1
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025; 11:2550-2583. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Giram P, Bist G, Woo S, Wohlfert E, Pili R, You Y. Prodrugs of paclitaxel improve in situ photo-vaccination. Photochem Photobiol 2024:10.1111/php.14025. [PMID: 39384406 PMCID: PMC11978925 DOI: 10.1111/php.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)2] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)2] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 μmole kg-1, i.v.), and tumors were treated with a 690-nm laser (75 mW cm-2 for 30 min, drug-light interval 0.5 h, light does 135 J cm-1), followed by anti-CTLA-4 (100 μg dose-1, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)2] compared to [Pc-(NCL-PTX)2] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY,14203, USA
| | - Roberto Pili
- Division of Hematology and Oncology, Department of Medicine, University at Buffalo, Buffalo, NY, 14203, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| |
Collapse
|
3
|
Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Wróblewska A, Rossowska J, Anger-Góra N, Szermer-Olearnik B, Świtalska M, Goszczyński TM, Pajtasz-Piasecka E. The modulation of local and systemic anti-tumor immune response induced by methotrexate nanoconjugate in murine MC38 colon carcinoma and B16 F0 melanoma tumor models. Am J Cancer Res 2023; 13:4623-4643. [PMID: 37970366 PMCID: PMC10636663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Methotrexate (MTX) which is one of the longest-used cytostatics, belongs to the group of antimetabolites and is used for treatment in different types of cancer as well as during autoimmune diseases. MTX can act as a modulator enable to create the optimal environment to generate the specific anti-tumor immune response. A novel system for MTX delivery is its conjugation with high-molecular-weight carriers such as hydroxyethyl starch (HES), a modified amylopectin-based polymer applied in medicine as a colloidal plasma volume expander. Such modification prolongs the plasma half-life of the HES-MTX nanoconjugate and improves the distribution of the drug in the body. In the current study, we focused on evaluating the dose-dependent therapeutic efficacy of chemotherapy with HES-MTX nanoconjugate compared to the free form of MTX, and examining the time-dependent changes in the local and systemic anti-tumor immune response induced by this therapy. To confirm the higher effectiveness of HES-MTX in comparison to MTX, we analyzed its action using murine MC38 colon carcinoma and B16 F0 melanoma tumor models. It was noted that HES-MTX at a dose of 20 mg/kg b.w. was more effective in tumor growth inhibition than MTX in both tumor models. One of the main differences between the two analyzed tumor models concerned the kinetics of the appearance of the immunomodulation. In MC38 tumors, the beneficial change in the tumor microenvironment (TME) landscape, manifested by the depletion of pro-tumor immune cells, and increased influx of cells with strong anti-tumor activity was noted already 3 days after HES-MTX administration, while in B16 F0 model, these changes occurred 10 days after the start of therapy. Thus, the immunomodulatory potential of the HES-MTX nanoconjugate may be closely related to the specific immune cell composition of the TME, which combined with additional treatment such as immunotherapies, would enhance the therapeutic potential of the nanoconjugate.
