1
|
Irqsusi M, Rodepeter FR, Günther M, Kirschbaum A, Vogt S. Matrix metalloproteinases and their tissue inhibitors as indicators of aortic aneurysm and dissection development in extracellular matrix remodeling. World J Exp Med 2025; 15:100166. [DOI: 10.5493/wjem.v15.i2.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 04/16/2025] Open
Abstract
Aneurysms and dissections represent some of the most serious cardiovascular diseases. The prevailing theory posits that mechanical overloading of the vessel wall is the underlying cause. Inspired by Barkhordarian et al, the authors present matrix metalloproteinases (MMPs) and their inhibitors in immunohistological analyses as contributing factors in the pathophysiology of aortic aneurysms (AA). Data analysis of MMP-1, MMP-9, tissue inhibitors of metalloproteinases (TIMPs), including TIMP-1 and TIMP-2 expression reveals a varied distribution between the adventitia and media and a non-uniform expression of the investigated markers. These elements, as key components of the extracellular matrix (ECM), indicate that the formation of AA is not solely driven by endoluminal pressure loading of the aortic wall. Instead, degenerative processes within ECM elements contribute significantly. Importantly, AA do not necessarily imply dissection. Tissue destruction, allowing blood flow entry, arises from reduced oxygen supply to the media, primarily due to incomplete capillarization or neocapillarization.
Collapse
Affiliation(s)
- Marc Irqsusi
- Department of Heart Surgery, Universitätsklinikum Marburg and Gießen GmbH, Marburg 35043, Hesse, Germany
| | - Fiona R Rodepeter
- Institute of Pathology, Philipps-University Marburg, Marburg 35043, Hesse, Germany
| | - Madeline Günther
- Department of Heart Surgery, Cardiovascular Research Laboratory, Philipps-University Marburg, Marburg 35043, Hesse, Germany
| | - Andreas Kirschbaum
- Department of Visceral Surgery, University Hospital Giessen and Marburg GmbH, Marburg 35043, Hesse, Germany
| | - Sebastian Vogt
- Department of Heart Surgery, Philipps-University Marburg, Marburg 35043, Hesse, Germany
| |
Collapse
|
2
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
3
|
Wang N, Sun G, Zhang Q, Gao Q, Wang B, Guo L, Cheng G, Hu Y, Huang J, Ren R, Wang C, Chen C. Broussonin E against acute respiratory distress syndrome: the potential roles of anti-inflammatory. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3195-3209. [PMID: 37906275 DOI: 10.1007/s00210-023-02801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
We applied network pharmacology and molecular docking analyses to study the efficacy of Broussonin E (BRE) in acute respiratory distress syndrome (ARDS) treatment and to determine the core components, potential targets, and mechanism of action of BRE. The SwissTargetprediction and SEA databases were used to predict BRE targets, and the GeneCards and OMIM databases were used to predict ARDS-related genes. The drug targets and disease targets were mapped to obtain an intersecting drug target gene network, which was then uploaded into the String database for protein-protein interaction network analysis. The intersecting gene was also uploaded into the DAVID database for gene ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis. Molecular docking analysis was performed to verify the interaction of BRE with the key targets. Finally, to validate the experiment in vivo, we established an oleic acid-induced ARDS rat model and evaluated the protective effect of BRE on ARDS by histological evaluation and enzyme-linked immunosorbent assay. Overall, 79 targets of BRE and 3974 targets of ARDS were predicted, and 79 targets were obtained after intersection. Key genes such as HSP90AA1, JUN, ESR1, MTOR, and PIK3CA play important roles in the nucleus and cytoplasm by regulating the tumor necrosis factor, nuclear factor-κB, and PI3K-Akt signaling pathways. Molecular docking results showed that small molecules of BRE could freely bind to the active site of the target proteins. In vivo experiments showed that BRE could reduce ARDS-related histopathological changes, release of inflammatory factors, and infiltration of macrophages and oxidative stress reaction. BRE exerts its therapeutic effect on ARDS through target and multiple pathways. This study also predicted the potential mechanism of BRE on ARDS, which provides the theoretical basis for in-depth and comprehensive studies of BRE treatment on ARDS.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Guangcheng Sun
- Department of Cardiology, Anhui Chest Hospital, Hefei, Anhui, China
| | - Qiaoyun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Qian Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Lingling Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Jian Huang
- Department of Thoracic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No.17, Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ruguo Ren
- Department of Cardiovascular Hospital, Xi'an No.1 Hospital and The First Affiliated Hospital of Northwest University, Beilin District, No.30, South Street powder Lane, Xi'an, 710002, Shaanxi, China.
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| | - Chen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
4
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
5
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
6
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Antitumor Therapy Targeting the Tumor Microenvironment. JOURNAL OF ONCOLOGY 2023; 2023:6886135. [PMID: 36908706 PMCID: PMC10005879 DOI: 10.1155/2023/6886135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor microenvironment which includes a variety of cells, molecules, and blood vessels. These components are modified, organized, and integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, difficulties and challenges still exist in this field, which will also be reported in this literature.
Collapse
|
8
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
9
|
Amir MS, Chiba N, Seong CH, Kusuyama J, Eiraku N, Ohnishi T, Nakamura N, Matsuguchi T. HIF-1α plays an essential role in BMP9-mediated osteoblast differentiation through the induction of a glycolytic enzyme, PDK1. J Cell Physiol 2022; 237:2183-2197. [PMID: 35411937 DOI: 10.1002/jcp.30752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Bone homeostasis is regulated by bone morphogenic proteins (BMPs), among which BMP9 is one of the most osteogenic. Here, we have found that BMP9 rapidly increases the protein expression of hypoxia-inducible factor-1α (HIF-1α) in osteoblasts under normoxic conditions more efficiently than BMP2 or BMP4. A combination of BMP9 and hypoxia further increased HIF-1α protein expression. HIF-1α protein induction by BMP9 is not accompanied by messenger RNA (mRNA) increase and is inhibited by the activation of prolyl hydroxylase domain (PHD)-containing protein, indicating that BMP9 induces HIF-1α protein expression by inhibiting PHD-mediated protein degradation. BMP9-induced HIF-1α protein increase was abrogated by inhibitors of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) kinase, indicating that it is mediated by PI3K-AKT signaling pathway. BMP9 increased mRNA expression of pyruvate dehydrogenase kinase 1 (PDK1), a glycolytic enzyme, and vascular endothelial growth factor-A (VEGF-A), an angiogenic factor, in osteoblasts. Notably, BMP9-induced mRNA expression of PDK1, but not that of VEGF-A, was significantly inhibited by small interference RNA-mediated knockdown of Hif-1α. BMP9-induced matrix mineralization and osteogenic marker gene expressions were significantly inhibited by chemical inhibition and gene knockdown of either Hif-1α or Pdk-1, respectively. Since increased glycolysis is an essential feature of differentiated osteoblasts, our findings indicate that HIF-1α expression is important in BMP9-mediated osteoblast differentiation through the induction of PDK1.
