1
|
Murmu A, Matore BW, Banjare P, Roy PP, Singh J. Discovery of novel 1,3,4-oxadiazole derivatives as anticancer agents targeting thymidine phosphorylase: pharmacophore modelling, virtual screening, molecular docking, ADMET and DFT analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:393-419. [PMID: 40474680 DOI: 10.1080/1062936x.2025.2512385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/21/2025] [Indexed: 06/18/2025]
Abstract
Thymidine phosphorylase (TP) is a key enzyme involved in angiogenesis, tumour growth and closely linked to cancer progression and metastasis. This study represents the first comprehensive 3D-QSAR pharmacophore-based approach to identifying potential 1,3,4-oxadiazole derivatives as targeted TPIs for anticancer therapy. A dataset of 76 analogues with an experimental IC50 values was used to develop pharmacophore models. The BEST conformation method identified an optimal model (Hypo 2), featuring HBA, HBD and RA as key activity determinants with strong statistical validation (r2 = 0.69, ΔCost = 77.41, Q2 = 0.68 and MAE = 0.23). A virtual screening of 12,353 drug-like 1,3,4-oxadiazole compounds from PubChem and ChEMBL yielded 329 potential TPIs (IC50 < 10 μM). MD Docking using CDOCKER (PDB ID: 1UOU) identified the top hits interacting with critical TP residues (Thr151, Gly152, Lys221, Ser217, Thr118). ADMET analysis confirmed their drug-likeness with no significant toxicity. ChEMBL2058305 exhibited the highest binding stability (-85.508 kcal/mol), the lowest HOMO-LUMO gap (0.066 ha), and superior TP affinity, highlighting its potential as a promising TP inhibitor for anticancer therapy. This first report with integration of pharmacophore modelling, virtual screening, MD Docking, ADMET, MMGBSA and DFT will be beneficial for the discovery of novel TPIs.
Collapse
Affiliation(s)
- A Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - B W Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - P Banjare
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - P P Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - J Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
2
|
Rauf A, Khan M, Rashid U, Saeed A, Shah ZA, Ahmad Z, Alamri AS, Alsanie WF, Khan I, Hussain H, Alhomrani M, Iriti M. Thymidine Phosphorylase Inhibitory Potential and Molecular Docking Studies of Secondary Metabolites Isolated From Fernandoa adenophylla (Wall. ex G. Don) Steenis. Chem Biodivers 2025:e202500449. [PMID: 40268723 DOI: 10.1002/cbdv.202500449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
This study investigates the potential of Fernandoa adenophylla, a South American plant, as a reservoir of compounds with thymidine phosphorylase (TP) inhibitory activity. Through a comprehensive approach combining in vitro assays and molecular docking analysis, we isolated and characterized bioactive compounds from F. adenophylla, including lapachol, alpha-lapachone, Peshawaraquinone, dehydro-α-lapachone, and indanone derivative (Methyl-1,2-dihydroxy-2-(3-methylbut-2-en-1-yl)-3-oxo-2,3-dihydro-1H-indene-1carboxylate). Our results reveal substantial TP inhibition by these compounds, with Lapachol (1) and Indanone derivative (5) demonstrating notable potency, exhibiting IC50 values of 2.3 ± 0.1 and 1.8 ± 0.5 µM, respectively. Molecular docking analysis supported experimental in-vitro results, revealing strong binding affinities of the tested compounds toward both human TP and Escherichia coli TP, with the indanone derivatives exhibiting the most favorable binding energies (-7.50 and -7.80 kcal/mol, respectively). Key interactions with important catalytic residues were identified, highlighting these natural products' structural complementarity and binding stability. These docking results correlate well with the observed in vitro inhibitory activities, reinforcing the compounds' therapeutic relevance. This study underscores the therapeutic potential of F. adenophylla-derived compounds as effective TP inhibitors, highlighting the significance of natural products in drug discovery.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Majid Khan
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anees Saeed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zafar Ali Shah
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Imtiaz Khan
- Department of Entomology, The University of Agriculture, University of Peshawar, Peshawar, Pakistan
| | - Humaira Hussain
- Department of Biochemistry, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| |
Collapse
|
3
|
Gęgotek A, Moniuszko-Malinowska A, Kruszewska E, Skrzydlewska E. Proteomic changes in serum of patients with Erythema migrans, Anaplasma phagocytophilum infection and co-infection. Microb Pathog 2025; 200:107337. [PMID: 39921043 DOI: 10.1016/j.micpath.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND According to the worldwide growing number of examined tick-borne diseases, the aim of this study was to evaluate the changes in proteomic profile of human serum induced by the development of Erythema migrans (EM), human granulocytic anaplasmosis (AP) and co-infection before/after antibiotic therapy. METHODS A proteomics approach based on SDS-PAGE/LC-MS/MS analysis was used to determine the proteins expression and 15d-PGE2 adducts level with albumin isolated from the serum of patients and sex/age-matched healthy donors. FINDINGS In the serum proteome of the patients with EM or/and AP, significant changes occurred in the expression of the same top 15 modified proteins; however, each protein level was modified in the different way in terms of comparing B. burgdorferi and A. phagocytophilum infections, as well as before and after therapy. In the case of co-infection, the differences in protein expression before and after therapy were significantly lower than in the monoinfection. Moreover, both EM and AP infections/co-infection significantly increased the albumin ability to create adducts with 15d-PGE2. The therapy partially reversed this property only in the case of a single infection, but this effect was not observed for therapy of co-infections. INTERPRETATION The results demonstrate how challenging is the treatment of the tick-borne co-infections and how important is further analysis of this subject. Individual differences are also observed in each of examined in this study diseases, which makes it more difficult to develop a common biomarker for each of the tick-borne diseases.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
4
|
Wang X, Peng I, Peng CA. Eradication of Cancer Cells Using Doxifluridine and Mesenchymal Stem Cells Expressing Thymidine Phosphorylase. Bioengineering (Basel) 2024; 11:1194. [PMID: 39768012 PMCID: PMC11726915 DOI: 10.3390/bioengineering11121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been developed over several decades as a targeted cancer treatment aimed at minimizing toxicity to healthy cells. This approach involves three key components: a non-toxic prodrug, a gene encoding an enzyme that converts the prodrug into an active chemotherapy drug, and a gene carrier to target cancer cells. In this study, the prodrug doxifluridine was enzymatically converted into the chemotherapy drug 5-fluorouracil via thymidine phosphorylase, using human mesenchymal stem cells (hMSCs) as delivery vehicles. The hMSCs were first transduced with thymidine phosphorylase-encoded lentiviral vectors produced by HEK293T cells, then co-cultured with A549 adenocarcinoma cells in the presence of doxifluridine. The results showed that after 3 days of prodrug treatment, cell viability in both A549 cancer cells and hMSCs dropped by about 50%, and by day 5, viability had decreased to 10%. In summary, exogenous thymidine phosphorylase expressed in hMSCs successfully converted the non-toxic prodrug doxifluridine into the chemotherapy agent 5-fluorouracil, effectively eliminating both cancer cells and hMSCs within a short period.