Collapse
Affiliation(s)
- Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Katarzyna Węgierek-Ciura
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jagoda Mierzejewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Natalia Anger-Góra
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Tomasz M Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
4
|
Davola ME, Cormier O, Vito A, El-Sayes N, Collins S, Salem O, Revill S, Ask K, Wan Y, Mossman K. Oncolytic BHV-1 Is Sufficient to Induce Immunogenic Cell Death and Synergizes with Low-Dose Chemotherapy to Dampen Immunosuppressive T Regulatory Cells. Cancers (Basel) 2023; 15:cancers15041295. [PMID: 36831636 PMCID: PMC9953776 DOI: 10.3390/cancers15041295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Immunogenic cell death (ICD) can switch immunologically "cold" tumors "hot", making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed many unique properties of oncolytic bovine herpesvirus type 1 (oBHV) that suggest widespread clinical utility. Here, we show for the first time, the ability of oBHV monotherapy to induce bona fide ICD and tumor-specific activation of circulating CD8+ T cells in a syngeneic murine model of melanoma. The addition of low-dose mitomycin C (MMC) was necessary to fully synergize with ICI through early recruitment of CD8+ T cells and reduced infiltration of highly suppressive PD-1+ Tregs. Cytokine and gene expression analyses within treated tumors suggest that the addition of MMC to oBHV therapy shifts the immune response from predominantly anti-viral, as evidenced by a high level of interferon-stimulated genes, to one that stimulates myeloid cells, antigen presentation and adaptive processes. Collectively, these data provide mechanistic insights into how oBHV-mediated therapy modalities overcome immune suppressive tumor microenvironments to enable the efficacy of ICI therapy.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Olga Cormier
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alyssa Vito
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nader El-Sayes
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Susan Collins
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Omar Salem
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Spencer Revill
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Yonghong Wan
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen Mossman
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23542)
| |
Collapse
|
5
|
Kamal MV, Rao M, Damerla RR, Pai A, Sharan K, Palod A, Shetty PS, Usman N, Kumar NAN. A Mechanistic Review of Methotrexate and Celecoxib as a Potential Metronomic Chemotherapy for Oral Squamous Cell Carcinoma. Cancer Invest 2023; 41:144-154. [PMID: 36269850 DOI: 10.1080/07357907.2022.2139840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The combination of low-dose methotrexate and celecoxib as metronomic chemotherapy (MCT) is a novel therapy, believed to act by modulating the immune response, inhibiting angiogenesis and its cytotoxic action, though the exact mechanism of action is unclear. Clinically, MCT was found to be very effective in delaying tumor progression in patients with head and neck squamous cell carcinoma in both curative and palliative settings. This review was aimed to give a brief insight into the mechanism of action and potential molecular alterations of MCT in the treatment of oral cancers taking into consideration the various in vivo and in vitro studies.
Collapse
Affiliation(s)
- Mehta Vedant Kamal
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishan Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Akhil Palod
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Preethi S Shetty
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nawaz Usman
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
6
|
Zhou C, Shangguan C, Shi M, Xi W, Wu J, Yang H, Guo L, Cai Q, Shi Y, Liu J, Zhang J. Camrelizumab and metronomic capecitabine for patients with treatment-refractory solid tumors (McCREST trial). Future Oncol 2022; 18:2495-2503. [PMID: 35703115 DOI: 10.2217/fon-2021-1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
This is an open-label, single-center, multi-cohort phase Ib trial, which consists of three cohorts, including cohort 1 (HER2 negative gastric or gastric esophageal junction adenocarcinoma), cohort 2 (esophageal squamous cell carcinoma and head and neck squamous cell carcinoma) and cohort 3 (hepato-biliary-pancreatic and non-stomach non-esophagi gastrointestinal carcinoma). All eligible patients will be treated by camrelizumab (200 mg, every 2 weeks) and capecitabine (500 mg, twice a day, per os). The primary end point is the safety profiles of camrelizumab plus metronomic capecitabine according to CTCAE v5.0. The secondary end points are progression free survival, overall survival, objective response rate, disease control rate and duration of response. Planned enrollment is 20 subjects for each cohort. Total duration of this trial is expected to be 2 years.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chengfang Shangguan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jing Liu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| |
Collapse
|
7
|
Zheng SH, Liu SR, Wang HB, Wei YH, Li H, Wang GN, Huang ZL, Ding SR, Chen C, Tao YL, Li XH, Glorieux C, Huang P, Wu YF, Xia YF. Treatment and Survival Outcomes Associated With Platinum Plus Low-Dose, Long-term Fluorouracil for Metastatic Nasopharyngeal Carcinoma. JAMA Netw Open 2021; 4:e2138444. [PMID: 34902036 PMCID: PMC8669524 DOI: 10.1001/jamanetworkopen.2021.38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