Collapse
Affiliation(s)
- Muhammad Subhan Amir
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Jawa Timur, Indonesia
| | - Norika Chiba
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chang Hwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Nahoko Eiraku
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
10
|
Li Z, Ning F, Wang C, Yu H, Ma Q, Sun Y. Normalization of the tumor microvasculature based on targeting and modulation of the tumor microenvironment. NANOSCALE 2021; 13:17254-17271. [PMID: 34651623 DOI: 10.1039/d1nr03387e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angiogenesis is an essential process for tumor development. Owing to the imbalance between pro- and anti-angiogenic factors, the tumor vasculature possesses the characteristics of tortuous, hyperpermeable vessels and compressive force, resulting in a reduction in the effect of traditional chemotherapy and radiotherapy. Anti-angiogenesis has emerged as a promising strategy for cancer treatment. Tumor angiogenesis, however, has been proved to be a complex process in which the tumor microenvironment (TME) plays a vital role in the initiation and development of the tumor microvasculature. The host stromal cells in the TME, such as cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs) and Treg cells, contribute to angiogenesis. Furthermore, the abnormal metabolic environment, such as hypoxia and acidosis, leads to the up-regulated expression of angiogenic factors. Indeed, normalization of the tumor microvasculature via targeting and modulating the TME has become a promising strategy for anti-angiogenesis and anti-tumor therapy. In this review, we summarize the abnormalities of the tumor microvasculature, tumor angiogenesis induced by an abnormal metabolic environment and host stromal cells, as well as drug delivery therapies to restore the balance between pro- and anti-angiogenic factors by targeting and normalizing the tumor vasculature in the TME.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
11
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Ullah K, Wu R. Hypoxia-Inducible Factor Regulates Endothelial Metabolism in Cardiovascular Disease. Front Physiol 2021; 12:670653. [PMID: 34290616 PMCID: PMC8287728 DOI: 10.3389/fphys.2021.670653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) form a physical barrier between the lumens and vascular walls of arteries, veins, capillaries, and lymph vessels; thus, they regulate the extravasation of nutrients and oxygen from the circulation into the perivascular space and participate in mechanisms that maintain cardiovascular homeostasis and promote tissue growth and repair. Notably, their role in tissue repair is facilitated, at least in part, by their dependence on glycolysis for energy production, which enables them to resist hypoxic damage and promote angiogenesis in ischemic regions. ECs are also equipped with a network of oxygen-sensitive molecules that collectively activate the response to hypoxic injury, and the master regulators of the hypoxia response pathway are hypoxia-inducible factors (HIFs). HIFs reinforce the glycolytic dependence of ECs under hypoxic conditions, but whether HIF activity attenuates or exacerbates the progression and severity of cardiovascular dysfunction varies depending on the disease setting. This review summarizes how HIF regulates the metabolic and angiogenic activity of ECs under both normal and hypoxic conditions and in a variety of diseases that are associated with cardiovascular complications.
Collapse
Affiliation(s)
- Karim Ullah
- Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rongxue Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Han HJ, Saeidi S, Kim SJ, Piao JY, Lim S, Guillen-Quispe YN, Choi BY, Surh YJ. Alternative regulation of HIF-1α stability through Phosphorylation on Ser451. Biochem Biophys Res Commun 2021; 545:150-156. [PMID: 33550096 DOI: 10.1016/j.bbrc.2021.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 11/26/2022]
Abstract
The hypoxia-inducible factor (HIF-1α) functions as a master regulator of oxygen homeostasis. Oxygen-dependent hydroxylation of HIF-1α is tightly regulated by prolyl hydroxylase domain containing proteins (PHD1, PHD2, and PHD3). The prolyl hydroxylation facilitates the recruitment of the von Hippel-Lindau (VHL) protein, leading to ubiquitination and degradation of HIF-1α by the proteasomes. Besides prolyl hydroxylation, phosphorylation of HIF-1α is another central post-translational modification, which regulates its stability under hypoxic conditions as well as normoxic conditions. By use of LC/MS/MS-based analysis, we were able to identify a specific serine residue (Ser451) of HIF-1α phosphorylated under hypoxic conditions. Using plasmids expressing wild type (WT), non-phosphorylatable mutant HIF-1α (S451A), and phosphomimetic mutant HIF-1α (S451E), we demonstrated that the phosphorylation at Ser451 is important in maintaining the HIF-1α protein stability. Notably, phosphorylation at S451 interrupts the interaction of HIF-1α with PHD and pVHL. A phosphomimetic construct of HIF-1α at Ser451 (S451E) is significantly more stable than WT HIF-1α under normoxic conditions. Cells transfected with unphosphorylatable HIF-1α exhibited significantly lower HIF-1 transcriptional activity than WT cells and markedly reduced tumor cell migration. Further, tumors derived from the phosphomimetic mutant cells grew faster, whereas the tumors derived from non-phosphorylatable mutant cells grew slower than the control tumors, suggesting that the phosphorylation of HIF-1α at the Ser451 site is critical to promote tumor growth in vivo. Taken together, our data suggest an alternative mechanism responsible for the regulation of HIF-1α stability.
Collapse
Affiliation(s)
- Hyeong-Jun Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Juan-Yu Piao
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Chungnam, South Korea
| | - Yanymee N Guillen-Quispe
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Jiang H, Tai Z, Chen Z, Zhu Q, Bao L. Clinical applicability of renin-angiotensin system inhibitors in cancer treatment. Am J Cancer Res 2021; 11:318-336. [PMID: 33575074 PMCID: PMC7868760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates physiological functions of the cardiovascular system, kidneys, and other tissues. Various in vivo and in vitro studies have shown that RAS plays a pivotal role in the development of malignant tumors, while several retrospective studies have confirmed that patients undergoing long-term RAS inhibitors (RASi) treatment have a lowered risk of cancer. Moreover, blocking RAS has been shown to inhibit tumor growth, metastasis, and angiogenesis in various experimental models of malignant tumors. Herein, we review the available RASi-related literature and provide an analysis using the scientific atlas software VOSviewer. We observed that recent studies have primarily focused on gene expression, tumor biology, and survival analysis. Through an in-depth data analysis from the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx), we identified the impact of AGTR1, an essential component of RAS, on tumors, and we discuss the underlying biological mechanism of RASi. Furthermore, we outline the research progress and potential use of RASi in tumor treatment. Overall, RASi may be a promising adjunct in cancer therapy.
Collapse
Affiliation(s)
- Huirong Jiang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
- Department of Pharmacy, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
- Bengbu Medical CollegeBengbu 233030, China
| | - Zongguang Tai
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
- Department of Pharmacy, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
| | - Leilei Bao
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
| |
Collapse
|
15
|
Renin-Angiotensin System in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:105-114. [PMID: 33119868 DOI: 10.1007/978-3-030-50224-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For enhancing the antitumor effects of current immunotherapies including immune-checkpoint blockade, it is important to reverse cancer-induced immunosuppression. The renin-angiotensin system (RAS) controls systemic body fluid circulation; however, the presence of a local RAS in tumors has been reported. Furthermore, the local RAS in tumors influences various immune and interstitial cells and affects tumor immune response. RAS stimulation through the angiotensin II type 1 receptor has been reported to inhibit tumor immune response. Therefore, RAS inhibitors and combined treatment with immunotherapy are expected in the future. In this chapter, we provide a background on the RAS and describe the tumor environment with regard to the RAS and tumor immune response.