Collapse
Affiliation(s)
- Xutu Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Ian Peng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
5
|
Li Q, Maierheba K. Identification and role of differentially expressed genes/proteins between pulmonary tuberculosis patients and controls across lung tissues and blood samples. Immun Inflamm Dis 2024; 12:e1350. [PMID: 39023413 PMCID: PMC11256885 DOI: 10.1002/iid3.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Differentially expressed genes/proteins (DEGs/DEPs) play critical roles in pulmonary tuberculosis (PTB) diagnosis and treatment. However, there is a scarcity of reports on DEGs/DEPs in lung tissues and blood samples in PTB patients. OBJECTIVE We aim to identify the DEGs/DEPs in lung tissues and blood samples of PTB patients and investigate their roles in PTB. MATERIALS AND METHODS The lung granulomas and normal tissues were collected from PTB patients for proteomic and transcriptomic analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses annotated the functions of DEGs/DEPs. The GSE107994 data set was downloaded to identify the DEGs/DEPs in peripheral blood. The common DEGs and DEPs were identified. A nomogram was established. Pearson correlation analysis was conducted. RESULTS Eighty-three DEGs/DEPs were identified. These DEGs/DEPs were mainly enriched in the movement of cell or subcellular components, regulation of cellular component biogenesis, and actin filament-based process as well as in the pathways of inositol phosphate metabolism, adherens junction, phosphatidylinositol signaling system, leukocyte transendothelial migration, regulation of actin cytoskeleton, and tight junction. There were eight common DEGs/DEPs (TYMP, LAP3, ADGRL2, SIL1, LMO7, SULF 1, ANXA3, and PACSIN3) between the lung tissues and blood samples. They were effective in predicting tuberculosis. Moreover, the activated dendritic cells, macrophages, monocytes, neutrophils, and regulatory T cells were significantly positively correlated with TYMP (r > .50), LAP3 (r > .50), SIL1 (r > .50), ANXA3 (r > .5), and PACSIN3 (r < .50), while negatively correlated with LMO7 (r < -0.50) (p < .05). ADGRL2 and SULF1 did not have a significant correlation (p > .05). LIMITATIONS The sample size was small. CONCLUSIONS Eight common DEGs/DEPs of lung tissues and blood samples were identified. They were correlated with immune cells and demonstrated predictive value for PTB. Our data may facilitate the diagnosis and treatment of PTB.
Collapse
Affiliation(s)
- Qifeng Li
- Xinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Institute of PediatricsUrumqiChina
| | - Kuerbanjiang Maierheba
- Department of Nutrition and Food Hygiene, College of Public HealthXinjiang Medical UniversityUrumqiChina
| |
Collapse
|
6
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
7
|
Li RR, Zhou HJ, Zeng DY, Jiang SF, Liu W, Frühling P, Liu ZY. Efficacy and safety of trifluridine/tipiracil plus bevacizumab versus trifluridine/tipiracil monotherapy for refractory metastatic colorectal cancer: a retrospective cohort study. J Gastrointest Oncol 2024; 15:612-629. [PMID: 38756644 PMCID: PMC11094502 DOI: 10.21037/jgo-24-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Background Several studies demonstrated trifluridine/tipiracil (TAS-102) plus bevacizumab (BEV) had better efficacy than the monotherapy of TAS-102 in refractory metastatic colorectal cancer (mCRC). However, it remains unclear whether Chinese population can benefit from this combination or not. Hence, we conducted this retrospective cohort study to compare the efficacy and safety between TAS-102 plus BEV with TAS-102 monotherapy in refractory mCRC. Methods This retrospective cohort study enrolled patients (any age) with refractory mCRC from Hunan Cancer Hospital. The main inclusion criteria were histopathologically and/or radiographically confirmed refractory mCRC, World Health Organization (WHO) performance status of 0 to 2, adequate organ function, and initial treatment of TAS-102 with or without BEV between November 2020 and October 2022. Previous therapy with fruquintinib or regorafenib was allowed but not mandatory. Baseline demographic and clinical characteristics were collected appropriately. Every 2 or 3 treatment cycles, the patients were assessed by computed tomography (CT) scans and clinical assessments until disease progression or loss to follow-up. The National Cancer Institute Common Terminology Criteria for Adverse Events 5.0 (NCI-CTCAE 5.0) were presented as n (%). The primary endpoint was investigator-evaluated overall survival (OS). As this is a retrospective cohort study, sample size calculation was not performed. Eligible patients would be enrolled as many as possible. Results A total of 90 patients were enrolled, including 58 patients who received TAS-102 plus BEV and another 32 patients who received TAS-102 monotherapy. The known baseline characteristics were comparable (P<0.05). With a median follow-up of 4.60 months (range, 0.20-22.80), the median OS (mOS) time in the TAS-102 plus BEV group was longer than that in the TAS-102 monotherapy group (10.83 vs. 7.43 months), but the difference was not significant (P=0.79). The median progression-free survival (mPFS) time was comparable between the two groups (4.67 vs. 4.30 months, P=0.96). Multivariate Cox regression analysis demonstrated that undergoing therapy after TAS-102 either with or without BEV was an independent risk factor for OS [hazard ratio (HR) =0.25; 95% confidence interval (CI): 0.09-0.71, P<0.01], and previous treatment with cetuximab was an independent protective factor for PFS (HR =0.17; 95% CI: 0.03-0.91, P=0.04). Of the 70 patients who were evaluated, those receiving TAS-102 plus BEV showed trend of a higher objective response rate (ORR) and disease control rate (DCR) than those who received TAS-102 monotherapy (P=0.16 and P=0.29, respectively). Adverse events (AEs) were similar between the two groups, except that the incidence of platelet count decrease (grade ≥3) was significantly higher in the TAS-102 plus BEV group. Conclusions There was a trend in favor of the combination of BEV plus TAS-102 regarding OS and DCR, without reaching statistical significance, and it means that there was no clear advantage of one over the other in terms of efficacy. Further prospective studies are still necessary to draw a definite conclusion.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui-Jun Zhou
