1
|
Matějková J, Kaňoková D, Matějka R. Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts. Gels 2024; 11:4. [PMID: 39851975 PMCID: PMC11765431 DOI: 10.3390/gels11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals. With further developmental support, a functional replacement tissue or vessel can be created. This review provides an overview of the current state of bioprinting for vascular graft manufacturing and summarizes the hydrogels used as bioinks, the material of carriers, and the current methods of fabrication used, especially for vessels smaller than 6 mm, which are the most challenging for cardiovascular replacements. The fabrication methods are divided into several sections-self-supporting grafts based on simple 3D bioprinting and bioprinting of bioinks on scaffolds made of decellularized or nanofibrous material.
Collapse
Affiliation(s)
- Jana Matějková
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic;
| | | | - Roman Matějka
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic;
| |
Collapse
|
2
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Nowosad A, Marine JC, Karras P. Perivascular niches: critical hubs in cancer evolution. Trends Cancer 2023; 9:897-910. [PMID: 37453870 DOI: 10.1016/j.trecan.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Tumors are heterogeneous ecosystems in which cancer cells coexist within a complex tumor immune microenvironment (TIME). The malignant, stromal, and immune cell compartments establish a plethora of bidirectional cell-cell communication crosstalks that influence tumor growth and metastatic dissemination, which we are only beginning to understand. Cancer cells either co-opt or promote the formation of new blood and lymphatic vessels to cope with their need for nutrients and oxygen. Recent studies have highlighted additional key roles for the tumor vasculature and have identified the perivascular niche as a cellular hub, where intricate and dynamic cellular interactions promote cancer stemness, immune evasion, dormancy, and metastatic spreading. Here, we review these findings, and discuss how they may be exploited therapeutically.
Collapse
Affiliation(s)
- Ada Nowosad
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Faruqui N, Williams DS, Briones A, Kepiro IE, Ravi J, Kwan TO, Mearns-Spragg A, Ryadnov MG. Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™. Mater Today Bio 2023; 22:100786. [PMID: 37692377 PMCID: PMC10491728 DOI: 10.1016/j.mtbio.2023.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.
Collapse
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E. Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Tristan O.C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
5
|
Lugassy C, Kleinman HK, Barnhill RL. Monitoring Angiotropic Extravascular Migratory Metastasis In Vitro. Methods Mol Biol 2023; 2572:91-100. [PMID: 36161410 DOI: 10.1007/978-1-0716-2703-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanism of cancer cell migration from the primary tumor toward secondary sites is not fully understood. In addition to intravascular cellular migration, angiotropic extravascular migratory metastasis (EVMM) has been recognized as a metastatic pathway involving tumor cells crawling along the abluminal vascular surface to distant sites. A very simple in vitro 3D assay is described here, which is based on a previous in vitro angiogenesis assay. The assay involves monitoring single fluorescence-tagged migrating cancer cells in the presence of vascular structures in real time. This coculture assay represents a quantitative approach for monitoring the migration processes of cancer cells along vessels, demonstrating phenotypic switching and migration dynamics. This protocol can be used for molecular analyses and can also be adapted for screening of therapeutic agents to block cancer metastasis.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- Faculty of Medicine, University of Paris Réné Descartes, Paris, France
| |
Collapse
|
6
|
Passaniti A, Kleinman HK, Martin GR. Matrigel: history/background, uses, and future applications. J Cell Commun Signal 2022; 16:621-626. [PMID: 34463918 PMCID: PMC9733768 DOI: 10.1007/s12079-021-00643-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Basement membranes are thin sheets of extracellular matrix with many diverse roles in the body. Those in normal tissue are also highly insoluble and resist attempts to extract and characterize their components. A mouse tumor, the EHS tumor, has provided large amounts of basement membrane material, which has facilitated the structural and functional characterization of its components. An extract of the tumor, known as Matrigel, contains components which reconstitute into a solid gel at 37°. This solid basement membrane matrix has been used in both cell culture and in vivo. Matrigel has been utilized in some 12,000-plus publications for a variety of studies with embryonic, normal, and stem or malignant cells. Evidence presented in this Commentary suggests that Matrigel isolated from tumors grown in diverse hosts could exert unique effects that could be helpful in analyzing the causes of various pathologies and for screening possible therapeutic agents.
Collapse
|
7
|
Recouvreux MS, Miao J, Gozo MC, Wu J, Walts AE, Karlan BY, Orsulic S. FOXC2 Promotes Vasculogenic Mimicry in Ovarian Cancer. Cancers (Basel) 2022; 14:4851. [PMID: 36230774 PMCID: PMC9564305 DOI: 10.3390/cancers14194851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
FOXC2 is a forkhead family transcription factor that plays a critical role in specifying mesenchymal cell fate during embryogenesis. FOXC2 expression is associated with increased metastasis and poor survival in various solid malignancies. Using in vitro and in vivo assays in mouse ovarian cancer cell lines, we confirmed the previously reported mechanisms by which FOXC2 could promote cancer growth, metastasis, and drug resistance, including epithelial-mesenchymal transition, stem cell-like differentiation, and resistance to anoikis. In addition, we showed that FOXC2 expression is associated with vasculogenic mimicry in mouse and human ovarian cancers. FOXC2 overexpression increased the ability of human ovarian cancer cells to form vascular-like structures in vitro, while inhibition of FOXC2 had the opposite effect. Thus, we present a novel mechanism by which FOXC2 might contribute to cancer aggressiveness and poor patient survival.
Collapse
Affiliation(s)
- Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jiangyong Miao
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maricel C. Gozo
- Women’s Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingni Wu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Barricklow Z, DiVincenzo MJ, Angell CD, Carson WE. Ulcerated Cutaneous Melanoma: A Review of the Clinical, Histologic, and Molecular Features Associated with a Clinically Aggressive Histologic Phenotype. Clin Cosmet Investig Dermatol 2022; 15:1743-1757. [PMID: 36065342 PMCID: PMC9440663 DOI: 10.2147/ccid.s372287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022]
Abstract
The presence of ulceration in melanoma is associated with poor clinical outcomes and is the third most powerful predictor of survival in the AJCC Melanoma Staging System after tumor thickness and mitotic activity. The aggressive biological behavior associated with ulceration has been hypothesized to be the result of an intrinsic biological attribute that favors dissemination and presents locally with the loss of epidermal integrity. Among the features of ulcerated melanoma, many show promise as potential prognostic tools, markers of differential immunogenicity and indicators of oncogenic drivers of invasion and metastasis. The incidence of ulcerated melanoma is greater in males, increases with age and with systemic inflammatory risk factors (diabetes, smoking, low vitamin D, elevated body mass index). Patients with ulcerated primary tumors seem to exclusively benefit from adjuvant interferon (IFN) therapy, which is likely the consequence of an altered tumor microenvironment. When ulceration is present, there is a higher density of macrophages and dendritic cells and enhanced expression of pro-inflammatory cytokines, such as IL-6. There is also an increased expression of proteins involved in tumor antigen presentation in ulcerated melanomas. Histologically, vascular density, vasculogenic mimicry and angiotropism are all significantly correlated with ulceration in melanoma. The presence of ulceration is associated with reduced protein expression of E-cadherin and PTEN and elevated levels of N-cadherin and the matrix metalloproteinases. Differential microRNA expression also holds promise as a potential prognostic biomarker of malignancy and disease spread within the setting of ulceration. However, the molecular and cellular differences associated with the ulcerated state are complex and further study will aid in determining how these differences can be harnessed to improve care for patients with melanoma.