Collapse
|
16
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Wang W, Han Y, Jo HA, Lee J, Song YS. Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 2020; 13:67. [PMID: 32503591 PMCID: PMC7275461 DOI: 10.1186/s13045-020-00893-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun A Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
18
|
Leone P, Buonavoglia A, Fasano R, Solimando AG, De Re V, Cicco S, Vacca A, Racanelli V. Insights into the Regulation of Tumor Angiogenesis by Micro-RNAs. J Clin Med 2019; 8:jcm8122030. [PMID: 31757094 PMCID: PMC6947031 DOI: 10.3390/jcm8122030] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
One of the hallmarks of cancer is angiogenesis, a series of events leading to the formation of the abnormal vascular network required for tumor growth, development, progression, and metastasis. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs whose functions include modulation of the expression of pro- and anti-angiogenic factors and regulation of the function of vascular endothelial cells. Vascular-associated microRNAs can be either pro- or anti-angiogenic. In cancer, miRNA expression levels are deregulated and typically vary during tumor progression. Experimental data indicate that the tumor phenotype can be modified by targeting miRNA expression. Based on these observations, miRNAs may be promising targets for the development of novel anti-angiogenic therapies. This review discusses the role of various miRNAs and their targets in tumor angiogenesis, describes the strategies and challenges of miRNA-based anti-angiogenic therapies and explores the potential use of miRNAs as biomarkers for anti-angiogenic therapy response.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Correspondence: ; Tel.: +39-080-5478050; Fax: +39-080-5478-045
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| |
Collapse
|
19
|
Inzhevatkin EV, Savchenko AA. The Spatial Metabolic Heterogeneity of Solid Type of Enrlich Carcinoma. DOKL BIOCHEM BIOPHYS 2019; 486:234-237. [PMID: 31367829 DOI: 10.1134/s1607672919030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/23/2022]
Abstract
In this work, we investigated the NAD(P)-dependent dehydrogenase activity in different fields of the solid form of Ehrlich carcinoma. It was shown that there is a metabolic distinction between different fields of the solid tumor. In this way, there is a significant difference between the ascites and solid type of Ehrlich carcinoma. In the central area of the tested sample of tumor tissue, there is a high intensity of energetic metabolism and biosynthetic processes as opposed to the peripheral areas. Previously, we proposed the concept of nonspecific metabolic reaction of the cell in organism upon the influence of negative factors. In accordance with this concept, our results indicate the development of adaptation in the tumor cells in the central area of the tested sample.
Collapse
Affiliation(s)
- E V Inzhevatkin
- International Scientific Center for Organism Extreme Conditions Research, Federal Research Center "Krasnoyarsk Science Center," Siberian Branch, Russian Academy of Sciences, 630036, Krasnoyarsk, Russia.
| | - A A Savchenko
- Institute of Medical Problems of the North, Federal Research Center "Krasnoyarsk Science Center," Siberian Branch, Russian Academy of Sciences, 630036, Krasnoyarsk, Russia
| |
Collapse
|
20
|
Najgebauer H, Jarnuczak AF, Varro A, Sanderson CM. Integrative Omic Profiling Reveals Unique Hypoxia Induced Signatures in Gastric Cancer Associated Myofibroblasts. Cancers (Basel) 2019; 11:cancers11020263. [PMID: 30813438 PMCID: PMC6406696 DOI: 10.3390/cancers11020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Although hypoxia is known to contribute to several aspects of tumour progression, relatively little is known about the effects of hypoxia on cancer-associated myofibroblasts (CAMs), or the consequences that conditional changes in CAM function may have on tumour development and metastasis. To investigate this issue in the context of gastric cancer, a comparative multiomic analysis was performed on populations of patient-derived myofibroblasts, cultured under normoxic or hypoxic conditions. Data from this study reveal a novel set of CAM-specific hypoxia-induced changes in gene expression and secreted proteins. Significantly, these signatures are not observed in either patient matched adjacent tissue myofibroblasts (ATMs) or non-cancer associated normal tissue myofibroblasts (NTMs). Functional characterisation of different myofibroblast populations shows that hypoxia-induced changes in gene expression not only enhance the ability of CAMs to induce cancer cell migration, but also confer pro-tumorigenic (CAM-like) properties in NTMs. This study provides the first global mechanistic insight into the molecular changes that contribute to hypoxia-induced pro-tumorigenic changes in gastric stromal myofibroblasts.
Collapse
Affiliation(s)
- Hanna Najgebauer
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | - Christopher M Sanderson
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
21
|
Wang D, You D, Li L. Galectin-3 regulates chemotherapy sensitivity in epithelial ovarian carcinoma via regulating mitochondrial function. J Toxicol Sci 2019; 44:47-56. [PMID: 30626779 DOI: 10.2131/jts.44.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Galectin-3 (Gal-3) is a multifunctional carbohydrate-binding protein associated with cell migration, cell proliferation, cell adhesion, and cell-cell interaction in tumor cells. It has been implied to be involved in the tumor progression and chemoresistance of epithelial ovarian cancer (EOC). However, it is unclear whether the Gal-3-mediated regulation on the EOC chemosensitivity is associated with hypoxia or mitochondrial dysfunction. In the present study, we examined the regulation by Gal-3 overexpression on cisplatin-sensitivity or cisplatin-resistance in EOC cells in vitro. We manipulated Gal-3 via plasmid transfection and RNA interference in the cisplatin-resistant EOC cells, and re-evaluated the sensitivity of the cisplatin-resistant EOC cells to cisplatin, with CCK-8 assay, colony forming assay, apoptosis analysis and mitochondrial function examination. Results demonstrated that galectin-3 overexpression downregulated the cisplatin sensitivity in EOC OVCAR-3 cell clone, resulting in an upregulated growth and a reduced apoptosis in the cisplatin-treated OVCAR-3 cells. On the other hand, the Gal-3 knockdown with Gal-3-specific siRNA transfection aggravated cisplatin-induced apoptosis in OVCAR-3 cells. In conclusion, Galectin-3 reduces the sensitivity of ovarian cancer cells to cisplatin via regulating cisplatin-induced mitochondrial dysfunction. Galectin-3 knockdown inhibits the chemo-resistance of EOC cells. It implies that Galectin-3 might be a potential target to overcome the chemo-resistance in EOC cells.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Radiotherapy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Dong You
- Department of Radiotherapy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Lei Li
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| |
Collapse
|
22
|
Alves A, Mamede A, Alves M, Oliveira P, Rocha S, Botelho M, Maia C. Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment? Curr Cancer Drug Targets 2018; 19:26-40. [DOI: 10.2174/1568009618666180430144441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequently detected primary malignant liver tumor, representing a worldwide public health problem due to its high morbidity and mortality rates. The HCC is commonly detected in advanced stage, precluding the use of treatments with curative intent. For this reason, it is crucial to find effective therapies for HCC. Cancer cells have a high dependence of glycolysis for ATP production, especially under hypoxic environment. Such dependence provides a reliable possible strategy to specifically target cancer cells based on the inhibition of glycolysis. HCC, such as other cancer types, presents a clinically well-known upregulation of several glycolytic key enzymes and proteins, including glucose transporters particularly glucose transporter 1 (GLUT1). Such enzymes and proteins constitute potential targets for therapy. Indeed, for some of these targets, several inhibitors were already reported, such as 2-Deoxyglucose, Imatinib or Flavonoids. Although the inhibition of glycolysis presents a great potential for an anticancer therapy, the development of glycolytic inhibitors as a new class of anticancer agents needs to be more explored. Herein, we propose to summarize, discuss and present an overview on the different approaches to inhibit the glycolytic metabolism in cancer cells, which may be very effective in the treatment of HCC.