IMPORTANCE The treatment of metastatic nasopharyngeal carcinoma (mNPC) is a major challenge because of drug resistance and the toxic effects of chemotherapy. OBJECTIVE To evaluate the survival and toxicity outcomes and safety associated with the use of a modified low-dose fluorouracil protocol compared with standard regimens recommended in current guidelines for treatment of mNPC. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was based on data retrieved from electronic medical records from Sun Yat-sen University Cancer Center in China for 1397 patients with mNPC diagnosed from January 1, 2006, to December 31, 2017. Data analyses were conducted from October 1, 2020, to May 1, 2021. EXPOSURES Patients received chemotherapy, including platinum plus low-dose, long-term fluorouracil (PFLL); cisplatin plus standard dose, short-term fluorouracil (PFSS); cisplatin plus gemcitabine (GP); cisplatin plus taxane (TP); and cisplatin plus taxane plus fluorouracil (TPF). MAIN OUTCOMES AND MEASURES The main outcomes included overall survival (OS); subsequent-line, treatment-free survival (sTFS), defined as the period from metastasis to the date requiring subsequent-line treatment or death; and the survival to toxicity ratio (STR), defined as person-year rate of OS divided by person-year rate of severe hematologic toxic effects. Cox regression models were used to compare the outcomes of patients receiving PFLL vs other regimens, adjusting for baseline characteristics. RESULTS Of 1397 patients with mNPC included in this study (1152 men; median age, 46 years [range, 18-70 years]) 134 received PFLL, 203 received GP, 330 received PFSS, 366 received TP, and 364 received TPF. A total of 764 patients died (75 in treatment group PFLL; 107 in group GP; 204 in group PFSS; 207 in group TP; and 171 in group TPF), and 979 patients had subsequent-line treatment or died, whichever occurred first (PFLL, 77; GP, 144; PFSS, 262; TP, 269; and TPF, 227). The median follow-up was 46.9 months (IQR, 25.4-82.4 months), and the 5-year OS rate among patients who received PFLL was 25.4% (95% CI, 16.7%-38.8%), which was not significantly different from that among patients who did not receive PFLL (30.2%; 95% CI, 27.1%-33.5%; P = .13) or who received GP (25.1%; 95% CI, 18.1%-35.0%; P = .81), PFSS (23.6%; 95% CI, 18.5%-30.0%; P = .80), or TP (28.1%; 95% CI, 22.8%-34.7%; P = .99) but was lower than that for patients who received TPF (40.4%; 95% CI, 34.7%-47.1%; P = .001). The 5-year sTFS among patients who received PFLL (24.1%; 95% CI, 15.4%-37.6%) was significantly higher than that among patients who did not receive PFLL (18.5%; 95% CI, 16.1%-21.3%; P = .005) or who received GP (14.3%; 95% CI, 9.1%-22.5%; P = .001) but similar to that for patients who received TPF (28.0%; 95% CI, 23.0%-34.0%; P = .74). The STR of PFLL was 0.81, substantially better than that of GP (0.41) and TPF (0.65). CONCLUSIONS AND RELEVANCE The results of this cohort study suggest that, compared with the use of standard treatment regimens, administration of PFLL was associated with similar OS but prolonged sTFS. PFLL also had better STR than other regimens, which could indicate less severe toxic effects. Thus, PFLL may be an option for first-line treatment of mNPC.
Collapse
Affiliation(s)
- Shuo-Han Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song-Ran Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Bo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Ying-Hong Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guan-Nan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Lu Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Rong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Lan Tao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Li
- Department of Hematology and Endocrinology, The PLA 74th Group Army Hospital, Guangzhou, China
| | - Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Center for Cancer Metabolism and Intervention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Feng Wu
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Vito A, Salem O, El-Sayes N, MacFawn IP, Portillo AL, Milne K, Harrington D, Ashkar AA, Wan Y, Workenhe ST, Nelson BH, Bruno TC, Mossman KL. Immune checkpoint blockade in triple negative breast cancer influenced by B cells through myeloid-derived suppressor cells. Commun Biol 2021; 4:859. [PMID: 34253827 PMCID: PMC8275624 DOI: 10.1038/s42003-021-02375-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancer holds a dismal clinical outcome and as such, patients routinely undergo aggressive, highly toxic treatment regimens. Clinical trials for TNBC employing immune checkpoint blockade in combination with chemotherapy show modest prognostic benefit, but the percentage of patients that respond to treatment is low, and patients often succumb to relapsed disease. Here, we show that a combination immunotherapy platform utilizing low dose chemotherapy (FEC) combined with oncolytic virotherapy (oHSV-1) increases tumor-infiltrating lymphocytes, in otherwise immune-bare tumors, allowing 60% of mice to achieve durable tumor regression when treated with immune checkpoint blockade. Whole-tumor RNA sequencing of mice treated with FEC + oHSV-1 shows an upregulation of B cell receptor signaling pathways and depletion of B cells prior to the start of treatment in mice results in complete loss of therapeutic efficacy and expansion of myeloid-derived suppressor cells. Additionally, RNA sequencing data shows that FEC + oHSV-1 suppresses genes associated with myeloid-derived suppressor cells, a key population of cells that drive immune escape and mediate therapeutic resistance. These findings highlight the importance of tumor-infiltrating B cells as drivers of antitumor immunity and their potential role in the regulation of myeloid-derived suppressor cells.
