. BMC Complement Med Ther 2022; 22:109. [PMID: 35440035 PMCID: PMC9020014 DOI: 10.1186/s12906-022-03590-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral malignancies have a significant effect on the quality of life among the affected patients. Curcumin is an antioxidant with a low bioavailability in the target tissue. Niosomes are carriers of increasing the therapeutic effects of drugs and reducing their side effects. This study aimed to determine the effective dose of curcumin niosome in the culture and then to compare its prophylactic effect in the form of mouthwash with that of its injectable form on oral cancer in rats. METHODS This was an in-vitro and in-vivo study. Firstly, KB oral cancer cells and human umbilical vein endothelial cells (HUVEC) were treated in separate groups with free curcumin, curcumin-loaded niosomes, and the unloaded niosomes at four doses of 4, 8, 16, and 32 μg. The study rats were then divided into the following four groups: 1) no intervention, 2) only carcinogenic substance, 3) carcinogenic substance with curcumin-loaded niosome injection, and 4) carcinogenic substance with a mouthwash containing niosome. RESULTS At the cellular level, a dose of 16 μg after 24 h was selected as an effective dose. In the animal phase, the use of injectable curcumin niosome was observed to significantly prevent the development of severe forms of dysplasia. CONCLUSIONS In this in-vitro and in-vivo study, curcumin-loaded niosome was effective in preventing the development of severe forms of dysplasia and the inhibition of the growth of cancer cells.
Collapse
Affiliation(s)
- Behzad Fazli
- Student Research Committee, Faculty of Dentistry, Aja University of Medical Sciences, Tehran, Iran
| | - Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran.,Lecturer at Pathology Department of Faculty of Medicine, Griffith University, Gold Coast, Australia
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh-Sadat Moosavi
- Dental Research Center, Dentistry Research Institute, Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Rohani
- Department of Oral Medicine, Faculty of Dentistry, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
22
|
Shadvar P, Mirzaie A, Yazdani S. Fabrication and optimization of amoxicillin-loaded niosomes: An appropriate strategy to increase antimicrobial and anti-biofilm effects against multidrug-resistant strains of Staphylococcus aureus. Drug Dev Ind Pharm 2022; 47:1568-1577. [PMID: 35007176 DOI: 10.1080/03639045.2022.2027958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, different formulations of amoxicillin-loaded niosomes were fabricated using the thin-film hydration method and their physicochemical properties were determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The optimum prepared niosomes had a spherical morphology with an average size of 170.6 ± 6.8 nm and encapsulation efficiency of 65.78 ± 1.45%. The drug release study showed that the release rate of amoxicillin from niosome containing amoxicillin was slow and 47 ± 1% of the drug was released within 8 hours, while 97 ± 0.5% of the free drug was released. In addition, amoxicillin-loaded niosome increased the antimicrobial activity by 2-4 folds against multidrug-resistant (MDR) Staphylococcus aureus strains using broth microdilution assay. Moreover, at ½ minimum inhibitory concentrations, amoxicillin-loaded niosome significantly enhanced the anti-biofilm activity compared to free amoxicillin. Amoxicillin-loaded niosome had negligible cytotoxicity against HEK-293 normal cell line compared to free amoxicillin. The free niosomes exhibited no toxicity against HEK-293 cells and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that amoxicillin-loaded niosome can be used as a promising candidate for enhancing antimicrobial and anti-biofilm effects against MDR strains of S. aureus.