Collapse
Affiliation(s)
- Zoe Barricklow
- The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio, State University, Columbus, OH, USA
| | - Mallory J DiVincenzo
- The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio, State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Colin D Angell
- The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio, State University, Columbus, OH, USA
| | - William E Carson
- The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio, State University, Columbus, OH, USA
| |
Collapse
|
9
|
Lugassy C, Vermeulen PB, Ribatti D, Pezzella F, Barnhill RL. Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread? Br J Cancer 2022; 126:973-980. [PMID: 34987186 PMCID: PMC8980005 DOI: 10.1038/s41416-021-01686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Two fields of cancer research have emerged dealing with the biology of tumour cells localised to the abluminal vascular surface: vessel co-option (VCo), a non-angiogenic mode of tumour growth and angiotropic extravascular migratory metastasis (EVMM), a non-hematogenous mode of tumour migration and metastasis. VCo is a mechanism by which tumour cells gain access to a blood supply by spreading along existing blood vessels in order to grow locally. Angiotropic EVMM involves "pericytic mimicry" (PM), which is characterised by tumour cells continuously migrating in the place of pericytes distantly along abluminal vascular surfaces. When cancer cells are engaged in PM and EVMM, they migrate along blood vessels beyond the advancing front of the tumour to secondary sites with the formation of regional and distant metastases. In the present perspective, the authors review the current scientific literature, emphasising the analogies between embryogenesis and cancer progression, the re-activation of embryonic signals by "cancer stem cells", and the important role of laminins and epithelial-mesenchymal-transition. This perspective maintains that VCo and angiotropic EVMM constitute complementary processes and represent a continuum of cancer progression from the primary tumour to metastases and of tumour growth to EVMM, analogous to the embryonic development program.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris UFR de Médecine, Paris, France
| |
Collapse
|
10
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
11
|
Mo J, Zhao X, Wang W, Zhao N, Dong X, Zhang Y, Cheng R, Sun B. TFPI2 Promotes Perivascular Migration in an Angiotropism Model of Melanoma. Front Oncol 2021; 11:662434. [PMID: 34249699 PMCID: PMC8264799 DOI: 10.3389/fonc.2021.662434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Angiotropism is the process by which cancer cells attach to and migrate along blood vessels to acquire vasculature, disseminate, and metastasize. However, the molecular basis for such vessel–tumor interactions has not been fully elucidated, partly due to limited experimental models. In this study, we aimed to observe and explore the molecular mechanism underlying angiotropism in melanoma. Methods To monitor the interactions of human melanoma cells with the vasculature in vivo, a murine coxenograft model was employed by co-injecting highly and poorly invasive melanoma cells subcutaneously. To identify key pathways and genes involved in the angiotropic phenotype of melanoma, analysis of differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) were performed. The role of tissue factor pathway inhibitor 2 (TFPI2) in angiotropism was evaluated by immunostaining, adhesion assay, shRNA, and in vivo tumorigenicity. Angiotropism and TFPI2 expression were examined in surgical specimens of melanoma by immunohistochemical staining. Data from The Cancer Genome Atlas (TCGA) were analyzed to explore the expression and prognostic implications of TFPI2 in uveal and cutaneous melanoma. Results Highly invasive melanoma cells spread along the branches of intratumor blood vessels to the leading edge of invasion in the coxenograft model, resembling angiotropic migration. Mechanisms underlying angiotropism were primarily associated with molecular function regulators, regulation of cell population proliferation, developmental processes, cell differentiation, responses to cytokines and cell motility/locomotion. TFPI2 downregulation weakened the perivascular migration of highly invasive melanoma cells. High levels of TFPI2 were correlated with worse and better survival in uveal and cutaneous melanoma, respectively. Conclusion These results provide a straightforward in vivo model for the observation of angiotropism and suggest that TFPI2 could inhibit the angiotropic phenotype of melanoma.
Collapse
Affiliation(s)
- Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Prakash R, Thareja NS, Carmichael TS, Barnhill RL, Lugassy C, Bentolila LA. Visualizing Pericyte Mimicry of Angiotropic Melanoma by Direct Labeling of the Angioarchitecture. Methods Mol Biol 2021; 2235:1-12. [PMID: 33576966 DOI: 10.1007/978-1-0716-1056-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In addition to intravascular dissemination, angiotropic melanoma cells have the propensity to spread along the external surface of blood vessels in a pericytic location, or pericytic mimicry. Such continuous migration without intravasation has been termed "extravascular migratory metastasis" or EVMM. In order to visualize this mechanism of tumor propagation, we used a murine brain melanoma model utilizing green fluorescent human melanoma cells and red fluorescent lectin-tagged murine vessels. This model allows the direct microscopic visualization and mapping of the interaction of melanoma cells with the brain vasculature. In this chapter, we describe the methodology of lectin perfusion to label the entire angioarchitecture in conjunction with confocal microscopy imaging to study the pericyte mimicry of the angiotropic GFP+ melanoma cells.