Collapse
Affiliation(s)
- A.P. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - A.C. Mamede
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.G. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - P.F. Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - S.M. Rocha
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.F. Botelho
- Biophysics Unit, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C.J. Maia
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| |
Collapse
|
23
|
BICD1 mediates HIF1α nuclear translocation in mesenchymal stem cells during hypoxia adaptation. Cell Death Differ 2018; 26:1716-1734. [PMID: 30464225 PMCID: PMC6748134 DOI: 10.1038/s41418-018-0241-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia inducible factor 1α (HIF1α) is a master regulator leading to metabolic adaptation, an essential physiological process to maintain the survival of stem cells under hypoxia. However, it is poorly understood how HIF1α translocates into the nucleus in stem cells under hypoxia. Here, we investigated the role of a motor adaptor protein Bicaudal D homolog 1 (BICD1) in dynein-mediated HIF1α nuclear translocation and the effect of BICD1 regulation on hypoxia adaptation and its therapeutic potential on human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). In our results, silencing of BICD1 but not BICD2 abolished HIF1α nuclear translocation and its activity. BICD1 overexpression further enhanced hypoxia-induced HIF1α nuclear translocation. Hypoxia stimulated direct bindings of HIF1α to BICD1 and the intermediate chain of dynein (Dynein IC), which was abolished by BICD1 silencing. Akt inhibition reduced the binding of BICD1 to HIF1α and nuclear translocation of HIF1α. Conversely, Akt activation or GSK3β silencing further enhanced the hypoxia-induced HIF1α nuclear translocation. Furthermore, BICD1 silencing abolished hypoxia-induced glycolytic reprogramming and increased mitochondrial ROS accumulation and apoptosis in UCB-MSCs under hypoxia. In the mouse skin wound healing model, the transplanted cell survival and skin wound healing capacities of hypoxia-pretreated UCB-MSCs were reduced by BICD1 silencing and further increased by GSK3β silencing. In conclusion, we demonstrated that BICD1-induced HIF1α nuclear translocation is critical for hypoxia adaptation, which determines the regenerative potential of UCB-MSCs.
Collapse
|
24
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
25
|
Vallejo-Ardila DL, Fifis T, Burrell LM, Walsh K, Christophi C. Renin-angiotensin inhibitors reprogram tumor immune microenvironment: A comprehensive view of the influences on anti-tumor immunity. Oncotarget 2018; 9:35500-35511. [PMID: 30464806 PMCID: PMC6231452 DOI: 10.18632/oncotarget.26174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Renin-angiotensin system inhibitors (RASi) have shown potential anti-tumor effects that may have a significant impact in cancer therapy. The components of the renin-angiotensin system (RAS) including both, conventional and alternative axis, appear to have contradictory effects on tumor biology. The mechanisms by which RASi impair tumor growth extend beyond their function of modulating tumor vasculature. The major focus of this review is to analyze other mechanisms by which RASi reprogram the tumor immune microenvironment. These involve impairing hypoxia and acidosis within the tumor stroma, regulating inflammatory signaling pathways and oxidative stress, modulating the function of the non-cellular components and immune cells, and regulating the cross-talk between kalli krein kinin system and RAS.
Collapse
Affiliation(s)
- Dora L Vallejo-Ardila
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Theodora Fifis
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.,Department of Cardiology, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Katrina Walsh
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| |
Collapse
|
26
|
Fan X, Ma L, Zhang Z, Li Y, Hao M, Zhao Z, Zhao Y, Liu F, Liu L, Luo X, Cai P, Li Y, Kang L. Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations. Hum Genomics 2018; 12:37. [PMID: 30053909 PMCID: PMC6062892 DOI: 10.1186/s40246-018-0169-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023] Open
Abstract
Background High-altitude polycythemia (HAPC) is a chronic high-altitude disease that can lead to an increase in the production of red blood cells in the people who live in the plateau, a hypoxia environment, for a long time. The most frequent symptoms of HAPC include headache, dizziness, breathlessness, sleep disorders, and dilation of veins. Although chronic hypoxia is the main cause of HAPC, the fundamental pathophysiologic process and related molecular mechanisms responsible for its development remain largely unclear yet. Aim/methods This study aimed to explore the related hereditary factors of HAPC in the Chinese Han and Tibetan populations. A total of 140 patients (70 Han and 70 Tibetan) with HAPC and 60 healthy control subjects (30 Han and 30 Tibetan) were recruited for a case-control association study. To explore the genetic basis of HAPC, we investigated the association between HAPC and both phosphatidylinositol-4,5-bisphosphonate 3-kinase, catalytic subunit delta gene (PIK3CD) and collagen type IV α3 chain gene (COL4A3) in Chinese Han and Tibetan populations. Results/conclusion Using the unconditional logistic regression analysis and the false discovery rate (FDR) calculation, we found that eight SNPs in PIK3CD and one SNP in COL4A3 were associated with HAPC in the Tibetan population. However, in the Han population, we did not find any significant association. Our study suggested that polymorphisms in the PIK3CD and COL4A3 were correlated with susceptibility to HAPC in the Tibetan population.
Collapse
Affiliation(s)
- Xiaowei Fan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Yi Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Six Industrial Research Institute, Fudan University, Shanghai, 200433, China
| | - Meng Hao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhipeng Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Yiduo Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Fang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Peng Cai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Yansong Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China. .,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| |
Collapse
|
27
|
Calvo-Anguiano G, Lugo-Trampe JJ, Camacho A, Said-Fernández S, Mercado-Hernández R, Zomosa-Signoret V, Rojas-Martínez A, Ortiz-López R. Comparison of specific expression profile in two in vitro hypoxia models. Exp Ther Med 2018; 15:4777-4784. [PMID: 29805495 PMCID: PMC5958671 DOI: 10.3892/etm.2018.6048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
The microenvironment plays a fundamental role in carcinogenesis: Acidity and hypoxia are actively involved in this process. It is important to have in vitro models to study these mechanisms. The models that are most commonly referred to are the hypoxia chamber and the chemical induction [Cobalt (II) chloride]. It is not yet defined if these models are interchangeable if the metabolic effect is the same, and if the results may be compared in these models. In the present study, the response to the effect of stress (hypoxia and acidity) in both models was evaluated. The results indicated that in the chemical model, the effect of hypoxia appeared in an early form at 6 h; whereas in the gas chamber the effect was slow and gradual and at 72 h there was an overexpression of erythropoietin (EPO), vascular endothelial growth factor (VEGF), carbonic anhydrase 9 (CA9) and hypoxia-inducible factor 1α (HIF1α). In addition to the genes analyzed by reverse transcription-quantitative polymerase chain reaction, the global expression analysis between both models revealed the 9 most affected genes in common. The present study additionally identified 3 potential genes (lysyl oxidase, ankyrin repeat domain 37, B-cell lymphoma 2 interacting protein 3 like) previously identified in other studies, which may be considered as universal hypoxia genes along with HIF1α, EPO, VEGF, glucose transporter 1 (GLUT1), CA9, and LDH. To the best of the author's knowledge, this is the first time that both hypoxia models have been compared, and it was demonstrated that the effect of hypoxia induction was time sensitive in each model. These observations must be considered prior to selecting one of these models to identify selective hypoxia genes and their effects in cancer.