Collapse
Affiliation(s)
- Pardis Shadvar
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| |
Collapse
|
23
|
Sahrayi H, Hosseini E, Karimifard S, Khayam N, Meybodi SM, Amiri S, Bourbour M, Farasati Far B, Akbarzadeh I, Bhia M, Hoskins C, Chaiyasut C. Co-Delivery of Letrozole and Cyclophosphamide via Folic Acid-Decorated Nanoniosomes for Breast Cancer Therapy: Synergic Effect, Augmentation of Cytotoxicity, and Apoptosis Gene Expression. Pharmaceuticals (Basel) 2021; 15:6. [PMID: 35056063 PMCID: PMC8780158 DOI: 10.3390/ph15010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Elham Hosseini
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sara Karimifard
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Nazanin Khayam
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | | | - Sahar Amiri
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2021; 168:106052. [PMID: 34740786 DOI: 10.1016/j.ejps.2021.106052] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Various diseases remain untreated due to lack of suitable therapeutic moiety or a suitable drug delivery device, especially where toxicities and side effects are the primary reason for concern. Cancer and fungal infections are diseases where treatment schedules are not completed due to severe side effects or lengthy treatment protocols. Advanced treatment approaches such as active targeting and inhibition of angiogenesis may be preferred method for the treatment for malignancy over the conventional method. Niosomes may be a better alternative drug delivery carrier for various therapeutic moieties (either hydrophilic or hydrophobic) and also due to ease of surface modification, non-immunogenicity and economical. Active targeting approach may be done by targeting the receptors through coupling of suitable ligand on niosomal surface. Moreover, various receptors (CD44, folate, epidermal growth factor receptor (EGFR) & Vascular growth factor receptor (VGFR)) expressed by malignant cells have also been reviewed. The preparation of suitable niosomal formulation also requires considerable attention, and its formulation depends upon various factors such as selection of non-ionic surfactant, method of fabrication, and fabrication parameters. A combination therapy (dual drug and immunotherapy) has been proposed for the treatment of fungal infection with special consideration for surface modification with suitable ligand on niosomal surface to sensitize the receptors (C-type lectin receptors, Toll-like receptors & Nucleotide-binding oligomerization domain-like receptors) present on immune cells involved in fungal immunity. Certain gene silencing concept has also been discussed as an advanced alternative treatment for cancer by silencing the mRNA at molecular level using short interfering RNA (si-RNA).
Collapse
|
26
|
Minamisakamoto T, Nishiguchi S, Hashimoto K, Ogawara KI, Maruyama M, Higaki K. Sequential administration of PEG-Span 80 niosome enhances anti-tumor effect of doxorubicin-containing PEG liposome. Eur J Pharm Biopharm 2021; 169:20-28. [PMID: 34461216 DOI: 10.1016/j.ejpb.2021.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
To improve the anti-tumor effect of polyethylene glycol-modified liposome containing doxorubicin (DOX-PEG liposome), the effect of sequential administration of PEG-Span 80 niosome was investigated for Colon-26 cancer cells (C26)-bearing mice. The concept of the current study is as follows: Since both particulates would be accumulated in the tumor tissue due to the enhanced permeability and retention (EPR) effect, PEG-Span 80 niosome, mainly composed of synthetic surfactant (Span 80), would interact with DOX-PEG liposome and be a trigger to induce the release of DOX from the liposome within the tumor tissue, leading to the improvement of anti-tumor effect of DOX-PEG liposome. To find out an adequate liposome for this strategy, several PEG liposomes with different compositions were examined in terms of drug release enhancement and it was found that PEG-Span80 niosome could significantly enhance the release of calcein and DOX from a PEG liposome composed of 90% hydrogenated soybean phosphatidylcholine (HSPC) and 10% cholesterol. The sequential administration of PEG-Span 80 niosome at 24 or 48 h after dosing of DOX-PEG liposome provided a higher anti-tumor effect than the single dose of DOX-PEG liposome in the C26-bearing mice. Particularly, the 24 h-later dosing of PEG-Span 80 niosome has been found to be more effective than the 48 h-later dosing. It was also confirmed that the coexistence of PEG-Span 80 niosome with DOX-PEG liposome in 50% serum or in 50% supernatant of tumor tissue homogenate significantly increased DOX release from PEG liposome, suggesting that DOX release from DOX-PEG liposome within tumor tissue would be enhanced via the interaction with PEG-Span 80 niosome. This strategy would lead to the safer and more inexpensive chemotherapy, since it could make it possible to provide the better anti-tumor effect by utilizing the lower dose of DOX.