Collapse
Affiliation(s)
- Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nikita Shivani Thareja
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas S Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France
| | - Laurent A Bentolila
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
14
|
Nirenberg A, Steinman H, Dixon A. Melanoma extravascular migratory metastasis: an important underrecognized phenomenon. J Eur Acad Dermatol Venereol 2020; 34:e598-e599. [PMID: 32299126 DOI: 10.1111/jdv.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 11/30/2022]
Affiliation(s)
- A Nirenberg
- Australasian College of Cutaneous Oncology, Docklands, Australia
| | - H Steinman
- US Dermatology Partners, Dallas, USA.,Campbell University of School of Osteopathic Medicine, Lillington, USA
| | - A Dixon
- Australasian College of Cutaneous Oncology, Docklands, Australia.,American Osteopathic College of Dermatology, Kirksville, USA
| |
Collapse
|
15
|
Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis 2020; 23:27-41. [PMID: 31720876 DOI: 10.1007/s10456-019-09695-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial-mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris, Réné Descartes Faculty of Medicine, Paris, France
| |
Collapse
|
16
|
Zhang Y, Wang S, Dudley AC. Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 2020; 23:17-25. [PMID: 31628560 PMCID: PMC7018564 DOI: 10.1007/s10456-019-09684-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022]
Abstract
Cancer cells have diverse mechanisms for utilizing the vasculature; they can initiate the formation of new blood vessels from preexisting ones (sprouting angiogenesis) or they can form cohesive interactions with the abluminal surface of preexisting vasculature in the absence of sprouting (co-option). The later process has received renewed attention due to the suggested role of blood vessel co-option in resistance to antiangiogenic therapies and the reported perivascular positioning and migratory patterns of cancer cells during tumor dormancy and invasion, respectively. However, only a few molecular mechanisms have been identified that contribute to the process of co-option and there has not been a formal survey of cell lines and laboratory models that can be used to study co-option in different organ microenvironments; thus, we have carried out a comprehensive literature review on this topic and have identified cell lines and described the laboratory models that are used to study blood vessel co-option in cancer. Put into practice, these models may help to shed new light on the molecular mechanisms that drive blood vessel co-option during tumor dormancy, invasion, and responses to different therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
17
|
Galjart B, Nierop PMH, van der Stok EP, van den Braak RRJC, Höppener DJ, Daelemans S, Dirix LY, Verhoef C, Vermeulen PB, Grünhagen DJ. Angiogenic desmoplastic histopathological growth pattern as a prognostic marker of good outcome in patients with colorectal liver metastases. Angiogenesis 2019; 22:355-368. [PMID: 30637550 PMCID: PMC6475515 DOI: 10.1007/s10456-019-09661-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with resectable colorectal liver metastases (CRLM), distinct histopathological growth patterns (HGPs) develop at the interface between the tumour and surrounding tissue. The desmoplastic (d) HGP is characterised by angiogenesis and a peripheral fibrotic rim, whereas non-angiogenic HGPs co-opt endogenous sinusoidal hepatic vasculature. Evidence from previous studies has suggested that patients with dHGP in their CRLM have improved prognosis as compared to patients with non-desmoplastic HGPs. However, these studies were relatively small and applied arbitrary cut-off values for the determination of the predominant HGP. We have now investigated the prognostic effect of dHGP in a large cohort of patients with CRLM resected either with or without neoadjuvant chemotherapy. METHODS All consecutive patients undergoing a first partial hepatectomy for CRLM between 2000 and 2015 at a tertiary referral centre were considered for inclusion. HGPs were assessed in archival H&E stained slides according to recently published international consensus guidelines. The dHGP was defined as desmoplastic growth being present in 100% of the interface between the tumour and surrounding liver. RESULTS In total, HGPs in CRLMs from 732 patients were assessed. In the chemo-naive patient cohort (n = 367), the dHGP was present in 19% (n = 68) and the non-dHGP was present in 81% (n = 299) of patients. This dHGP subgroup was independently associated with good overall survival (OS) (HR: 0.39, p < 0.001) and progression-free survival (PFS) (HR: 0.54, p = 0.001). All patients with any CRLM with a non-dHGP had significantly reduced OS compared to those patients with 100% dHGP, regardless of the proportion of non-dHGP (all p values ≤ 0.001). In the neoadjuvantly treated patient cohort (n = 365), more patients were found to express dHGP (n = 109, 30%) (adjusted odds ratio: 2.71, p < 0.001). On univariable analysis, dHGP was associated with better OS (HR 0.66, p = 0.009) and PFS (HR 0.67, p = 0.002). However, after correction for confounding by means of multivariable analysis no significant association of dHGP with OS (HR 0.92, p = 0.623) or PFS (HR 0.76, p = 0.065) was seen. CONCLUSIONS The current study demonstrates that the angiogenic dHGP in CRLM resected from chemo-naive patients acts as a strong, positive prognostic marker, unmatched by any other prognosticator. This observation warrants the evaluation of the clinical utility of HGPs in prospective clinical trials.
Collapse
Affiliation(s)
- Boris Galjart
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Pieter M H Nierop
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric P van der Stok
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | - Diederik J Höppener
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sofie Daelemans
- Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- HistoGeneX, Antwerp, Belgium
| | - Luc Y Dirix
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Pericytes in Sarcomas and Other Mesenchymal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:109-124. [PMID: 31147874 DOI: 10.1007/978-3-030-16908-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumors of mesenchymal origin are a diverse group, with >130 distinct entities currently recognized by the World Health Organization. A subset of mesenchymal tumors grow or invade in a perivascular fashion, and their potential relationship to pericytes is a matter of ongoing interest. In fact, multiple intersections exist between pericytes and tumors of mesenchymal origin. First, pericytes are the likely cell of origin for a group of mesenchymal tumors with a common perivascular growth pattern. These primarily benign tumors grow in a perivascular fashion and diffusely express canonical pericyte markers such as CD146, smooth muscle actin (SMA), platelet-derived growth factor receptor beta (PDGFR-β), and RGS5. These benign tumors include glomus tumor, myopericytoma, angioleiomyoma, and myofibroma. Second and as suggested by animal models, pericytes may give rise to malignant sarcomas. This is not a suggestion that all sarcomas within a certain subtype arise from pericytes, but that genetic modifications within a pericyte cell type may give rise to sarcomas. Third, mesenchymal tumors that are likely not a pericyte derivative co-opt pericyte markers in certain contexts. These include the PEComa family of tumors and liposarcoma. Fourth and finally, as "guardians" that enwrap the microvasculature, nonneoplastic pericytes may be important in sarcoma disease progression.