Collapse
Affiliation(s)
- Geovana Calvo-Anguiano
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Jose J Lugo-Trampe
- Genetic Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Alberto Camacho
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Salvador Said-Fernández
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Mercado-Hernández
- Science Exact Department, School of Biological Science, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 66451, Mexico
| | - Viviana Zomosa-Signoret
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Augusto Rojas-Martínez
- Center for Research and Development in Health Sciences, Experimental Therapies Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| | - Rocio Ortiz-López
- Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| |
Collapse
|
28
|
Inhibition of pH regulation as a therapeutic strategy in hypoxic human breast cancer cells. Oncotarget 2018; 8:42857-42875. [PMID: 28476026 PMCID: PMC5522111 DOI: 10.18632/oncotarget.17143] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/15/2017] [Indexed: 01/20/2023] Open
Abstract
Hypoxic cancer cells exhibit resistance to many therapies. This study compared the therapeutic effect of targeting the pH regulatory proteins (CAIX, NHE1 and V-ATPase) that permit cancer cells to adapt to hypoxic conditions, using both 2D and 3D culture models. Drugs targeting CAIX, NHE1 and V-ATPase exhibited anti-proliferative effects in MCF-7, MDA-MB-231 and HBL-100 breast cancer cell lines in 2D. Protein and gene expression analysis in 2D showed that CAIX was the most hypoxia-inducible protein of the 3 targets. However, the expression of CAIX differed between the 3 cell lines. This difference in CAIX expression in hypoxia was consistent with a varying activity of FIH-1 between the cell lines. 3D expression analysis demonstrated that both CAIX and NHE1 were up-regulated in the hypoxic areas of multicellular tumor spheroids. However, the induction of CAIX expression in hypoxia was again cell line dependent. 3D invasion assays conducted with spheroids showed that CAIX inhibition significantly reduced the invasion of cells. Finally, the capability of both NHE1 and CAIX inhibitors to combine effectively with irradiation was exhibited in clonogenic assays. Proteomic-mass-spectrometric analysis indicated that CAIX inhibition might be combining with irradiation through stimulating apoptotic cell death. Of the three proteins, CAIX represents the target with the most promise for the treatment of breast cancer.
Collapse
|
29
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
30
|
Fuchs K, Kuehn A, Mahling M, Guenthoer P, Hector A, Schwenck J, Hartl D, Laufer S, Kohlhofer U, Quintanilla-Martinez L, Reischl G, Röcken M, Pichler BJ, Kneilling M. In Vivo Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen Species Generation. J Nucl Med 2017; 58:853-860. [PMID: 28183987 DOI: 10.2967/jnumed.116.185934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoxia is essential for the development of autoimmune diseases such as rheumatoid arthritis (RA) and is associated with the expression of reactive oxygen species (ROS), because of the enhanced infiltration of immune cells. The aim of this study was to demonstrate the feasibility of measuring hypoxia noninvasively in vivo in arthritic ankles with PET/MRI using the hypoxia tracers 18F-fluoromisonidazole (18F-FMISO) and 18F-fluoroazomycinarabinoside (18F-FAZA). Additionally, we quantified the temporal dynamics of hypoxia and ROS stress using L-012, an ROS-sensitive chemiluminescence optical imaging probe, and analyzed the expression of hypoxia-inducible factors (HIFs). Methods: Mice underwent noninvasive in vivo PET/MRI to measure hypoxia or optical imaging to analyze ROS expression. Additionally, we performed ex vivo pimonidazole-/HIF-1α immunohistochemistry and HIF-1α/2α Western blot/messenger RNA analysis of inflamed and healthy ankles to confirm our in vivo results. Results: Mice diseased from experimental RA exhibited a 3-fold enhancement in hypoxia tracer uptake, even in the early disease stages, and a 45-fold elevation in ROS expression in inflamed ankles compared with the ankles of healthy controls. We further found strong correlations of our noninvasive in vivo hypoxia PET data with pimonidazole and expression of HIF-1α in arthritic ankles. The strongest hypoxia tracer uptake was observed as soon as day 3, whereas the most pronounced ROS stress was evident on day 6 after the onset of experimental RA, indicating that tissue hypoxia can precede ROS stress in RA. Conclusion: Collectively, for the first time to our knowledge, we have demonstrated that the noninvasive measurement of hypoxia in inflammation using 18F-FAZA and 18F-FMISO PET imaging represents a promising new tool for uncovering and monitoring rheumatic inflammation in vivo. Further, because hypoxic inflamed tissues are associated with the overexpression of HIFs, specific inhibition of HIFs might represent a new powerful treatment strategy.
Collapse
Affiliation(s)
- Kerstin Fuchs
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anna Kuehn
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Moritz Mahling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Philipp Guenthoer
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hector
- Children's Hospital of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tuebingen, Tuebingen, Germany
| | - Dominik Hartl
- Children's Hospital of the Eberhard Karls University Tuebingen, Tuebingen, Germany.,Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stefan Laufer
- Department of Pharmacy & Biochemistry, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany; and
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany; and
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany .,Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy. Expert Opin Biol Ther 2016; 17:313-324. [PMID: 27960589 DOI: 10.1080/14712598.2017.1271874] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Jesus I Luna
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - Steven K Grossenbacher
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - William J Murphy
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA.,b Department of Internal Medicine , University of California Davis Medical Center , Sacramento , CA USA
| | - Robert J Canter
- c Division of Surgical Oncology, Department of Surgery , University of California Davis School of Medicine , Sacramento , CA USA
| |
Collapse
|
32
|
Levy S, Feduska JM, Sawant A, Gilbert SR, Hensel JA, Ponnazhagan S. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone 2016; 93:113-124. [PMID: 27664567 PMCID: PMC5443259 DOI: 10.1016/j.bone.2016.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Bone fractures heal with overlapping phases of inflammation, cell proliferation, and bone remodeling. Osteogenesis and angiogenesis work in concert to control many stages of this process, and when one is impaired it leads to failure of bone healing, termed a nonunion. During fracture repair, there is an infiltration of immune cells at the fracture site that not only mediate the inflammatory responses, but we hypothesize they also exert influence on neovasculature. Thus, further understanding the effects of immune cell participation throughout fracture healing will reveal additional knowledge as to why some fractures heal while others form nonunions, and lead to development of novel therapeutics modulating immune cells, to increase fracture healing and prevent nonunions. Using novel femoral segmental and critical-size defect models in mice, we identified a systemic and significant increase in immature myeloid cell (IMC) infiltration during the initial phase of fracture healing until boney union is complete. Using gemcitabine to specifically ablate the IMC population, we confirmed delayed bone healing. Further, adoptive transfer of IMC increased bone growth in a nonunion model, signifying the role of this unique cell population in fracture healing. We also identified IMC post-fracture have the ability to increase endothelial cell migration, and tube formation, signaling the essential communication between the immune system and angiogenesis as a requirement for proper bone healing. Based on this data we propose that IMC may play a significant role in fracture healing and therapeutic targeting of IMC after fracture would minimize the chances of eventual nonunion pathology.