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - De-Yu Zeng
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shao-Feng Jiang
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Liu
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Petter Frühling
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Zhen-Yang Liu
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
8
|
Murmu A, Banjare P, Matore BW, Roy PP, Singh J. 1,3,4-Oxadiazole: An Emerging Scaffold to Inhibit the Thymidine Phosphorylase as an Anticancer Agent. Curr Med Chem 2024; 31:6227-6250. [PMID: 37438902 DOI: 10.2174/0929867331666230712113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
Thymidine phosphorylase (TP), also referred to as "platelet-derived endothelial cell growth factor" is crucial to the pyrimidine salvage pathway. TP reversibly transforms thymidine into thymine and 2-deoxy-D-ribose-1-phosphate (dRib-1-P), which further degraded to 2-Deoxy-D-ribose (2DDR), which has both angiogenic and chemotactic activity. In several types of human cancer such as breast and colorectal malignancies, TP is abundantly expressed in response to biological disturbances like hypoxia, acidosis, chemotherapy, and radiation therapy. TP overexpression is highly associated with angiogenic factors such as vascular endothelial growth factor (VEGF), interleukins (ILs), matrix metalloproteases (MMPs), etc., which accelerate tumorigenesis, invasion, metastasis, immune response evasion, and resistant to apoptosis. Hence, TP is recognized as a key target for the development of new anticancer drugs. Heterocycles are the primary structural element of most chemotherapeutics. Even 75% of nitrogen-containing heterocyclic compounds are contributing to the pharmaceutical world. To create the bioactive molecule, medicinal chemists are concentrating on nitrogen-containing heterocyclic compounds such as pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, benzimidazole, etc. The Oxadiazole motif stands out among all of them due to its enormous significance in medicinal chemistry. The main thrust area of this review is to explore the synthesis, SAR, and the significant role of 1,3,4-oxadiazole derivatives as a TP inhibitor for their chemotherapeutic effects.
Collapse
Affiliation(s)
- Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| |
Collapse
|
9
|
Jariani A, Kakroodi ST, Arabfard M, Jamialahmadi T, Rahimi M, Sahebkar A. Identification of Key Genes in Angiogenesis of Breast and Prostate Cancers in the Context of Different Cell Types. Curr Med Chem 2024; 31:1595-1605. [PMID: 36999716 DOI: 10.2174/0929867330666230331101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 02/03/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Angiogenesis involves the development of new blood vessels. Biochemical signals start this process in the body, which is followed by migration, growth, and differentiation of endothelial cells that line the inside wall of blood vessels. This process is vital for the growth of cancer cells and tumors. MATERIALS AND METHODS We started our analysis by composing a list of genes that have a validated impact in humans with respect to angiogenesis-related phenotypes. Here, we have investigated the expression patterns of angiogenesis-related genes in the context of previously published single-cell RNA-Seq data from prostate and breast cancer samples. RESULTS Using a protein-protein interaction network, we showed how different modules of angiogenesis-related genes are overexpressed in different cell types. In our results, genes, such as ACKR1, AQP1, and EGR1, showed a strong cell type-dependent overexpression pattern in the two investigated cancer types, which can potentially be helpful in the diagnosis and follow-up of patients with prostate and breast cancer. CONCLUSION Our work demonstrates how different biological processes in distinct cell types contribute to the angiogenesis process, which can provide clues regarding the potential application of targeted inhibition of the angiogenesis process.
Collapse
Affiliation(s)
- Abbas Jariani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rahimi
- Clinical care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zou J, Wang Y, Xu J, Li J, Wang T, Zhang Y, Bai Y. A Retrospective Study of Trifluridine/Tipiracil with Fruquintinib in Patients with Chemorefractory Metastatic Colorectal Cancer. J Clin Med 2023; 13:57. [PMID: 38202064 PMCID: PMC10779919 DOI: 10.3390/jcm13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Trifluridine/tipiracil (TAS-102) and fruquintinib are novel antitumor agents for patients with refractory metastatic colorectal cancer (mCRC). We conducted a retrospective study to explore the clinical efficacy and drug toxicities of combination therapy with TAS-102 and fruquintinib in real-life clinical practice. METHODS Between March 2021 and February 2023, patients at two different centers with mCRC who failed two or more lines of prior therapy and received TAS-102 in combination with fruquintinib were recruited. RESULTS In total, 32 mCRC patients were included in the analysis. The objective response rate (ORR) and the disease control rate (DCR) were 9.4% and 75%. The median progression-free survival (PFS) and overall survival (OS) were 6.3 (95% CI: 5.3-7.3) and 13.5 (95% CI: 9.5-17.5) months, respectively. Patients without liver metastasis or peritoneal metastasis obtained better median PFS (7.1 m vs. 5.6 m, p = 0.03 and 6.3 m vs. 3.4 m, p = 0.04), and OS (15.2 m vs. 10.4 m, p = 0.01 and 13.6 m vs. 7.1 m, p = 0.03), respectively. Other clinicopathological features, including age, tumor site, KRAS status, dosage of fruquintinib, and treatment line, did not affect the clinical efficacy of TAS-102 combined with fruquintinib. The most common grade three-four toxicities were neutropenia (46.9%), anemia (21.9%), diarrhea (15.6%), nausea (12.5%), and hand-foot syndrome rash (12.5%). CONCLUSIONS Our results suggest that TAS-102 combined with fruquintinib has promising clinical efficacy and manageable safety for refractory mCRC patients in a real-world clinical setting. Further prospective trials are warranted to confirm our results.