Collapse
Affiliation(s)
- Alyssa Vito
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Omar Salem
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ian P MacFawn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ana L Portillo
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | | | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Karen L Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Gebhardt C, Simon SCS, Weber R, Gries M, Mun DH, Reinhard R, Holland-Letz T, Umansky V, Utikal J. Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study. Cell Immunol 2020; 360:104274. [PMID: 33383383 DOI: 10.1016/j.cellimm.2020.104274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
The low dose application of chemotherapeutic agents such as paclitaxel was previously shown to initiate anti-tumor activity by neutralizing myeloid-derived suppressor cells (MDSCs) in melanoma mouse models. Here, we investigated immunomodulating effects of low-dose paclitaxel in 9 metastatic melanoma patients resistant to prior treatments. Three patients showed response to therapy (two partial responses and one stable disease). In responding patients, paclitaxel decreased the frequency and immunosuppressive pattern of MDSCs in the peripheral blood and skin metastases. Furthermore, paclitaxel modulated levels of inflammatory mediators in the serum. In addition, responders displayed enhanced frequencies of tumor-infiltrating CD8+ T cells and their activity indicated by the upregulation of CD25 and TCR ζ-chain expression. Our study suggests that low-dose paclitaxel treatment could improve clinical outcome of some advanced melanoma patients by enhancing anti-tumor immunity and might be proposed for combined melanoma immunotherapy.
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sonja C S Simon
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Mirko Gries
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Dong Hun Mun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Raphael Reinhard
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
10
|
Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. J Control Release 2020; 328:368-394. [DOI: 10.1016/j.jconrel.2020.08.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/12/2023]
|
11
|
Drusbosky L, Nangia C, Nguyen A, Szeto C, Newton Y, Spilman P, Reddy SB. Complete response to avelumab and IL-15 superagonist N-803 with Abraxane in Merkel cell carcinoma: a case study. J Immunother Cancer 2020; 8:jitc-2020-001098. [PMID: 32913030 PMCID: PMC7484858 DOI: 10.1136/jitc-2020-001098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare aggressive form of skin cancer originating in neuroendocrine cells. The antiprogrammed death ligand 1 (PD-L1) monoclonal antibody (mAb) avelumab has been approved for treatment of MCC, but options are limited, should it be ineffective as a monotherapy. Combined therapy with low/moderate dose nab-paclitaxel and an interleukin 15 (IL-15)-based therapeutic such as the IL-15 ‘superagonist’ N-803 may increase response by activation of the immune system. The case of a 71-year-old man diagnosed with MCC who achieved and maintained a complete response (CR) by treatment with the anti-PD-L1 mAb avelumab in combination with IL-15 superagonist N-803 and nab-paclitaxel (Abraxane) is presented. Avelumab treatment alone resulted in a response in a para-aortic lesion, but not the other tumor masses. N-803 was added, followed by nab-paclitaxel; CT showed a decrease in the size of the abdominal mass at 1 month, near resolution at 3 months and CR at 5 months. Abraxane was discontinued after the first CR on CT, and the patient continues on avelumab/N-803 treatment and maintains a CR. Combination of avelumab with low/moderate-dose chemotherapy and an immune enhancer such as N-803 may offer a viable treatment option for MCC patients for whom avelumab therapy alone was not effective.