Collapse
Affiliation(s)
- Seth Levy
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph M Feduska
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anandi Sawant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shawn R Gilbert
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Selvarangan Ponnazhagan
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
33
|
Partial Oxygen Pressure Affects the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the Microenvironment of Colorectal Cancer Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1204715. [PMID: 27974949 PMCID: PMC5126433 DOI: 10.1155/2016/1204715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022]
Abstract
Hypoxia is prognostically important in colorectal cancer (CRC) therapy. Partial oxygen pressure (pO2) is an important parameter of hypoxia. The correlation between pO2 levels and expression levels of prognostic biomarkers was measured in CRC tissues. Human CRC tissues were collected and pO2 levels were measured by OxyLite. Three methods for tissue fixation were compared, including formalin, Finefix, and Finefix-plus-microwave. Immunohistochemistry (IHC) staining was conducted by using the avidin-biotin complex technique for detecting the antibodies to hypoxia inducible factor-1 (HIF-1) alpha, cytokeratin 20 (CK20), and cell proliferation factor Ki67. The levels of pO2 were negatively associated with the size of CRC tissues. Finefix-plus-microwave fixation has the potential to replace formalin. Additionally, microwave treatment improved Finefix performance in tissue fixation and protein preservation. The percentage of positive cells and gray values of HIF-1 alpha, CK20, and Ki67 were associated with CRC development (P < 0.05). The levels of pO2 were positively related with the gray values of Ki67 and negatively related with the values of HIF-1 alpha and CK20 (P < 0.05). Thus, the levels of microenvironmental pO2 affect the expression of predictive biomarkers HIF-1 alpha, CK20, and Ki67 in the development of CRC tissues.
Collapse
|
34
|
Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 2016; 16:35-52. [PMID: 27811929 DOI: 10.1038/nrd.2016.193] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells, also known as mesenchymal stromal cells (MSCs), exist in many tissues and are known to actively migrate to sites of tissue injury, where they participate in wound repair. Tumours can be considered "wounds that never heal" and, in response to cues from a tumour, MSCs are continuously recruited to and become integral components of the tumour microenvironment. Recently, it has become apparent that such tumour-associated MSCs (TA-MSCs) have an active role in tumour initiation, promotion, progression and metastasis. In this Review, we discuss recent advances in our understanding of the pathogenic role of TA-MSCs in regulating the survival, proliferation, migration and drug resistance of tumour cells, as well as the influence of MSCs on the immune status of the tumour microenvironment. Moreover, we discuss therapeutic approaches that target TA-MSC upstream or downstream modulators or use MSCs as vehicles for the delivery of tumoricidal agents. It is anticipated that new insights into the functions of TA-MSCs will lead to the development of novel therapeutic strategies against tumours.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liming Du
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liangyu Lin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Jiao Tong University School of Medicine, 280 Chongqing Road, Shanghai 200025, China
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
35
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
36
|
Thirusangu P, Vigneshwaran V, Prashanth T, Vijay Avin BR, Malojirao VH, Rakesh H, Khanum SA, Mahmood R, Prabhakar BT. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation. Angiogenesis 2016; 20:55-71. [PMID: 27743086 DOI: 10.1007/s10456-016-9528-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
Hypoxia is a feature of all solid tumours, contributing to tumour progression. Activation of HIF-1α plays a critical role in promoting tumour angiogenesis and metastasis. Since its expression is positively correlated with poor prognosis for cancer patients, HIF-1α is one of the most convincing anticancer targets. BP-1T is a novel antiproliferative agent with promising antiangiogenic effects. In the present study, the molecular mechanism underlying cytotoxic/antiangiogenic effects of BP-1T on tumour/non-tumour angiogenesis was evaluated. Evidences show that BP-1T exhibits potent cytotoxicity with prolonged activity and effectively regressed neovessel formation both in reliable non-tumour and tumour angiogenic models. The expression of CoCl2-induced HIF-1α was inhibited by BP-1T in various p53 (WT)-expressing cancer cells, including A549, MCF-7 and DLA, but not in mutant p53-expressing SCC-9 cells. Mechanistically, BP-1T mediates the HIF-1α proteasomal degradation by activating p53/MDM2 pathway and thereby downregulated HIF-1α-dependent angiogenic genes such as VEGF-A, Flt-1, MMP-2 and MMP-9 under hypoxic condition of in vitro and in vivo solid tumour, eventually leading to abolition of migration and invasion. Based on these observations, we conclude that BP-1T acts on HIF-1α degradation through p53/MDM2 proteasome pathway.
Collapse
Affiliation(s)
- Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - T Prashanth
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - H Rakesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - Riaz Mahmood
- Postgraduate Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577203, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India.
| |
Collapse
|
37
|
RNA Activation of the Vascular Endothelial Growth Factor Gene (VEGF) Promoter by Double-Stranded RNA and Hypoxia: Role of Noncoding VEGF Promoter Transcripts. Mol Cell Biol 2016; 36:1480-93. [PMID: 26976645 DOI: 10.1128/mcb.01096-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
RNA activation (RNAa) is a gene regulation process in which promoter-targeted short double-stranded RNAs (dsRNAs) or microRNAs (miRs) induce target gene expression at the transcriptional level. Here, we investigate the presence of cryptic promoter transcripts within the VEGF promoter. Single-strand sense and antisense noncoding vascular endothelial growth factor (NcVEGF) promoter transcripts are identified, and their respective expression is studied in cells transfected with a VEGF promoter targeted dsRNA, namely, dsVEGF706, in hypoxic cells and in human malignant lung tissues. Interestingly, in dsVEGF706-transfected, as well as in hypoxic cells, NcVEGF expression levels increase coordinately with coding VEGF expression. Ago2 interaction with both sense and antisense NcVEGFs is increased in hypoxic cells, whereas in dsVEGF706-transfected cells, Ago2 and the antisense strand of the dsRNA interact specifically with the sense NcVEGF transcript. Furthermore, both dsVEGF706 and ectopic NcVEGF transcripts are able to activate the VEGF promoter endogenously present or in a reporter construct. Finally, using small interfering RNA targeting Ago2, we show that RNAa plays a role in the maintenance of increased VEGF and NcVEGF expression after hypoxia. Given the central role of VEGF in major human diseases, including cancer, this novel molecular mechanism is poised to reveal promising possibilities for therapeutic interventions.
Collapse
|
38
|
Arabzadeh E, Mirdar S, Fathi Z. Measurement of levels of lung HIF-1α protein in response to tapering for 14- and 21-day with nigella sativa supplementation in maturing rat, with histological study. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Bürgi S, Seuwen A, Keist R, Vom Berg J, Grandjean J, Rudin M. In vivo imaging of hypoxia-inducible factor regulation in a subcutaneous and orthotopic GL261 glioma tumor model using a reporter gene assay. Mol Imaging 2015; 13. [PMID: 25248521 DOI: 10.2310/7290.2014.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intratumoral hypoxia changes the metabolism of gliomas, leading to a more aggressive phenotype with increased resistance to radio- and chemotherapy. Hypoxia triggers a signaling cascade with hypoxia-inducible factor (HIF) as a key regulator. We monitored activation of the HIF pathway longitudinally in murine glioma tumors. GL261 cells, stably transfected with a luciferase reporter driven under the control of a promoter comprising the HIF target gene motive hypoxia response element, were implanted either subcutaneously or orthotopically. In vivo experiments were carried out using bioluminescence imaging. Tumors were subsequently analyzed using immunofluorescence staining for hypoxia, endothelial cells, tumor perfusion, and glucose transporter expression. Transient upregulation of the HIF signaling was observed in both subcutaneous and orthotopic gliomas. Immunofluorescence staining confirmed hypoxic regions in subcutaneous and, to a lesser extent, intracranial tumors. Subcutaneous tumors showed substantial necrosis, which might contribute to the decreased bioluminescence output observed toward the end of the experiment. Orthotopic tumors were less hypoxic than subcutaneous ones and did not develop extensive necrotic areas. Although this may be the result of the overall smaller size of orthotopic tumors, it might also reflect differences in the local environment, such as the better intrinsic vascularization of brain tissue compared to the subcutaneous tissue compartment.