Collapse
Affiliation(s)
- Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Jiayu Xu
- Department of VIP In-Patient Ward, the First Hospital of China Medical University, Shenyang 110001, China;
| | - Jinna Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Tianzhuo Wang
- The First Clinical College, China Medical University, Shenyang 110122, China;
| | - Ying Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital, China Medical University, Shenyang 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang 110004, China
| |
Collapse
|
11
|
Cura Y, Sánchez-Martín A, Márquez-Pete N, González-Flores E, Martínez-Martínez F, Pérez-Ramírez C, Jiménez-Morales A. Association of Single-Nucleotide Polymorphisms in Capecitabine Bioactivation Pathway with Adjuvant Therapy Safety in Colorectal Cancer Patients. Pharmaceutics 2023; 15:2548. [PMID: 38004528 PMCID: PMC10675271 DOI: 10.3390/pharmaceutics15112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Capecitabine, an oral prodrug of 5-fluorouracil (5-FU), is part of the standard treatment of colorectal cancer (CRC). Severe adverse dose limiting reactions that impair treatment safety and lead to treatment suspension remain a relevant concern. Single-nucleotide polymorphisms (SNPs) in genes involved in the activation of capecitabine may alter the bioavailability of 5-FU and thereby affect therapy outcomes. The aim of this study was to evaluate the association of these SNPs with severe toxicity and treatment suspension in patients with CRC treated with capecitabine-based therapy. An ambispective cohort study was conducted, including 161 patients with CRC. SNPs were analyzed using real-time PCR with TaqMan® probes. Toxicity was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events v.5.0. CES1 rs71647871-A was associated with a severe hand-foot syndrome (p = 0.030; OR = 11.92; 95% CI = 1.46-73.47; GG vs. A). CDA rs1048977-CC (p = 0.030; OR = 2.30; 95% CI 1.09-5.00; T vs. CC) and capecitabine monotherapy (p = 0.003; OR = 3.13; 95% CI 1.49-6.81) were associated with treatment suspension due to toxicity. SNPs CES1 rs71647871 and CDA rs1048977 may act as potential predictive biomarkers of safety in patients with CRC under capecitabine-based adjuvant therapy.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Almudena Sánchez-Martín
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Noelia Márquez-Pete
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Encarnación González-Flores
- Medical Oncology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Biosanitary Research Institute, Ibs.Granada, 18012 Granada, Spain
| | | | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
12
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
13
|
Borelli B, Crucitta S, Boccaccino A, Antista M, Antoniotti C, Marmorino F, Rossini D, Conca V, Germani MM, Provenzano L, Spagnoletti A, Leone AG, Cucchiara F, Pietrantonio F, Del Re M, Danesi R, Masi G, Cremolini C, Moretto R. TK-1, TP, Ang-2, and Tie-2 mRNA expression in plasma-derived microvesicles of chemo-refractory metastatic colorectal cancer patients. TUMORI JOURNAL 2023; 109:481-489. [PMID: 36609197 DOI: 10.1177/03008916221147944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Trifluridine/tipiracil and regorafenib are indicated for metastatic colorectal cancer (mCRC) patients' refractory to standard chemotherapy. No prognostic or predictive biomarkers are available for these agents. METHODS We assessed messenger ribonucleic acid (mRNA) expression of four biomarkers implicated in the mechanism of action of trifluridine/tipiracil (TK-1 and TP) and regorafenib (Ang-2 and Tie-2) in baseline plasma-derived microvesicles of chemo-refractory mCRC patients treated with these agents (trifluridine/tipiracil cohort and regorafenib cohort), to explore their prognostic and predictive role. RESULTS Baseline characteristics of the two cohorts were not different. Ang-2 mRNA was not detectable. Only TK-1 expression measured as a continuous variable was associated with progression-free survival (HR=1.09, 95%CI: 0.99-1.21; p=0.07) and overall survival (HR=1.11, 95%CI: 1.00-1.22; p=0.04), confirmed at multivariate analysis for progression-free survival (p=0.02) with a positive trend for overall survival (p=0.08). Baseline mRNA levels of TK-1, TP and Tie-2 were not predictive of trifluridine/tipiracil and regorafenib benefit. CONCLUSION Baseline mRNA levels of TK-1, TP and Tie-2 on plasma-derived microvesicles were not predictive of trifluridine/tipiracil and regorafenib benefit. Future studies should analyze the early modulation of these biomarkers to assess their potential predictive role.