Collapse
Affiliation(s)
| | - Chaitali Nangia
- Chan Soon-Shiong Institute for Medicine, El Segundo, California, USA
| | - Andrew Nguyen
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | - Christopher Szeto
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | - Yulia Newton
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | | | - Sandeep Bobby Reddy
- NantHealth Inc, Culver City, California, USA .,ImmunityBio, LLC, Culver City, California, USA
| |
Collapse
|
12
|
Adamo B, Bellet M, Paré L, Pascual T, Vidal M, Pérez Fidalgo JA, Blanch S, Martinez N, Murillo L, Gómez-Pardo P, López-González A, Amillano K, Canes J, Galván P, González-Farré B, González X, Villagrasa P, Ciruelos E, Prat A. Oral metronomic vinorelbine combined with endocrine therapy in hormone receptor-positive HER2-negative breast cancer: SOLTI-1501 VENTANA window of opportunity trial. Breast Cancer Res 2019; 21:108. [PMID: 31533777 PMCID: PMC6751874 DOI: 10.1186/s13058-019-1195-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The biological effect of oral metronomic vinorelbine (mVNB) alone or in combination with endocrine therapy in patients with hormone receptor-positive (HR+)/HER2-negative breast cancer has been scarcely addressed. METHODS Postmenopausal women with untreated stage I-III HR+/HER2-negative breast cancer were randomized (1:1:1) to receive 3 weeks of letrozole (LTZ) 2.5 mg/day, oral mVNB 50 mg 3 days/week, or the combination. The primary objective was to evaluate, within PAM50 Luminal A/B disease, if the anti-proliferative effect of LTZ+mVNB was superior to monotherapy. An anti-proliferative effect was defined as the mean relative decrease of the PAM50 11-gene proliferation score in combination arm vs. both monotherapy arms. Secondary objectives included the evaluation of a comprehensive panel of breast cancer-related genes and safety. An unplanned analysis of stromal tumor-infiltrating lymphocytes (sTILs) was also performed. PAM50 analyses were performed using the nCounter®-based Breast Cancer 360™ gene panel, which includes 752 genes and 32 signatures. RESULTS Sixty-one patients were randomized, and 54 paired samples (89%) were analyzed. The main patient characteristics were mean age of 67, mean tumor size of 1.7 cm, mean Ki67 of 14.3%, stage I (55.7%), and grades 1-2 (90%). Most baseline samples were PAM50 Luminal A (74.1%) or B (22.2%). The anti-proliferative effect of 3 weeks of LTZ+mVNB (- 73.2%) was superior to both monotherapy arms combined (- 49.9%; p = 0.001) and mVNB (- 19.1%; p < 0.001). The anti-proliferative effect of LTZ+mVNB (- 73.2%) was numerically higher compared to LTZ (- 65.7%) but did not reach statistical significance (p = 0.328). LTZ+mVNB induced high expression of immune-related genes and gene signatures, including CD8 T cell signature and PDL1 gene and low expression of ER-regulated genes (e.g., progesterone receptor) and cell cycle-related and DNA repair genes. In tumors with ≤ 10% sTILs at baseline, a statistically significant increase in sTILs was observed following LTZ (paired analysis p = 0.049) and LTZ+mVNB (p = 0.012). Grade 3 adverse events occurred in 3.4% of the cases. CONCLUSIONS Short-term mVNB is well-tolerated and presents anti-proliferative activity alone and in combination with LTZ. The high expression of immune-related biological processes and sTILs observed with the combination opens the possibility of studying this combination with immunotherapy. Further investigation comparing these biological results with other metronomic schedules or drug combinations is warranted. TRIAL REGISTRATION NCT02802748 , registered 16 June 2016.