Collapse
|
19
|
Extravascular Migratory Metastasis (Pericytic Mimicry) in Sarcomatoid Squamous Cell Carcinoma of the Vulva. Int J Gynecol Pathol 2019; 38:27-31. [DOI: 10.1097/pgp.0000000000000469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Fedda F, Migden MR, Curry JL, Torres-Cabala CA, Tetzlaff MT, Aung PP, Prieto VG, Ivan D, Myers JN, Nagarajan P. Angiotropism in recurrent cutaneous squamous cell carcinoma: Implications for regional tumor recurrence and extravascular migratory spread. J Cutan Pathol 2018; 46:152-158. [PMID: 30414196 DOI: 10.1111/cup.13388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 11/26/2022]
Abstract
Extravascular migratory metastasis is a form of cancer metastasis in which tumor cells spread by tracking along the abluminal aspect of vessel walls without breaking the vascular endothelial lining or intraluminal invasion. This phenomenon has been extensively described in melanoma and is being increasingly recognized in other neoplasms. Various modalities of treatment, including radiation-, chemo-, targeted-, and immune- therapies may potentially induce angiotropic behavior in neoplastic cells. Although there is a risk for tumor recurrence and metastasis, angiotropism may be under-recognized and is rarely reported. Here, we report a case of recurrent poorly-differentiated acantholytic squamous cell carcinoma of the scalp with extensive perineural invasion, previously treated with multiple therapies. There was multifocal extravascular cuffing of neoplastic cells around and focally involving the walls of small to medium-caliber blood vessels within and surrounding the tumor, without obvious tumor intravasation. In addition, small subtle nests of neoplastic keratinocytes were noted along the abluminal aspect of a large-caliber deep dermal blood vessel in an en-face margin, away from the main tumor mass. Such involvement can be difficult to identify; and thus, may be missed particularly during intra-operative frozen section evaluation, leading to false-negative margins and is therefore, a diagnostic pitfall.
Collapse
Affiliation(s)
- Faysal Fedda
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Michael R Migden
- Department of Dermatology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Jonathan L Curry
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Phyu P Aung
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Victor G Prieto
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Doina Ivan
- Department of Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
21
|
Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, Griscom B, Rosenblum M, Boire A, Brogi E, Giancotti FG, Schachner M, Malladi S, Massagué J. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 2018; 20:966-978. [PMID: 30038252 PMCID: PMC6467203 DOI: 10.1038/s41556-018-0138-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Metastatic seeding by disseminated cancer cells principally occurs in perivascular niches. Here, we show that mechanotransduction signalling triggered by the pericyte-like spreading of disseminated cancer cells on host tissue capillaries is critical for metastatic colonization. Disseminated cancer cells employ L1CAM (cell adhesion molecule L1) to spread on capillaries and activate the mechanotransduction effectors YAP (Yes-associated protein) and MRTF (myocardin-related transcription factor). This spreading is robust enough to displace resident pericytes, which also use L1CAM for perivascular spreading. L1CAM activates YAP by engaging β1 integrin and ILK (integrin-linked kinase). L1CAM and YAP signalling enables the outgrowth of metastasis-initiating cells both immediately following their infiltration of target organs and after they exit from a period of latency. Our results identify an important step in the initiation of metastatic colonization, define its molecular constituents and provide an explanation for the widespread association of L1CAM with metastatic relapse in the clinic.
Collapse
Affiliation(s)
- Ekrem Emrah Er
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manuel Valiente
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Karuna Ganesh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saloni Agrawal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bailey Griscom
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filippo G Giancotti
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Biology and David E. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Srinivas Malladi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma. Front Med 2018; 13:250-258. [PMID: 29770948 DOI: 10.1007/s11684-018-0632-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Biomarkers for hepatocellular carcinoma (HCC) following curative resection are not currently sufficient for prognostic indication of overall survival (OS) and disease-free survival (DFS). The aim of this study was to investigate the prognostic performance of osteopontin (OPN), matrix metalloproteinase 7 (MMP7), and pregnancy specific glycoprotein 9 (PSG9) in patients with HCC. A total of 179 prospective patients with HCC provided plasma before hepatectomy. Plasma OPN, MMP7, and PSG9 levels were determined by enzyme-linked immunosorbent assay. Correlations between plasma levels, clinical parameters, and outcomes (OS and DFS) were overall analyzed. High OPN ( ⩾ 149.97 ng/mL), MMP7 ( ⩾ 2.28 ng/mL), and PSG9 ( ⩾ 45.59 ng/mL) were prognostic indicators of reduced OS (P < 0.001, P < 0.001, and P = 0.007, respectively). Plasma PSG9 protein level was an independent factor in predicting OS (P = 0.008) and DFS (P = 0.038). Plasma OPN + MMP7 + PSG9 elevation in combination was a prognostic factor for OS (P < 0.001). OPN was demonstrated to be a risk factorassociated OS in stage I patients with HCC and patients with low α-fetoprotein levels ( < 20 ng/mL). These findings suggested that OPN, MMP7, PSG9 and their combined panels may be useful for aiding in tumor recurrence and mortality risk prediction of patients with HCC, particularly in the early stage of HCC carcinogenesis.
Collapse
|
23
|
Loss of E-cadherin as Part of a Migratory Phenotype in Melanoma Is Associated With Ulceration. Am J Dermatopathol 2018; 39:672-678. [PMID: 28350549 DOI: 10.1097/dad.0000000000000750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been suggested that embryogenic properties of migratory cells are reactivated during wound healing and metastasis in adults. This might explain the association between wound-induced inflammation and poor survival in patients with ulcerated melanoma. Linking inflammation with a migratory phenotype, we characterize the infiltration of innate inflammatory cells, loss of cell-to-cell adhesion (E-cadherin), factors associated with extracellular matrix degradation [matrix metalloproteinase-9 (MMP-9), and neutrophil elastase (NE)], and spindle-shaped cell morphology, between ulcerated (n = 179) and nonulcerated (n = 206) melanoma. In addition, the presence of "extravascular migratory metastasis" (angiotropism) and tumor-vessel density were evaluated as important factors for tumor cell dispersal in ulcerated melanoma. We showed a correlation between expression of the granulocyte marker cd66b+ and the expression of NE and MMP-9, reflecting activated neutrophils. Ulcerated melanoma correlated with a low global E-cadherin score (P = 0.041) and weak-spot score (P = 0.0004). Thus, 28% of the nonulcerated, 42% of the minimally/moderately ulcerated melanoma, and 53% of the excessively ulcerated melanoma presented low scores as opposed to a high E-cadherin score. In addition, the presence of ulceration was correlated with angiotropism (P < 0.0001) and spindle-shaped morphology (P = 0.021). There were no differences in MMP-9 expression or intratumoral vessel density between the ulcerated and nonulcerated group. In conclusion, expression of migratory cell properties showed a highly heterogeneous pattern, which was associated with ulcerated areas and inflammatory cells, in general and with neutrophils in particular. We, therefore, suggest that wound-associated inflammation may be involved in the induction of migratory cell transition and tumor cell dispersal in ulcerated melanoma.