Collapse
|
40
|
Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 2015; 33:55-63. [PMID: 25665467 PMCID: PMC4896929 DOI: 10.1016/j.coi.2015.01.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
T cells play a critical role in tumor immune surveillance as evidenced by extensive mouse-tumor model studies as well as encouraging patient responses to adoptive T cell therapies and dendritic cell vaccines. It is well established that the interplay of tumor cells with their local cellular environment can trigger events that are immunoinhibitory to T cells. More recently it is emerging that the tumor vasculature itself constitutes an important barrier to T cells. Endothelial cells lining the vessels can suppress T cell activity, target them for destruction, and block them from gaining entry into the tumor in the first place through the deregulation of adhesion molecules. Here we review approaches to break this tumor endothelial barrier and enhance T cell activity.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Melita Irving
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne (CHUV), CH-1015 Lausanne, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
|
42
|
Trautmann F, Cojoc M, Kurth I, Melin N, Bouchez LC, Dubrovska A, Peitzsch C. CXCR4 as biomarker for radioresistant cancer stem cells. Int J Radiat Biol 2014; 90:687-99. [PMID: 24650104 DOI: 10.3109/09553002.2014.906766] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Radioresistance of cancer cells remains a fundamental barrier for maximum efficient radiotherapy. Tumor heterogeneity and the existence of distinct cell subpopulations exhibiting different genotypes and biological behaviors raise difficulties to eradicate all tumorigenic cells. Recent evidence indicates that a distinct population of tumor cells, called cancer stem cells (CSC), is involved in tumor initiation and recurrence and is a putative cause of tumor radioresistance. There is an urgent need to identify the intrinsic molecular mechanisms regulating the generation and maintenance of resistance to radiotherapy, especially within the CSC subset. The chemokine C-X-C motif receptor 4 (CXCR4) has been found to be a prognostic marker in various types of cancer, being involved in chemotaxis, stemness and drug resistance. The interaction of CXCR4 with its ligand, the chemokine C-X-C motif ligand 12 (CXCL12), plays an important role in modulating the tumor microenvironment, angiogenesis and CSC niche. Moreover, the therapeutic inhibition of the CXCR4/CXCL12 signaling pathway is sensitizing the malignant cells to conventional anti-cancer therapy. CONTENT Within this review we are summarizing the role of the CXCR4/CXCL12 axis in the modulation of CSC properties, the regulation of the tumor microenvironment in response to irradiation, therapy resistance and tumor relapse. CONCLUSION In light of recent findings, the inhibition of the CXCR4/CXCL12 signaling pathway is a promising therapeutic option to refine radiotherapy.
Collapse
Affiliation(s)
- Franziska Trautmann
- OncoRay - National Center for Radiation Research in Oncology, Medizinische Fakultät Carl Gustav Carus der Technischen Universität and Helmholtz Zentrum Rossendorf , Dresden
| | | | | | | | | | | | | |
Collapse
|
43
|
Retinoblastoma binding protein 2 (RBP2) promotes HIF-1α-VEGF-induced angiogenesis of non-small cell lung cancer via the Akt pathway. PLoS One 2014; 9:e106032. [PMID: 25162518 PMCID: PMC4146555 DOI: 10.1371/journal.pone.0106032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/27/2014] [Indexed: 01/25/2023] Open
Abstract
Background Pathological angiogenesis plays an essential role in tumor aggressiveness and leads to unfavorable prognosis. The aim of this study is to detect the potential role of Retinoblastoma binding protein 2 (RBP2) in the tumor angiogenesis of non-small cell lung cancer (NSCLC). Methods Immunohistochemical staining was used to detect the expression of RBP2, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and CD34. Two pairs of siRNA sequences and pcDNA3-HA-RBP2 were used to down-regulate and up-regulate RBP2 expression in H1975 and SK-MES-1 cells. An endothelial cell tube formation assay, VEGF enzyme-linked immunosorbent assay, real-time PCR and western blotting were performed to detect the potential mechanisms mediated by RBP2 in tumor angiogenesis. Results Of the 102 stage I NSCLC specimens analyzed, high RBP2 protein expression is closely associated with tumor size (P = 0.030), high HIF-1α expression (P = 0.028), high VEGF expression (P = 0.048), increased tumor angiogenesis (P = 0.033) and poor prognosis (P = 0.037); high MVD was associated with high HIF-1α expression (P = 0.034), high VEGF expression (P = 0.001) and poor prognosis (P = 0.040). Multivariate analysis indicated that RBP2 had an independent influence on the survival of patients with stage I NSCLC (P = 0.044). By modulating the expression of RBP2, our findings suggested that RBP2 protein depletion decreased HUVECs tube formation by down-regulating VEGF in a conditioned medium. RBP2 stimulated the up-regulation of VEGF, which was dependent on HIF-1α, and activated the HIF-1α via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Moreover, VEGF increased the activation of Akt regulated by RBP2. Conclusions The RBP2 protein may stimulate HIF-1α expression via the activation of the PI3K/Akt signaling pathway under normoxia and then stimulate VEGF expression. These findings indicate that RBP2 may play a critical role in tumor angiogenesis and serve as an attractive therapeutic target against tumor aggressiveness for early-stage NSCLC patients.
Collapse
|
44
|
Mandl M, Depping R. Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): is it a rare exception? Mol Med 2014; 20:215-20. [PMID: 24849811 DOI: 10.2119/molmed.2014.00032] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/29/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as hypoxia-inducible factor (HIF)-1β, plays a pivotal role in the adaptive responses to (micro-)environmental stresses such as dioxin exposure and oxygen deprivation (hypoxia). ARNT belongs to the group of basic helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) transcription factors, which act as heterodimers. ARNT serves as a common binding partner for the aryl hydrocarbon receptor (AhR) as well as HIF-α subunits. HIF-α proteins are regulated in an oxygen-dependent manner, whereas ARNT is generally regarded as constitutively expressed, meaning that neither the arnt mRNA nor the protein level is influenced by hypoxia (despite the name HIF-1β). However, there is emerging evidence that tumor cells derived from different entities are able to upregulate ARNT, especially under low oxygen tension in a cell-specific manner. The objective of this review is therefore to highlight and summarize current knowledge regarding the hypoxia-dependent upregulation of ARNT, which is in sharp contrast to the general point of view described in the literature. Elucidating the mechanism behind this rare cellular attribute will help us to gain new insights into HIF biology and might provide new strategies for anti-cancer therapeutics. In conclusion, putative treatment effects on ARNT should be taken into account while studying the HIF pathway. This step is of great importance when ARNT is intended to serve as a loading control or as a reference.