Collapse
MESH Headings
- Administration, Metronomic
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/adverse effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Female
- Gene Expression/drug effects
- Humans
- Letrozole/administration & dosage
- Letrozole/adverse effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Middle Aged
- Postmenopause
- Receptor, ErbB-2/metabolism
- Receptors, Steroid/metabolism
- Vinorelbine/administration & dosage
- Vinorelbine/adverse effects
Collapse
Affiliation(s)
- Barbara Adamo
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Villarroel 170, 08035 Barcelona, Spain
| | - Meritxell Bellet
- Vall d’Hebrón University Hospital/Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Laia Paré
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Villarroel 170, 08035 Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Tomás Pascual
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Villarroel 170, 08035 Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Maria Vidal
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Villarroel 170, 08035 Barcelona, Spain
| | | | - Salvador Blanch
- Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Laura Murillo
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Patricia Gómez-Pardo
- Vall d’Hebrón University Hospital/Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Jordi Canes
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Patricia Galván
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | | | - Eva Ciruelos
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Villarroel 170, 08035 Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| |
Collapse
|
13
|
Leonetti A, Wever B, Mazzaschi G, Assaraf YG, Rolfo C, Quaini F, Tiseo M, Giovannetti E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist Updat 2019; 46:100644. [PMID: 31585395 DOI: 10.1016/j.drup.2019.100644] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapy has prompted a paradigm shift in advanced non-small cell lung cancer (NSCLC) treatment, by demonstrating superior efficacy to chemotherapy alone both in second- and in first-line setting. Novel insights on molecular mechanisms and regimens to enhance the efficacy of immunotherapy are warranted, as only a minority of patients (˜20%) respond to checkpoint blockade. Taking into account the multiple mechanisms adopted by tumor cells to evade the immune system through cancer immunoediting, the frontline combination of immune checkpoint inhibitors with chemotherapy appears to be a successful strategy as: 1) it enhances the recognition and elimination of tumor cells by the host immune system (immunogenic cell-death), and 2) it reduces the immunosuppressive tumor microenvironment. Remarkably, the immune checkpoint inhibitors pembrolizumab and atezolizumab have already been approved by the FDA in combination with chemotherapy for the first-line treatment of advanced NSCLC and many other chemo-immunotherapeutic regimens have been evaluated as an initial therapeutic approach in metastatic NSCLC. Concurrently, several preclinical studies are evaluating the molecular mechanisms underlying immunomodulation by conventional chemotherapeutic agents (platinum salts, antimitotic agents, antimetabolites and anthracyclines), unraveling drug- and dose/schedule-dependent effects on the immune system that should be exploited to achieve synergistic clinical activity. The current review provides a detailed overview of the immunobiological rationale and molecular basis for combining immune checkpoint inhibitors with chemotherapy for the treatment of advanced NSCLC. Moreover, current evidence and future perspectives towards a better selection of patients who are more likely to benefit from chemo-immunotherapy combinations are discussed.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Birgit Wever
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Pathology, Amsterdam University Medical Centre, VU University, 1081HV Amsterdam, the Netherlands
| | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Federico Quaini
- Hematology and Bone Marrow Transplantation, University Hospital of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
14
|
Lynn GM, Laga R, Jewell CM. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 2019; 459:192-203. [PMID: 31185250 DOI: 10.1016/j.canlet.2019.114427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Avidea Technologies, Baltimore, MD, 21205, USA
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague, Czech Republic
| | - Christopher M Jewell
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA; Robert E. Fischell Institute for Biomedical Devices, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, Executive Office, Suite N9E17, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Dalgleish AG, Stern PL. The failure of radical treatments to cure cancer: can less deliver more? Ther Adv Vaccines Immunother 2018; 6:69-76. [PMID: 30623172 PMCID: PMC6304701 DOI: 10.1177/2515135518815393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
All too often attempts to deliver improved cancer cure rates by increasing the dose of a particular treatment are not successful enough to justify the accompanying increase in toxicity and reduction in quality of life suffered by a significant number of patients. In part, this drive for using higher levels of treatment derives from the nature of the process for testing and incorporation of new protocols. Indeed, new treatment regimens must now consider the key role of immunity in cancer control, a component that has been largely ignored until very recently. The recognition that some drugs developed for cytotoxicity at higher doses can display alternative anticancer activities at lower doses including through modulation of immune responses is prompting a significant re-evaluation of treatment protocol development. Given that tumours are remarkably heterogeneous and with inherent genetic instability it is probably only the adaptive immune response with its flexibility and extensive repertoire that can rise to the challenge of effecting significant control and ultimately elimination of a patient's cancer. This article discusses some of the elements that have limited higher levels of treatment outcomes and where too much proved less effective. We explore observations that less can often be as effective, if not more effective especially with some chemotherapy regimens, and discuss how this can be exploited in combination with immunotherapies to deliver nontoxic improved tumour responses.