Collapse
|
24
|
Burgett ME, Lathia JD, Roth P, Nowacki AS, Galileo DS, Pugacheva E, Huang P, Vasanji A, Li M, Byzova T, Mikkelsen T, Bao S, Rich JN, Weller M, Gladson CL. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget 2018; 7:43852-43867. [PMID: 27270311 PMCID: PMC5190064 DOI: 10.18632/oncotarget.9700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting.
Collapse
Affiliation(s)
- Monica E Burgett
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Roth
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware and Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Elena Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, VA, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Meizhang Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana Byzova
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Weller
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
25
|
Pitcovski J, Shahar E, Aizenshtein E, Gorodetsky R. Melanoma antigens and related immunological markers. Crit Rev Oncol Hematol 2017; 115:36-49. [DOI: 10.1016/j.critrevonc.2017.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
|
26
|
The biological and prognostic significance of angiotropism in uveal melanoma. J Transl Med 2017; 97:746-759. [PMID: 28240745 DOI: 10.1038/labinvest.2017.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Angiotropism is a marker of extravascular migration of melanoma cells along vascular and other structures and a prognostic factor in cutaneous melanoma. Because of this biological and prognostic importance in cutaneous melanoma, angiotropism was studied in uveal melanoma (UM). This retrospective study performed at a single ocular oncology referral center included 89 patients from the study period 2006-2008. All patients were diagnosed with UM from the choroid and/or ciliary body. All patients underwent enucleation for prognostic purposes and definitive therapy. Clinical, histopathological, and molecular variables included patient age, gender, extraocular extension, tumor location (ciliary body or not), optic nerve invasion, angiotropism, neurotropism, melanoma cell type, BAP1 mutation, and monosomy 3. Angiotropism was defined as melanoma cells arrayed along the abluminal vascular surfaces without intravasation in the sclera and/or episcleral tissue. The study included 51 women (57.3%) and 38 men with mean and median age: 63 years (range: 25-92). Mean follow-up was 4.4 years (range: 0.2 to 11). Fifty-three (59.6%) patients developed metastases and 48 (53.9%) were dead from metastases at last follow-up. Other principal variables recorded were angiotropism in 43.8%, extraocular extension in 7.9%, epithelioid/mixed cell type in 73.1%, BAP1 mutation in 41.3%, and monosomy 3 in 53.6% of cases. On multivariate analysis, extraocular extension, angiotropism, and monosomy 3 were predictive of metastasis, whereas tumor diameter, epithelioid cell type, angiotropism, and monosomy 3 were predictive of death. Chi-square test confirmed an association between angiotropism and metastasis and death but none with BAP1 mutation and monosomy 3. In conclusion, angiotropism and monosomy 3 were independent prognostic factors for both metastases and death in UM. However, irrespective of any prognostic value, the true importance of angiotropism is its biological significance as a marker of an alternative metastatic pathway.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.16.
Collapse
|
27
|
Moy AP, Duncan LM, Kraft S. Lymphatic invasion and angiotropism in primary cutaneous melanoma. J Transl Med 2017; 97:118-129. [PMID: 27991909 DOI: 10.1038/labinvest.2016.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
Access of melanoma cells to the cutaneous vasculature either via lymphatic invasion or angiotropism is a proposed mechanism for metastasis. Lymphatic invasion is believed to be a mechanism by which melanoma cells can disseminate to regional lymph nodes and to distant sites and may be predictive of adverse outcomes. Although it can be detected on hematoxylin- and eosin-stained sections, sensitivity is markedly improved by immunohistochemistry for lymphatic endothelial cells. Multiple studies have reported a significant association between the presence of lymphatic invasion and sentinel lymph node metastasis and survival. More recently, extravascular migratory metastasis has been suggested as another means by which melanoma cells can spread. Angiotropism, the histopathologic correlate of extravascular migratory metastasis, has also been associated with melanoma metastasis and disease recurrence. Although lymphatic invasion and angiotropism are not currently part of routine melanoma reporting, the detection of these attributes using ancillary immunohistochemical stains may be useful in therapeutic planning for patients with melanoma.
Collapse
Affiliation(s)
- Andrea P Moy
- Dermatopathology Unit, Pathology Service, Massachusetts General Hospital, Boston, MA, USA
| | - Lyn M Duncan
- Dermatopathology Unit, Pathology Service, Massachusetts General Hospital, Boston, MA, USA
| | - Stefan Kraft
- Dermatopathology Unit, Pathology Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Landsberg J, Tüting T, Barnhill RL, Lugassy C. The Role of Neutrophilic Inflammation, Angiotropism, and Pericytic Mimicry in Melanoma Progression and Metastasis. J Invest Dermatol 2016; 136:372-377. [PMID: 26802235 DOI: 10.1016/j.jid.2015.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/06/2015] [Accepted: 07/17/2015] [Indexed: 01/09/2023]
Abstract
Angiotropism in melanoma correlates with ulceration and poor prognosis. It has been shown to be a marker of pericytic mimicry, that is, the spreading of tumor cells in a pericyte location along abluminal vascular surfaces. Such extravascular tumor spread may represent another form of tumor plasticity with reversion to a neural crest cell migratory phenotype. In a murine melanoma model, it has recently been demonstrated that neutrophilic skin inflammation promotes angiotropism and metastatic spread of primary melanomas. This review discusses the role of neutrophilic inflammation in angiotropism and pericytic mimicry in melanoma progression, metastasis, tumor cell plasticity, and tumor therapeutic resistance.
Collapse
Affiliation(s)
- Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany.
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Raymond L Barnhill
- Department of Pathology, Institut Curie, and Université Paris Descartes, Paris, France; Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA) Medical Center, Los Angeles, California, USA.