Collapse
Affiliation(s)
- Beatrice Borelli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Carlotta Antoniotti
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federica Marmorino
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Daniele Rossini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veronica Conca
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Spagnoletti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alberto Giovanni Leone
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
14
|
Hatano A, Matsuzaka R, Shimane G, Wakana H, Suzuki K, Nishioka C, Kojima A, Kidowaki M. Introduction of pseudo-base benzimidazole derivatives into nucleosides via base exchange by a nucleoside metabolic enzyme. Bioorg Med Chem 2023; 91:117411. [PMID: 37451053 DOI: 10.1016/j.bmc.2023.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In alternate organic synthesis, biocatalysis using enzymes provides a more stereoselective and cost-effective approach. Synthesis of unnatural nucleosides by nucleoside base exchange reactions using nucleoside-metabolizing enzymes has previously shown that the 5-position recognition of pyrimidine bases on nucleoside substrates is loose and can be used to introduce functional molecules into pyrimidine nucleosides. Here we explored the incorporation of purine pseudo bases into nucleosides by the base exchange reaction of pyrimidine nucleoside phosphorylase (PyNP), demonstrating that an imidazole five-membered ring is an essential structure for the reaction. In the case of benzimidazole, the base exchange proceeded to give the deoxyribose form in 96 % yield, and the ribose form in 23 % yield. The reaction also proceeded with 1H-imidazo[4,5-b]phenazine, a benzimidazole analogue with an additional ring, although the yield of nucleoside was only 31 %. Docking simulations between 1H and imidazo[4,5-b]phenazine nucleoside and the active site of PyNP (PDB 1BRW) supported our observation that 1H-imidazo[4,5-b]phenazine can be used as a substrate by PyNP. Thus, the enzymatic substitution reaction using PyNP can be used to incorporate many purine pseudo bases and benzimidazole derivatives with various functional groups into nucleoside structures, which have potential utility as diagnostic or therapeutic agents.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan.
| | - Riki Matsuzaka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Genki Shimane
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Hiroyuki Wakana
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kou Suzuki
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Chisato Nishioka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Aoi Kojima
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Masatoshi Kidowaki
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
15
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
16
|
Du L, Yue H, Rorabaugh BR, Li OQY, DeHart AR, Toloza‐Alvarez G, Hong L, Denvir J, Thompson E, Li W. Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction. J Am Heart Assoc 2023; 12:e028023. [PMID: 36974758 PMCID: PMC10122909 DOI: 10.1161/jaha.122.028023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Background Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). Methods and Results A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild-type and TYMP-deficient (Tymp-/-) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP-deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild-type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post-AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase-2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid-interferon-induced mortality-19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post-AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. Conclusions This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI.
Collapse
Affiliation(s)
- Lili Du
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
- Department of PathophysiologyCollege of Basic Medical Science, China Medical UniversityShenyangLiaoningChina
| | - Hong Yue
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Boyd R. Rorabaugh
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
- Department of Pharmaceutical SciencesSchool of Pharmacy at Marshall UniversityHuntingtonWVUSA
| | - Oliver Q. Y. Li
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Autumn R. DeHart
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Gretel Toloza‐Alvarez
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Liang Hong
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - James Denvir
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Ellen Thompson
- Department of MedicineJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| | - Wei Li
- Department of Biomedical SciencesJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWVUSA
| |
Collapse
|
17
|
Nie C, Xu W, Chen B, Lv H, Wang J, Liu Y, He Y, Wang S, Zhao J, Chen X. An Exploration of Trifluridine/Tipiracil Monotherapy and in Combination With Bevacizumab or Immune Checkpoint Inhibitors for Patients With Metastatic Colorectal Cancer: A Real-World Study. Clin Colorectal Cancer 2023; 22:76-84. [PMID: 36564281 DOI: 10.1016/j.clcc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Trifluridine/tipiracil (TAS-102) has achieved modest efficacy in the late-line treatment of metastatic colorectal cancer. The present study aimed to explore the clinical efficacy and drug toxicities of TAS-102 for patients with metastatic colorectal cancer in real-world clinical setting. METHODS From October 2020 to February 2022, patients with metastatic colorectal cancer who failed from 2 or more lines of prior therapy and treated with TAS-102 monotherapy, in combination with bevacizumab or immune checkpoint inhibitors (ICIs) were analyzed. The evaluation indicators were progression free survival (PFS), objective response rate , disease control rate (DCR), overall survival (OS) and drug toxicities. RESULTS A total of 70 patients were enrolled. The objective response rate and DCR were 1.4% and 68.6%. The median PFS and OS were 6.0 (95% CI: 4.1-7.9) and 10.0 (95% CI: 8.3-11.7) months. Compared with TAS-102 monotherapy and TAS-102 plus ICIs, TAS-102 plus bevacizumab obtained superior DCR (75.9% vs. 50% vs. 40%, P = .047), PFS (6.3m vs. 3.0 m vs. 3.0 m, P = .041) and OS (12.0 m vs. 6.5 m vs. 6.0m, P = .013). Patients without prior regorafenib or fruquintinib therapy obtained better median PFS (6.3 vs. 4.3 m, P = .031) and OS (NR vs. 9.0 m, P = .036). Other indicators, including age, tumor site, KRAS status and use of fluoropyrimidine as last regimen before TAS-102, did not affect the clinical efficacy of TAS-102. The most frequent adverse events were leukopenia, neutropenia, anemia, fatigue, nausea, and vomiting. CONCLUSION In real-world clinical setting, TAS-102 showed consistent clinical efficacy and manageable safety with previous prospective clinical studies. Compared with monotherapy and TAS-102 plus ICIs, TAS-102 plus bevacizumab demonstrated better clinical efficacy for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Saiqi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
| |
Collapse
|
18
|
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy. Int J Mol Sci 2023; 24:ijms24020902. [PMID: 36674417 PMCID: PMC9864911 DOI: 10.3390/ijms24020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.