Collapse
Affiliation(s)
- Angus G Dalgleish
- Infection and Immunity Centre, St George's, University of London, Cranmer Terrace, London, UK
| | - Peter L Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
16
|
Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release 2018; 292:29-57. [PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lihua Guo
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hnin Ei Thu
- Department of Pharmacology and Dental Therapeutics, Faculty of Dentistry, Lincoln University College, Jalan Stadium, SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
17
|
Burkert SC, Shurin GV, White DL, He X, Kapralov AA, Kagan VE, Shurin MR, Star A. Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. NANOSCALE 2018; 10:17990-18000. [PMID: 30226240 PMCID: PMC6563927 DOI: 10.1039/c8nr04437f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tumor microenvironment is characterized by immunosuppressive mechanisms associated with the accumulation of immune regulatory cells - myeloid-derived suppressor cells (MDSC). Therapeutic depletion of MDSC has been associated with inhibition of tumor growth and therefore represents an attractive approach to cancer immunotherapy. MDSC in cancer are characterized by enhanced enzymatic capacity to generate reactive oxygen and nitrogen species (RONS) which have been shown to effectively degrade carbonaceous materials. We prepared enzymatically openable nitrogen-doped carbon nanotube cups (NCNC) corked with gold nanoparticles and loaded with paclitaxel as a therapeutic cargo. Loading and release of paclitaxel was confirmed through electron microscopy, Raman spectroscopy and LC-MS analysis. Under the assumption that RONS generated by MDSCs can be utilized as a dual targeting and oxidative degradation mechanism for NCNC, here we report that systemic administration of paclitaxel loaded NCNC delivers paclitaxel to circulating and lymphoid tissue MDSC resulting in the inhibition of growth of tumors (B16 melanoma cells inoculated into C57BL/6 mice) in vivo. Tumor growth inhibition was associated with decreased MDSC accumulation quantified by flow cytometry that correlated with bio-distribution of gold-corked NCNC resolved by ICP-MS detection of residual gold in mouse tissue. Thus, we developed a novel immunotherapeutic approach based on unique nanodelivery vehicles, which can be loaded with therapeutic agents that are released specifically in MDSC via NCNC selective enzymatic "opening" affecting change in the tumor microenvironment.
Collapse
Affiliation(s)
- Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ruxolitinib sensitizes ovarian cancer to reduced dose Taxol, limits tumor growth and improves survival in immune competent mice. Oncotarget 2017; 8:94040-94053. [PMID: 29212208 PMCID: PMC5706854 DOI: 10.18632/oncotarget.21541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/02/2017] [Indexed: 12/15/2022] Open
Abstract
Background Chemotherapy initially reduces the tumor burden in patients with ovarian cancer. However, tumors recur in over 70% of patients, creating the need for novel therapeutic approaches. Methods We evaluated Ruxolitinib, an FDA-approved JAK 1/2 kinase inhibitor, as a potential adjunctive therapy for use with low-dose Taxol (Paclitaxel) by assessing the impact on in vitro proliferation and colony formation of ID8 cells or human TOV-112D ovarian cancer cells, as well as flow cytometric measurement of surface markers associated with cellular stress and stemness by ID8 cells. The syngeneic ID8 murine model of ovarian cancer was used to assess the impact of Ruxolitinib and Taxol, individually and in combination, on tumor initiation and growth, as well as capacity to extend survival. Results Ruxolitinib (≤10 μM) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nM), limiting cell proliferation and colony formation in vitro. Mechanistically, we demonstrated that Taxol induced expression of stress and stemness markers including GRP78 and CD133 was significantly reduced by addition of Ruxolitinib. Finally, we demonstrated that a single administration of a low-dose of Taxol (10 mg/Kg) together with daily Ruxolitinib (30 mg/Kg; which is equivalent to plasma concentrations of ∼ 0.01 μM steady-state) limited ID8 tumor growth in vivo and significantly extended median survival up to 53.5% (median 70 v 107.5 days) as compared to control mice. Conclusion Together, these data support the use of Ruxolitinib in combination with low-dose Taxol as a therapeutic approach with the potential for improved efficacy and reduced side effects for patients with recurrent ovarian cancer.