Collapse
Affiliation(s)
- Markus Mandl
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| | - Reinhard Depping
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| |
Collapse
|
45
|
Dehne N, Brüne B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story. Antioxid Redox Signal 2014; 20:339-52. [PMID: 22794181 DOI: 10.1089/ars.2012.4776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. RECENT ADVANCES Mitochondria are at the center of a hypoxia sensing and responding relay system. CRITICAL ISSUES Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. FUTURE DIRECTIONS Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
Collapse
Affiliation(s)
- Nathalie Dehne
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt , Frankfurt, Germany
| | | |
Collapse
|
46
|
|
47
|
Crociani O, Zanieri F, Pillozzi S, Lastraioli E, Stefanini M, Fiore A, Fortunato A, D'Amico M, Masselli M, De Lorenzo E, Gasparoli L, Chiu M, Bussolati O, Becchetti A, Arcangeli A. hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer. Sci Rep 2013; 3:3308. [PMID: 24270902 PMCID: PMC3839040 DOI: 10.1038/srep03308] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a potential target for cancer therapy. We identified a novel signaling pathway that sustains angiogenesis and progression in colorectal cancer (CRC). This pathway is triggered by β1 integrin-mediated adhesion and leads to VEGF-A secretion. The effect is modulated by the human ether-à-go-go related gene 1 (hERG1) K(+) channel. hERG1 recruits and activates PI3K and Akt. This in turn increases the Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumour progression genes. This signaling pathway has novel features in that the integrin- and hERG1-dependent activation of HIF (i) is triggered in normoxia, especially after CRC cells have experienced a hypoxic stage, (ii) involves NF-kB and (iii) is counteracted by an active p53. Blocking hERG1 switches this pathway off also in vivo, by inhibiting cell growth, angiogenesis and metastatic spread. This suggests that non-cardiotoxic anti-hERG1 drugs might be a fruitful therapeutic strategy to prevent the failure of anti-VEGF therapy.
Collapse
Affiliation(s)
- Olivia Crociani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Francesca Zanieri
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Matteo Stefanini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Antonella Fiore
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Angelo Fortunato
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Massimo D'Amico
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Marika Masselli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Emanuele De Lorenzo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Luca Gasparoli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| | - Martina Chiu
- Unit of General Pathology Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT) University of Parma
| | - Ovidio Bussolati
- Unit of General Pathology Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT) University of Parma
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy
| |
Collapse
|
48
|
Bellone M, Calcinotto A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol 2013; 3:231. [PMID: 24062984 PMCID: PMC3769630 DOI: 10.3389/fonc.2013.00231] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 12/26/2022] Open
Abstract
The tumor is a hostile microenvironment for T lymphocytes. Indeed, irregular blood flow, and endothelial cell (EC) anergy that characterize most solid tumors hamper leukocyte adhesion, extravasation, and infiltration. In addition, hypoxia and reprograming of energy metabolism within cancer cells transform the tumor mass in a harsh environment that limits survival and effector functions of T cells, regardless of being induced in vivo by vaccination or adoptively transferred. In this review, we will summarize on recent advances in our understanding of the characteristics of tumor-associated neo-angiogenic vessels as well as of the tumor metabolism that may impact on T cell trafficking and fitness of tumor infiltrating lymphocytes. In particular, we will focus on how advances in knowledge of the characteristics of tumor ECs have enabled identifying strategies to normalize the tumor-vasculature and/or overcome EC anergy, thus increasing leukocyte-vessel wall interactions and lymphocyte infiltration in tumors. We will also focus on drugs acting on cells and their released molecules to transiently render the tumor microenvironment more suitable for tumor infiltrating T lymphocytes, thus increasing the therapeutic effectiveness of both active and adoptive immunotherapies.
Collapse
Affiliation(s)
- Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Infectious Diseases and Transplantation, San Raffaele Scientific Institute , Milan , Italy
| | | |
Collapse
|
49
|
Weigent DA. Hypoxia and cytoplasmic alkalinization upregulate growth hormone expression in lymphocytes. Cell Immunol 2013; 282:9-16. [PMID: 23639351 DOI: 10.1016/j.cellimm.2013.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/14/2012] [Accepted: 03/26/2013] [Indexed: 11/19/2022]
Abstract
We report here that culture of lymphoid cells under hypoxic conditions showed an increase in both luciferase expression from a GH-promoter luciferase construct and the levels of lymphocyte GH. The effect was mimicked by treatment of cells with cobalt chloride consistent with a specific oxygen-sensing mechanism. We identified a putative hypoxia response element (HRE) in the GH promoter at the region -176 bp to -172 bp that contains a copy of the hypoxia-inducible factor-1 (Hif-1) binding motif (5'-ACGTG-3'). The results also showed that culture of primary rat spleen cells with different doses of TMA induced a dose-dependent increase in lymphocyte GH by Western blot analysis. Greater levels of GH are induced in T cell-enriched populations compared to B cell-enriched populations after treatment with CoCl(2) or TMA. Our results suggest that the stressful cellular conditions likely to occur at sites of inflammation or tumor growth may induce the synthesis of lymphocyte GH.
Collapse
Affiliation(s)
- Douglas A Weigent
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| |
Collapse
|
50
|
Ji F, Wang Y, Qiu L, Li S, Zhu J, Liang Z, Wan Y, Di W. Hypoxia inducible factor 1α-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. Int J Oncol 2013; 42:1578-88. [PMID: 23545606 PMCID: PMC3661201 DOI: 10.3892/ijo.2013.1878] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/12/2013] [Indexed: 12/14/2022] Open
Abstract
This study investigated the role of LOX in promoting invasion and metastasis of epithelial ovarian cancer in a hypoxic environment and its specific signal transduction pathway. Immunohistochemical detection of HIF-1α and LOX protein expression was performed on formalin-fixed paraffin sections of normal ovary, benign ovarian tumors, borderline and malignant epithelial ovarian tumor paraffin sample, using Mann-Whitney U test for independent comparisons and Wilcoxon signed-ranks test for paired comparisons. HIF-1α and LOX were knocked down in epithelial ovarian cancer cells (EOC), and HIF-1α/LOX regulation mechanism and LOX catalytic activity under hypoxia/reoxygenation microenvironment were explored. Cell migration and invasion ability in LOX inhibited HO8910 cells were investigated under hypoxia/reoxygenation conditions, using matrigel cell invasion and migration assays. We found that HIF-1α and LOX are highly expressed in epithelial ovarian cancer tissues, and the expression of both proteins is significantly correlated with the tumor grade, tumor diameter and lymph node metastasis. HIF-1α expression is positively correlated with the expression of LOX. Specifically, the expression of LOX and HIF-1α markedly increases under hypoxic conditions and decreases after reoxygenation. siRNA knockdown of LOX or β-aminoproprionitrile (βAPN), an inhibitor of LOX activity, that attenuates LOX activity, downregulates HIF-1α protein expression and inhibits HO8910 migratory and invasive abilities. LOX catalytic activity is significantly reduced under hypoxic conditions. Moreover, EOC cells display a marked increase in LOX-dependent FAK/AKT activation and cell migration following hypoxia/reoxygenation. Collectively, our study demonstrates that the hypoxia-HIF-1α, LOX-FAK/AKT pathway regulates the migration and invasion of epithelial ovarian cancer cells under hypoxia/reoxygenation conditions, thus, promoting metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Fang Ji
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | | | | | | | | | | | | | | |
Collapse
|