Collapse
|
19
|
Combination of T cell-redirecting bispecific antibody ERY974 and chemotherapy reciprocally enhances efficacy against non-inflamed tumours. Nat Commun 2022; 13:5265. [PMID: 36071036 PMCID: PMC9452528 DOI: 10.1038/s41467-022-32952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying a strategy with strong efficacy against non-inflamed tumours is vital in cancer immune therapy. ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody that recognizes glypican-3 and CD3. Here we examine the combination effect of ERY974 and chemotherapy (paclitaxel, cisplatin, and capecitabine) in the treatment of non-inflamed tumours in a xenograft model. ERY974 monotherapy shows a minor antitumour effect on non-inflamed NCI-H446 xenografted tumours, as infiltration of ERY974-redirected T cells is limited to the tumour-stromal boundary. However, combination therapy improves efficacy by promoting T cell infiltration into the tumour centre, and increasing ERY974 distribution in the tumour. ERY974 increases capecitabine-induced cytotoxicity by promoting capecitabine conversion to its active form by inducing thymidine phosphorylase expression in non-inflamed MKN45 tumour through ERY974-induced IFNγ and TNFα in T cells. We show that ERY974 with chemotherapy synergistically and reciprocally increases antitumour efficacy, eradicating non-inflamed tumours.
Collapse
|
20
|
Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022; 13:966759. [PMID: 36120318 PMCID: PMC9478418 DOI: 10.3389/fphar.2022.966759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate how Hydroxysafflor yellow A (HSYA) effects acute liver injury (ALI) and what transcriptional regulatory mechanisms it may employ.Methods: Rats were randomly divided into five groups (n = 10): Control, Model, HSYA-L, HSYA-M, and HSYA-H. In the control and model groups, rats were intraperitoneally injected with equivalent normal saline, while in the HSYA groups, they were also injected with different amounts of HSYA (10, 20, and 40 mg/kg/day) once daily for eight consecutive days. One hour following the last injection, the control group was injected into the abdominal cavity with 0.1 ml/100 g of peanut oil, and the other four groups got the same amount of a peanut oil solution containing 50% CCl4. Liver indexes were detected in rats after dissection, and hematoxylin and eosin (HE) dyeing was utilized to determine HSYA’s impact on the liver of model rats. In addition, with RNA-Sequencing (RNA-Seq) technology and quantitative real-time PCR (qRT-PCR), differentially expressed genes (DEGs) were discovered and validated. Furthermore, we detected the contents of anti-superoxide anion (anti-O2−) and hydrogen peroxide (H2O2), and verified three inflammatory genes (Icam1, Bcl2a1, and Ptgs2) in the NF-kB pathway by qRT-PCR.Results: Relative to the control and HSYA groups, in the model group, we found 1111 DEGs that were up-/down-regulated, six of these genes were verified by qRT-PCR, including Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, and Creld2, indicated that these genes were obviously involved in the regulation of HSYA in ALI model. Membrane rafts, membrane microdomains, inflammatory response, regulation of cytokine production, monooxygenase activity, and iron ion binding were significantly enriched in GO analysis. KEGG analysis revealed that DEGs were primarily enriched for PPAR, retinol metabolism, NF-kB signaling pathways, etc. Last but not least, compared with the control group, the anti-O2− content was substantially decreased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were considerably elevated in the model group. Compared with the model group, the anti-O2− content was substantially increased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were substantially decreased in the HSYA group (p < 0.05).Conclusion: HSYA could improve liver function, inhibit oxidative stress and inflammation, and improve the degree of liver tissue damage. The RNA-Seq results further verified that HSYA has the typical characteristics of numerous targets and multiple pathway. Protecting the liver from damage by regulating the expression of Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, Creld2, and the PPAR, retinol metabolism, NF-kappa B signaling pathways.
Collapse
|
21
|
van den Wildenberg SA, Streng AS, van den Broek R, Broeren MA, Deenen MJ, van Dongen JL, Hanrath MA, Lapré C, Brunsveld L, Scharnhorst V, van de Kerkhof D. Quantification of uracil, dihydrouracil, thymine and dihydrothymine for reliable dihydropyrimidine dehydrogenase (DPD) phenotyping critically depend on blood and plasma storage conditions. J Pharm Biomed Anal 2022; 221:115027. [DOI: 10.1016/j.jpba.2022.115027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
|
22
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
23
|
Poortahmasebi V, Nejati A, Abazari MF, Nasiri Toosi M, Ghaziasadi A, Mohammadzadeh N, Tavakoli A, Khamseh A, Momenifar N, Gholizadeh O, Norouzi M, Jazayeri SM. Identifying Potential New Gene Expression-Based Biomarkers in the Peripheral Blood Mononuclear Cells of Hepatitis B-Related Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2022; 2022:9541600. [PMID: 35265561 PMCID: PMC8901362 DOI: 10.1155/2022/9541600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The analysis of the gene expression of peripheral blood mononuclear cells (PBMCs) is important to clarify the pathogenesis of hepatocellular carcinoma (HCC) and the detection of suitable biomarkers. The purpose of this investigation was to use RNA-sequencing to screen the appropriate differentially expressed genes (DEGs) in the PBMCs for the HCC. METHODS The comprehensive transcriptome of extracted RNA of PBMC (n = 20) from patients with chronic hepatitis B (CHB), liver cirrhosis, and early stage of HCC (5 samples per group) was carried out using RNA-sequencing. All raw RNA-sequencing data analyses were performed using conventional RNA-sequencing analysis tools. Next, gene ontology (GO) analyses were carried out to elucidate the biological processes of DEGs. Finally, relative transcript abundance of selected DEGs was verified using qRT-PCR on additional validation groups. RESULTS Specifically, 13, 1262, and 1450 DEGs were identified for CHB, liver cirrhosis, and HCC, when compared with the healthy controls. GO enrichment analysis indicated that HCC is closely related to the immune response. Seven DEGs (TYMP, TYROBP, CD14, TGFBI, LILRA2, GNLY, and GZMB) were common to HCC, cirrhosis, and CHB when compared to healthy controls. The data revealed that the expressions of these 7 DEGs were consistent with those from the RNA-sequencing results. Also, the expressions of 7 representative genes that had higher sensitivity were obtained by receiver operating characteristic analysis, which indicated their important diagnostic accuracy for HBV-HCC. CONCLUSION This study provides us with new horizons into the biological process and potential prospective clinical diagnosis and prognosis of HCC in the near future.