Collapse
|
19
|
Vitamin E-rich Nanoemulsion Enhances the Antitumor Efficacy of Low-Dose Paclitaxel by Driving Th1 Immune Response. Pharm Res 2017; 34:1244-1254. [PMID: 28326458 DOI: 10.1007/s11095-017-2141-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To overcome the drawbacks of high dose regimen and improve the outcomes of chemotherapy at a low dose, an immunotherapeutic nanoemulsion based combination of chemotherapeutic agent (paclitaxel) with immunomodulatory agent (vitamin E) was developed and evaluated for their antitumor effect against breast cancer. METHODS A total of five nanoemulsions loaded with various content of vitamin E were prepared and characterized. The immunoregulatory effects of vitamin E along with the overall antitumor efficacy of vitamin E-rich nanoemulsion with a low dose of paclitaxel were investigated through in vitro and in vivo experiments. RESULTS Vitamin E-rich nanoemulsion exhibited relatively narrow size distribution, high entrapment efficiency and controlled in vitro release profile. In RAW264.7 cells, vitamin E-rich nanoemulsion significantly enhanced the secretion of Th1 cytokines and down-regulated the secretion of Th2 cytokine. In a co-culture system, vitamin E-rich nanoemulsion induced a high apoptosis rate in MDA-MB-231 cells as compared with vitamin E-low nanoemulsion. Furthermore, vitamin E-rich nanoemulsion exhibited superior in vivo antitumor efficacy in comparison with Taxol and vitamin E-low nanoemulsion at a paclitaxel dose of 4 mg/kg. CONCLUSIONS Vitamin E-rich nanoemulsion has great potential for the treatment of breast cancers with a low dose of paclitaxel via driving Th1 immune response.
Collapse
|
20
|
Denies S, Cicchelero L, de Rooster H, Daminet S, Polis I, Van de Maele I, Sanders NN. Immunological and angiogenic markers during metronomic temozolomide and cyclophosphamide in canine cancer patients. Vet Comp Oncol 2016; 15:594-605. [PMID: 26961119 DOI: 10.1111/vco.12203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
Metronomic chemotherapy stimulates the immune response via depletion of regulatory T cells (Tregs) and suppresses angiogenesis by modulating the secretion of thrombospondin-1 (TSP-1) and vascular endothelial growth factor (VEGF). In this study, blood was collected from 10 healthy dogs and from 30 canine cancer patients before and 2 and 4 weeks after treatment with metronomic temozolomide (6.6 mg m-2 ), cyclophosphamide (12.5 mg m-2 ) or cyclophosphamide and temozolomide. The percentage of circulating CD25+ Foxp3+ CD4+ Tregs and the plasma levels of TSP-1 and VEGF were measured. There was a significant difference in the percentage of Tregs between cancer patients and healthy dogs. A significant decrease in Tregs was noted in patients treated with metronomic cyclophosphamide and the combination. Treatment with temozolomide had no effect on the percentage of Tregs. TSP-1 and VEGF levels were, respectively, significantly lower and higher in cancer patients than in healthy dogs, but they were not influenced by any of the studied metronomic treatment regimens.
Collapse
Affiliation(s)
- S Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Polis
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Van de Maele
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Abstract
Research in cancer immunotherapy has gained momentum in the last two decades, with many studies and clinical trials showing positive therapeutic outcomes. Immunotherapy can elicit not only a strong anticancer immune response which could even control metastases, but could also induce immunological memory, resulting in long-lasting protection in the prophylactic setting and protection against possible recurrence. Nanocarriers offer an attractive means for delivery of a multitude of therapeutic immunomodulators which are readily taken up by immune cells and can initiate a particular arm of an immunostimulatory cascade leading to tumor cell killing. This review focuses on recent advances in nanocarrier-mediated immunotherapy for the treatment of cancer. Both in vitro and in vivo studies as well as clinical progress are discussed in various sections. Description of the specific role of nanoparticle technology in immunotherapy highlights the way particles can be tailor-made in terms of size, structure, payload, and surface properties for active targeting to antigen-presenting cells and/or enhanced accumulation in the solid tumor.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Sangeeta Bhaskar
- Product Development Cell, National Institute of Immunology, New Delhi, India
| |
Collapse
|
22
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|