| | - Claire Lugassy
- Department of Pathology, Institut Curie, and Université Paris Descartes, Paris, France; Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA) Medical Center, Los Angeles, California, USA
| |
Collapse
|
29
|
Pericytic mimicry in well-differentiated liposarcoma/atypical lipomatous tumor. Hum Pathol 2016; 54:92-9. [PMID: 27063472 DOI: 10.1016/j.humpath.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Pericytes are modified smooth muscle cells that closely enwrap small blood vessels, regulating and supporting the microvasculature through direct endothelial contact. Pericytes demonstrate a distinct immunohistochemical profile, including expression of smooth muscle actin, CD146, platelet-derived growth factor receptor β, and regulator of G-protein signaling 5. Previously, pericyte-related antigens have been observed to be present among a group of soft tissue tumors with a perivascular growth pattern, including glomus tumor, myopericytoma, and angioleiomyoma. Similarly, malignant tumor cells have been shown to have a pericyte-like immunoprofile when present in a perivascular location, seen in malignant melanoma, glioblastoma, and adenocarcinoma. Here, we examine well-differentiated liposarcoma specimens, which showed some element of perivascular areas with the appearance of smooth muscle (n = 7 tumors). Immunohistochemical staining was performed for pericyte antigens, including smooth muscle actin, CD146, platelet-derived growth factor receptor β, and regulator of G-protein signaling 5. Results showed consistent pericytic marker expression among liposarcoma tumor cells within a perivascular distribution. MDM2 immunohistochemistry and fluorescence in situ hybridization for MDM2 revealed that these perivascular cells were of tumor origin (7/7 tumors), whereas double immunohistochemical detection for CD31/CD146 ruled out an endothelial cell contribution. These findings further support the concept of pericytic mimicry, already established in diverse malignancies, and its presence in well-differentiated liposarcoma. The extent to which pericytic mimicry has prognostic significance in liposarcoma is as yet unknown.
Collapse
|
30
|
Bentolila LA, Prakash R, Mihic-Probst D, Wadehra M, Kleinman HK, Carmichael TS, Péault B, Barnhill RL, Lugassy C. Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways. Sci Rep 2016; 6:23834. [PMID: 27048955 PMCID: PMC4822155 DOI: 10.1038/srep23834] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Angiotropism/pericytic mimicry and vascular co-option involve tumor cell interactions with the abluminal vascular surface. These two phenomena may be closely related. However, investigations of the two processes have developed in an independent fashion and different explanations offered as to their biological nature. Angiotropism describes the propensity of tumor cells to spread distantly via continuous migration along abluminal vascular surfaces, or extravascular migratory metastasis (EVMM). Vascular co-option has been proposed as an alternative mechanism by which tumors cells may gain access to a blood supply. We have used a murine brain melanoma model to analyze the interactions of GFP human melanoma cells injected into the mouse brain with red fluorescent lectin-labeled microvascular channels. Results have shown a striking spread of melanoma cells along preexisting microvascular channels and features of both vascular co-option and angiotropism/pericytic mimicry. This study has also documented the perivascular expression of Serpin B2 by angiotropic melanoma cells in the murine brain and in human melanoma brain metastases. Our findings suggest that vascular co-option and angiotropism/pericytic mimicry are closely related if not identical processes. Further studies are needed in order to establish whether EVMM is an alternative form of cancer metastasis in addition to intravascular cancer dissemination.
Collapse
Affiliation(s)
- Laurent A. Bentolila
- California NanoSystems Institute, Los Angeles, CA, 90095 USA
- Department of Chemistry and Biochemistry University of California, Los Angeles, CA, 90095 USA
| | - Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095 USA
| | - Daniela Mihic-Probst
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles UCLA, Los Angeles, CA, USA
| | | | - Thomas S. Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095 USA
| | - Bruno Péault
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- MRC Center for Regenerative Medicine and BHF Center for Cardiovascular Science, Queens Medical Research Institute University of Edinburgh, Edinburgh, UK
| | - Raymond L. Barnhill
- Department of Pathology, Institut Curie, and University of Paris Réne Descartes, Paris, France
| | - Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France
| |
Collapse
|
31
|
Barnhill RL, Lemaitre S, Lévy-Gabrielle C, Rodrigues M, Desjardins L, Dendale R, Vincent-Salomon A, Roman-Roman S, Lugassy C, Cassoux N. Satellite in transit metastases in rapidly fatal conjunctival melanoma: implications for angiotropism and extravascular migratory metastasis (description of a murine model for conjunctival melanoma). Pathology 2016; 48:166-76. [PMID: 27020389 DOI: 10.1016/j.pathol.2015.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Little information is currently available concerning loco-regional metastases such as satellite and in transit metastases and their natural history in conjunctival melanoma as compared to cutaneous melanoma. Angiotropism, a marker of extravascular migration of melanoma cells along vascular channels, often appears responsible for microscopic satellite, satellite and in transit metastases development in cutaneous melanoma. In addition, diffuse tissue microscopic satellites are correlated with widespread melanoma dissemination and death. Herein we report rapid conjunctival melanoma progression and a fatal outcome in four of five patients following recurrence as satellite in transit metastases. Five patients aged 31, 60, 63, 56, and 67 years developed primary conjunctival melanoma, histologically characterised by tumour thicknesses of 4, 4, 1.1, 3, and 2 mm. Two or more conjunctival melanomas manifested ulceration, significant mitotic rates, necrosis, angiotropism, and intralesional transformation. The conjunctival melanoma recurred in a matter of months as one or more discrete satellite in transit lesions in the vicinity of the primary melanoma. Histological examination revealed well-defined micronodules containing atypical melanocytes in the subepithelial connective tissue stroma. All lesions were extravascular and most appeared angiotropic. Four of five patients subsequently developed parotid or other loco-regional nodal disease and rapidly ensuing widespread metastases and death. The time course from diagnosis to the demise of the patients averaged about 13 (range 7-20) months. Our findings suggest that satellite in transit metastases constitute an important new risk marker for possible rapid metastatic disease progression and death in patients with conjunctival melanoma. This finding appears to take on even greater significance if such lesions develop rapidly, i.e., in a matter of weeks or months following diagnosis of primary conjunctival melanoma, and if the primary melanoma manifests additional high-risk features. Additional studies are underway in order to further elucidate the mechanism of these metastases.
Collapse
Affiliation(s)
| | | | | | | | | | - Rémi Dendale
- Department of Radiation Therapy, Institut Curie, Paris, France
| | | | | | - Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France
| | | |
Collapse
|
32
|
Pericyte antigens in angiomyolipoma and PEComa family tumors. Med Oncol 2015; 32:210. [PMID: 26123600 DOI: 10.1007/s12032-015-0659-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Perivascular epithelioid cell tumors (PEComas) are an uncommon family of soft tissue tumors with dual myoid-melanocytic differentiation. Although PEComa family tumors commonly demonstrate a perivascular growth pattern, pericyte antigen expression has not yet been examined among this unique tumor group. Previously, we demonstrated that a subset of perivascular soft tissue tumors exhibit a striking pericytic immunophenotype, with diffuse expression of αSMA, CD146, and PDGFRβ. Here, we describe the presence of pericyte antigens across a diverse group of PEComa family tumors (n = 19 specimens). Results showed that pericyte antigens differed extensively by histological appearance. Typical angiomyolipoma (AML) specimens showed variable expression of pericyte antigens among both perivascular and myoid-appearing cells. In contrast, AML specimens with a predominant spindled morphology showed diffuse expression of pericyte markers, including αSMA, CD146, and PDGFRβ. AML samples with predominant epithelioid morphology showed a marked reduction in or the absence of immunoreactivity for pericyte markers. Lymphangiomyoma samples showed more variable and partial pericyte marker expression. In summary, pericyte antigen expression is variable among PEComa family tumors and largely varies by tumor morphology. Pericytic marker expression in PEComa may represent a true pericytic cell of origin, or alternatively aberrant pericyte marker adoption. Markers of pericytic differentiation may be of future diagnostic utility for the evaluation of mesenchymal tumors, or identify actionable signaling pathways for future therapeutic intervention.