Collapse
Affiliation(s)
- Takaya Minamisakamoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shuhei Nishiguchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Hashimoto
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
27
|
Design of dual targeting immunomicelles loaded with bufalin and study of their anti-tumor effect on liver cancer. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:408-417. [PMID: 34130942 DOI: 10.1016/j.joim.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Bufalin is an effective drug for the treatment of liver cancer. But its high toxicity, poor water-solubility, fast metabolism and short elimination half-life limit its use in tumor treatment. How to make the drug accumulate in the tumor and reduce side effects while maintaining its efficacy are urgent problems to be solved. The goal of this study is to solve these problems. METHODS A copolymer with tunable poly-N-isopropylacrylamide and polylactic acid was designed and synthesized. The corresponding dual targeting immunomicelles (DTIs) loaded with bufalin (DTIs-BF) were synthesized by copolymer self-assembly in an aqueous solution. The size and structure of DTIs-BF were determined by ZetaSizer Nano-ZS and transmission electron microscopy. Then, its temperature sensitivity, serum stability, critical micelle concentration (CMC), entrapment efficiency (EE), drug release and non-cytotoxicity of blank block copolymer micelles (BCMs) were evaluated. Next, the effects of DTIs-BF on cellular uptake, cytotoxicity, and tumor cell inhibition were evaluated. Finally, the accumulation of DTIs-fluorescein isothiocyanate (FITC) and the in vivo anti-tumor effect were observed using an interactive video information system. RESULTS DTIs-BF had a small size, spherical shape, good temperature sensitivity, high serum stability, low CMC, high EE, and slow drug release. The blank BCMs had very low cytotoxicity. Compared with free bufalin, the in vitro cellular internalization and cytotoxicity of DTIs-BF against SMMC-7721 cells were significantly enhanced, and the effects were obviously better at 40 °C than 37 °C. In addition, the therapeutic effect on SMMC-7721 cells was further enhanced by the programmed cell death specifically caused by bufalin. When DTIs-FITC were injected intravenously in BALB/c nude mice bearing liver cancer, the accumulation of FITC was significantly increased in tumors. CONCLUSION DTIs-BF is a potentially effective nano-formulation and has broad prospects in the clinical treatment of liver cancer.
Collapse
|
28
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
29
|
Wang C, Zhang R, Tan J, Meng Z, Zhang Y, Li N, Wang H, Chang J, Wang R. Effect of mesoporous silica nanoparticles co‑loading with 17‑AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2. Oncol Rep 2020; 43:1491-1502. [PMID: 32323855 PMCID: PMC7108023 DOI: 10.3892/or.2020.7537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/19/2020] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive tumor with a poor prognosis and a low median survival rate because of insufficient effective therapeutic modalities. Recently, mesoporous silica nanoparticles (MSNs) as a green non-toxic and safe nanomaterial have shown advantages to be a drug carrier and to modify the targeting group to the targeted therapy. To aim of the study was to explore the effects of MSNs co-loading with 17-allylamino-17-demethoxy-geldanamycin (17-AAG; HSP90 inhibitor) and 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2; mTOR inhibitor) by targeting vascular endothelial growth factor receptor 2 (VEGFR2) on the viability of human anaplastic thyroid carcinoma FRO cells. The cytotoxicity of 17-AAG and Torin2 were analyzed by MTT assay. The possible synergistic antitumor effects between 17-AAG and Torin2 were evaluated by CompuSyn software. Flow cytometry was performed to assess the VEGFR2 targeting of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab and uptake by FRO cells. An ATC xenograft mouse model was established to assess the antitumor effect of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab in vivo. The results revealed that the combination of 17-AAG and Torin2 inhibited the growth of FRO cells more effectively compared with single use of these agents. Additionally, the synergistic antitumor effect appeared when concentration ratio of the two drugs was 1:1 along with total drug concentration greater than 0.52 µM. Furthermore, in an ATC animal model, it was revealed that the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab therapy modality could most effectively prolong the median survival time [39.5 days vs. 33.0 days (non-targeted) or 27.5 days (control)]. Compared to (17-AAG+Torin2)@MSNs, the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab could not only inhibit ATC cell growth but also prolong the median survival time of tumor-bearing mice in vivo and vitro more effectively, which may provide a new promising therapy for ATC.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yueqian Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|