Collapse
Affiliation(s)
- Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nasiri Toosi
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Central Laboratory of East Azerbaijan Province, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Khamseh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Momenifar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Stary D, Kukułowicz J, Góral I, Baltrukevich H, Barbasevich M, Godyń J, Bajda M. Multilevel virtual screening approach for discovery of thymidine phosphorylase inhibitors as potential anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, Budillon A. Epigenetic Approaches to Overcome Fluoropyrimidines Resistance in Solid Tumors. Cancers (Basel) 2022; 14:cancers14030695. [PMID: 35158962 PMCID: PMC8833539 DOI: 10.3390/cancers14030695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors (HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies, highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately improving the overall survival of cancer patients. Abstract Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.
Collapse
Affiliation(s)
- Laura Grumetti
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Rita Lombardi
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Federica Iannelli
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Biagio Pucci
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli IRCCS “Fondazione Pascale”, 80131 Naples, Italy;
| | - Elena Di Gennaro
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| | - Alfredo Budillon
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| |
Collapse
|
26
|
Aknin K, Bontemps A, Farce A, Merlet E, Belmont P, Helissey P, Chavatte P, Sari MA, Giorgi-Renault S, Desbène-Finck S. Polycyclic nitrogen heterocycles as potential thymidine phosphorylase inhibitors: synthesis, biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem 2021; 37:252-268. [PMID: 34933639 PMCID: PMC8725971 DOI: 10.1080/14756366.2021.2001806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
New polycyclic heterocycles were synthesised and evaluated as potential inhibitors of thymidine phosphorylase (TP). Inspired by the pharmacophoric pyrimidinedione core of the natural substrate, four series have been designed in order to interact with large empty pockets of the active site: pyrimidoquinoline-2,4-diones (series A), pyrimidinedione linked to a pyrroloquinoline-1,3-diones (series B and C), the polycyclic heterocycle has been replaced by a pyrimidopyridopyrrolidinetetraone (series D). In each series, the tricyclic nitrogen heterocyclic moiety has been synthesised by a one-pot multicomponent reaction. Compared to 7-DX used as control, 2d, 2l, 2p (series A), 28a (series D), and the open intermediate 30 showed modest to good activities. A kinetic study confirmed that the most active compounds 2d, 2p are competitive inhibitors. Molecular docking analysis confirmed the interaction of these new compounds at the active binding site of TP and highlighted a plausible specific interaction in a pocket that had not yet been explored.
Collapse
Affiliation(s)
- Karen Aknin
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Alexis Bontemps
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Amaury Farce
- Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Université de Lille, Lille, France
| | - Eric Merlet
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Philippe Belmont
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Philippe Helissey
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Philippe Chavatte
- Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Université de Lille, Lille, France
| | - Marie-Agnès Sari
- Faculté des Sciences, CNRS, UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, Paris, France
| | - Sylviane Giorgi-Renault
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| | - Stéphanie Desbène-Finck
- Faculté de Santé, Faculté de Pharmacie de Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR8038, Université de Paris, Paris, France
| |
Collapse
|
27
|
Plasma Exosomal miRNA Levels after Radiotherapy Are Associated with Early Progression and Metastasis of Cervical Cancer: A Pilot Study. J Clin Med 2021; 10:jcm10102110. [PMID: 34068397 PMCID: PMC8153571 DOI: 10.3390/jcm10102110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Plasma exosomal miRNAs are key regulators of cell-cell interactions associated with several biological functions in patients with cancer. This pilot study aimed to investigate the log2 fold change (log2FC) of the expression of exosomal miRNAs and related mRNAs in the blood of patients with cervical cancer to identify prognostic markers better than those currently available. We sequenced plasma exosomal RNA from 56 blood samples collected from 28 patients with cervical cancer, who had been treated with concurrent chemoradiotherapy (CCRT). Changes in the expression of miRNAs and mRNAs before and after CCRT were represented as log2FC. Their biological functions were studied by miRNA-mRNA network analysis, using ingenuity pathway analysis, after the selection of two groups of miRNAs, each associated with early progression (EP) and metastasis, also described as initial stage. Seven patients experienced EP, three of whom died within four months after progression. Reduced levels of miR-1228-5p, miR-33a-5p, miR-3200-3p, and miR-6815-5p and increased levels of miR-146a-3p in patients with EP revealed unresolved inflammation, with accompanying increased expression of PCK1 and decreased expression of FCGR1A. Increased levels of miR-605-5p, miR-6791-5p, miR-6780a-5p, and miR-6826-5p and decreased levels of miR-16-1-3p (or 15a-3p) were associated with the degree of metastasis and led to the systemic activation of myeloid, endothelial, and epithelial cells, as well as neurons, phagocytes, and platelets. Log2FCs in the expression of miRNAs and mRNAs from plasma exosomes after CCRT are associated with EP and metastasis, reflecting unresolved inflammation and systemic microenvironmental factors, respectively. However, this study, supported by preliminary data insufficient to reach clear conclusions, should be verified in larger prospective cohorts.