Collapse
|
33
|
Abstract
Chronic rejection of transplanted organs remains the main obstacle in the long-term success of organ transplantation. Thus, there is a persistent quest for development of antichronic rejection therapies and identification of novel molecular and cellular targets. One of the potential targets is the pericytes, the mural cells of microvessels, which regulate microvascular permeability, development, and maturation by controlling endothelial cell functions and regulating tissue fibrosis and inflammatory response. In this review, we discuss the potential of targeting pericytes in the development of microvasular dysfunction and the molecular pathways involved in regulation of pericyte activities for antichronic rejection intervention.
Collapse
|
34
|
Lei X, Guan CW, Song Y, Wang H. The multifaceted role of CD146/MCAM in the promotion of melanoma progression. Cancer Cell Int 2015; 15:3. [PMID: 25685061 PMCID: PMC4326486 DOI: 10.1186/s12935-014-0147-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
Abstract
Human malignant melanoma is a common primary malignant cutaneous tumour derived from transformed epidermal melanocytes. Patients with melanoma have a high rate of mortality due to resistance to chemotherapeutic drugs, a major obstacle to a successful treatment. Several reports have suggested that CD146 plays an important role as a signalling molecule in human melanoma. This role includes CD146 as a participant in inflammation, differentiation, adhesion, tumourigenicity, metastasis, invasion and angiogenesis among other processes, which suggests that this molecule promotes the progression of human melanoma as a multifaceted regulator. In this article, we explore the effects and corresponding mechanisms with respect to the role of CD146/MUC18 in the promotion of human melanoma progression. Collectively, the studies indicated that targeting CD146, because it is a suitable marker of poor patient outcome, might be useful in the design of future strategies for the prevention and treatment of human melanoma.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000 China
| | - Ce-Wen Guan
- Department of Orthopedic Surgery, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001 China
| | - Yang Song
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150001 China
| | - Huan Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001 China
| |
Collapse
|
35
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|
36
|
Lugassy C, Zadran S, Bentolila LA, Wadehra M, Prakash R, Carmichael ST, Kleinman HK, Péault B, Larue L, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:139-152. [PMID: 25304454 PMCID: PMC4275501 DOI: 10.1007/s12307-014-0156-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
For more than 15 years, angiotropism in melanoma has been emphasized as a marker of extravascular migration of tumor cells along the abluminal vascular surface, unveiling an alternative mechanism of tumor spread distinct from intravascular dissemination. This mechanism has been termed extravascular migratory metastasis (EVMM). During EVMM, angiotropic tumor cells migrate in a 'pericytic-like' manner (pericytic mimicry) along the external surfaces of vascular channels, without intravasation. Through this pathway, melanoma cells may spread to nearby or more distant sites. Angiotropism is a prognostic factor predicting risk for metastasis in human melanoma, and a marker of EVMM in several experimental models. Importantly, analogies of EVMM and pericytic mimicry include neural crest cell migration, vasculogenesis and angiogenesis, and recent studies have suggested that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes reminiscent of cancer migration and embryonic/stem cell state transitions. A recent work revealed that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression via angiotropism and migration along the abluminal vascular surface. Finally, recent data using imaging of melanoma cells in a murine model have shown the progression of tumor cells along the vascular surfaces. Taken together, these data provide support for the biological phenomenon of angiotropism and EVMM, which may open promising new strategies for reducing or preventing melanoma metastasis.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles UCLA, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bauer D, Mazzio E, Soliman KF, Taka E, Oriaku E, Womble T, Darling-Reed S. Diallyl disulfide inhibits TNFα-induced CCL2 release by MDA-MB-231 cells. Anticancer Res 2014; 34:2763-2770. [PMID: 24922637 PMCID: PMC4135704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monocyte chemotactic protein-1 (MCP-1/CCL2) is released by tumor tissues, serving as a potent chemokine enabling directional homing of mononuclear cells to tumor tissue, which subsequently differentiate into tumor-associated macrophages (TAMs) via TGFβ1 signaling. TAMs readily invade tumor tissue and continue to synthesize pro-oncogenic proteins including tumor growth factors, matrix proteases (metastasis), angiogenic factors (neovascularization) and CCL2. Substances, which can attenuate or block the initial release of CCL2 have been shown to prevent cancer-associated inflammative pro-oncogenic processes. In the current study, we investigated the effects of the organosulfur compound diallyl disulfide (DADS), a natural constituent of Allium sativum (garlic) on suppression of TNFα-induced release of CCL2 from triple-negative human breast tumor (MDA-MB-231) cells. Using an initial adipokine/chemokine protein panel microarray, the data show a predominant expression profile in resting/untreated MDA-MB-231 cells for sustained release of IL6, IL8, plasminogen Activator Inhibitor 1 and TIMP1/2. Treatment with TNFα (40 ng/ml) had no effect on many of these molecules, with a single major elevation in release of CCL2 (~1,300-fold up-regulation). TNFα-induced CCL2 release was reversed by a sub-lethal concentration of DADS (100 μM), evident in antibody based assays. These findings provide evidence to support another avenue of anticancer/chemopreventative properties attributable to garlic constituents through immunomodulation.
Collapse
Affiliation(s)
- David Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Karam Fa Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ebenezer Oriaku
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Tracey Womble
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Selina Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
38
|
Liu S, Herault Y, Pavlovic G, Leask A. Skin progenitor cells contribute to bleomycin-induced skin fibrosis. Arthritis Rheumatol 2014; 66:707-13. [PMID: 24574231 DOI: 10.1002/art.38276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/07/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The origin of the cells that contribute to skin fibrosis is unclear. We undertook the present study to assess the contribution of Sox2-expressing skin progenitor cells to bleomycin-induced scleroderma. METHODS Scleroderma was induced, by bleomycin administration, in wild-type mice and in mice in which CCN2 was deleted from Sox2-expressing cells. Lineage tracing analysis was performed to assess whether cells expressing Sox2 are recruited to fibrotic lesions in response to bleomycin-induced scleroderma. RESULTS In response to bleomycin, Sox2-positive/α-smooth muscle actin-positive cells were recruited to fibrotic tissue. CCN2-conditional knockout mice in which CCN2 was deleted from Sox2-expressing cells exhibited resistance to bleomycin-induced skin fibrosis. Collectively, these results indicate that CCN2 is required for the recruitment of progenitor cells and that CCN2-expressing progenitor cells are essential for bleomycin-induced skin fibrosis. Lineage tracing analysis using mice in which a tamoxifen-dependent Cre recombinase was expressed under the control of the Sox2 promoter confirmed that progenitor cells were recruited to the fibrotic lesion in response to bleomycin, and that this did not occur in CCN2-knockout mice. The ability of serum to induce α-smooth muscle actin expression in skin progenitor cells required the presence of CCN2. CONCLUSION Sox2-positive skin progenitor cells are required in order for bleomycin-induced skin fibrosis to occur, and CCN2 is required for the recruitment of these cells to the fibrotic lesion. Targeting stem cell recruitment or CCN2 may therefore represent a useful therapeutic approach in combating fibrotic skin disease.
Collapse
Affiliation(s)
- Shangxi Liu
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Dyke JM, Crook ML, Platten M, Stewart CJR. Extravascular migratory metastasis in gynaecological carcinosarcoma. Histopathology 2014; 65:363-70. [PMID: 24734932 DOI: 10.1111/his.12395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Abstract
AIMS Extravascular migratory metastasis (EVMM) is a potential mechanism of tumour spread reported most extensively in cutaneous melanoma. It has not been described previously in gynaecological malignancies. We describe EVMM in four gynaecological carcinosarcomas. METHODS AND RESULTS Extravascular migratory metastasis was observed in an ovarian carcinosarcoma during routine diagnostic assessment. Twenty-three additional, randomly selected gynaecological carcinosarcomas (11 tubo-ovarian and 12 endometrial) were examined retrospectively and EVMM was identified in three of these. Other than the index case, EVMM was a focal finding, identified in 12-18% of slides. The malignant cells demonstrating EVMM appeared sarcomatoid and were distributed abluminally, partly or completely surrounding the endothelium. Affected vessels often showed mural fibrin deposition. Immunohistochemistry for α-smooth muscle actin (SMA), CD31, CD34, D2-40, laminin and type IV collagen was performed on the EVMM-positive cases. The perivascular malignant cells showed more consistent SMA and laminin immunoreactivity than the non-vascular tumour elements. CONCLUSIONS Extravascular migratory metastasis is a hitherto unrecognized mechanism of tumour spread in gynaecological carcinosarcomas. The perivascular tumour cells appear to adopt a pericytic phenotype, and this may represent a specific pattern of epithelial-mesenchymal transition. Further studies with pericyte-specific immunohistological markers may better demonstrate the presence and possible prognostic significance of EVMM in gynaecological tumours.
Collapse
Affiliation(s)
- Jason M Dyke
- Department of Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, Australia
| | | | | | | |
Collapse
|
40
|
Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507:109-13. [PMID: 24572365 DOI: 10.1038/nature13111] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.
Collapse
|
41
|
Mravic M, Asatrian G, Soo C, Lugassy C, Barnhill RL, Dry SM, Peault B, James AW. From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. INTERNATIONAL ORTHOPAEDICS 2014; 38:1819-24. [PMID: 24566993 DOI: 10.1007/s00264-014-2295-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/02/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE Pericytes were once thought only to aid in angiogenesis and blood pressure control. Gradually, the known functions of pericytes and other perivascular stem cells (PSC) have broadly increased. The following review article will summarize the known functions and importance of pericytes across disciplines of pathology, stem cell biology, and tissue engineering. METHODS A literature review was performed for studies examining the importance of pericytes in pathology, stem cell biology, and tissue engineering. RESULTS The importance of pericytes most prominently includes the identification of the perivascular identity of mesenchymal stem cells (or MSC). Now, pericytes and other PSC are known to display surface markers and multilineage differentiation potential of MSC. Accordingly, interest in the purification and use of PSC for mesenchymal tissue formation and regeneration has increased. Significant demonstration of in vivo efficacy in bone and muscle regeneration has been made in laboratory animals. Contemporaneously with the uncovering of an MSC identity for pericytes, investigators in tumour biology have found biologically relevant roles for pericytes in tumor formation, lymphovascular invasion, and perivascular tumor spread. As well, the contribution of pericytes to perivascular tumors has been examined (and debated), including glomus tumour, myopericytoma and solitary fibrous tumour/hemangiopericytoma. In addition, an expanding recognition of pericyte mimicry and perivascular tumour invasion has occurred, encompassing common malignancies of the brain and skin. CONCLUSIONS In summary, pericytes have a wide range of roles in health and disease. Pericytes are being increasingly studied for their role in tumour formation, growth and invasion. Likewise, the application of pericytes/PSC for mesenchymal tissue engineering is an expanding field of interest.
Collapse
Affiliation(s)
- Marco Mravic
- Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mesenchymal cells emerge as primary contributors to fibrosis in multiple tissues. J Cell Commun Signal 2013; 8:3-4. [PMID: 24318933 DOI: 10.1007/s12079-013-0219-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023] Open
Abstract
A longstanding controversy exists regarding the cellular origin of myofibroblasts in tissue fibrosis. A recent study by Hung and colleagues (Am J Respir Crit Care Med 188(7):820-830, 2013) used genetic fate mapping of FoxD1 embryonic progenitor cells to show a major and direct contribution of mesenchymal cells to fibrogenesis in the lung. Future studies using FoxD1-specific inducible knockout models of pro-fibrotic genes such as CCN2 will be valuable for determining anti-fibrotic drug targets. The emergence of pericyte-like myofibroblast precursors also raises the question of whether mesenchymal stem cells in various niches contribute to fibrotic responses throughout the body.
Collapse
|
43
|
Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 2013; 26:746-54. [PMID: 23789776 DOI: 10.1111/pcmr.12120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
We hypothesize that the interaction between angiotropic melanoma cells and the abluminal vascular surface can induce or sustain embryonic and/or stem cell migratory properties in these tumor cells. As a result, such angiotropic melanoma cells may migrate along the abluminal vascular surface, demonstrating pericytic mimicry. Through these cellular interactions, melanoma cells may migrate toward secondary sites.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|