Collapse
|
28
|
Targeting thymidine phosphorylase inhibition in human colorectal cancer xenografts. Biomed Pharmacother 2021; 139:111672. [PMID: 33965731 DOI: 10.1016/j.biopha.2021.111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/09/2022] Open
Abstract
Human thymidine phosphorylase (hTP) is overexpressed in several solid tumors and is commonly associated with aggressiveness and unfavorable prognosis. 6-(((1,3-Dihydroxypropan-2-yl)amino)methyl)-5-iodopyrimidine-2,4(1H,3H)-dione (CPBMF-223) is a noncompetitive hTP inhibitor, which has been described as a tumor angiogenesis inhibitor. The present study investigated the effects of CPBMF-223 in a xenograft tumor induced by human colorectal carcinoma cells (HCT-116). Additionally, CPBMF-223 capacity to reduce cell migration, its toxicological profile, and pharmacokinetic characteristics, were also evaluated. The intraperitoneal treatment with CPBMF-223 markedly prevented the relative tumor growth with an efficacy similar to that observed for 5-fluorouracil. Interestingly, number of vessels were significantly decreased in the treated groups. Moreover, CPBMF-223 significantly reduced the migration of cell line HCT-116. In the Ames assay and in an acute oral toxicity test, the molecule did not alter any evaluated parameter. Using the zebrafish toxicity model, cardiac and locomotor parameters were slightly changed. Regarding the pharmacokinetics profile, CPBMF-223 showed clearance of 9.42 L/h/kg after intravenous administration, oral bioavailability of 13.5%, and a half-life of 0.75 h. Our findings shed new light on the role of hTP in colorectal cancer induced by HCT-116 cell in mice, pointing out CPBMF-223 as, hopefully, a promising drug candidate.
Collapse
|
29
|
Xie S, Wang Y, Huang Y, Yang B. Mechanisms of the antiangiogenic effects of aspirin in cancer. Eur J Pharmacol 2021; 898:173989. [PMID: 33657423 DOI: 10.1016/j.ejphar.2021.173989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Aspirin is an old drug extracted from willow bark and is widely used for the prevention and treatment of cardiovascular diseases. Accumulating evidence has shown that aspirin use may significantly reduce the angiogenesis of cancer; however, the mechanism of the association between angiogenesis and aspirin is complex. Although COX-1 is widely known as a target of aspirin, several studies reveal other antiangiogenic targets of aspirin, such as angiotensin II, glucose transporter 1, heparanase, and matrix metalloproteinase. In addition, some data indicates that aspirin may produce antiangiogenic effects after acting in different cell types, such as endothelial cells, platelets, pericytes, and macrophages. In this review, we concentrate on research regarding the antiangiogenic effects of aspirin in cancer, and we discuss the molecular mechanisms of aspirin and its metabolites. Moreover, we discuss some mechanisms through which aspirin treatment may normalize existing blood vessels, including preventing the disintegration of endothelial adheres junctions and the recruitment of pericytes. We also address the antiangiogenic effects and the underlying mechanisms of aspirin derivatives, which are aimed at improving safety and efficacy.
Collapse
Affiliation(s)
- Shiyuan Xie
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Youqiong Wang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Yixuan Huang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
30
|
Fouad MA, Salem SE, Hussien MM, Badr DM, Zekri AN, Hafez HF, Shouman SA. The Clinical Significance of Promoter Methylation of Fluoropyrimidine Metabolizing and Cyclooxygenase Genes in Colorectal Cancer. Epigenet Insights 2021; 14:2516865720986231. [PMID: 33644686 PMCID: PMC7890744 DOI: 10.1177/2516865720986231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS This study investigated the impact of promoter methylation of flouropyrimidine (FP) metabolizing and cyclooxygenase 2 (COX2) genes on their mRNA expression and on the clinical outcome of colorectal cancer (CRC) patients. METHODS Methylation specific-PCR and real time-PCR of thymidylate synthase (TS), thymidine phosphorylase (TP), dihydropyrimidine dehydrogenase (DPD) and COX2 were performed at baseline and after 3 and 6 months of FP therapy. Pairwise comparisons were conducted between the subgroups of CRC patients. The event free survival (EFS) and the hazard of progression were estimated by univariate and multivariate analyses. RESULTS At baseline CRC patients, both TS and TP were overexpressed, in spite of the unmethylation of TS and the full methylation of TP genes. Significant downexpression of DPD and COX2 were associated their promoter's methylation. At the end of FP therapy, TS, DPD and COX2 were overexpressed by 7.52, 2.88 and 3.45 folds, respectively, while TP was downexpressed by 0.54 fold. However, no change was observed in the methylation status of genes with FP therapy. Pairwise comparisons revealed significant difference in the expression and the methylation status of genes according to the clinicopathological characters of CRC patients either at baseline or after FP therapy. The overexpression of DPD and COX2 genes were indicators for a poor EFS of CRC patients. Also, the high level of COX2 expression was found to be significantly correlated with the hazard of progression (HR = 1.73, 95% CI = 1.02-3.03). CONCLUSION The promoter methylation of FP metabolizing and COX2 genes has significant impact on the expression and the treatment outcome of CRC patients.
Collapse
Affiliation(s)
- Mariam Ahmed Fouad
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Salem Eid Salem
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Marwa M. Hussien
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Doaa Mohamed Badr
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Abdelrahman N. Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Hafez Farouk Hafez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Samia A. Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
31
|
Ossick MV, Assalin HB, Kiehl IGA, Salustiano ACC, Rocha GZ, Ferrari KL, Linarelli MCB, Degasperi G, Reis LO. Carcinogenesis and Bacillus Calmette-Guérin (BCG) Intravesical Treatment of Non-Muscle-Invasive Bladder Cancer under Tryptophan and Thymine Supplementation. Nutr Cancer 2020; 73:2687-2694. [PMID: 33287590 DOI: 10.1080/01635581.2020.1856389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Evaluate tryptophan and thymine (TT) impact on carcinogenesis and intravesical BCG bladder cancer treatment. METHODS After identification of TT in vitro inhibitory effect in multiple cancer cell cultures, bladder cancer animal model was induced by MNU intravesical instillations and randomized into four groups: Control (n = 9), BCG (n = 9), TT (n = 7), and BCG + TT (n = 8). BCG groups received intravesical 106 CFU BCG in 0.2 ml saline for 6 consecutive weeks and TT groups received 1 g/kg (1:1) of TT via daily gavage. After 15 wk of protocol, animals were euthanized and the urinary bladders submitted to histopathology, immunohistochemistry, and Western blotting. RESULTS Urothelial cancer was identified in 100%, 85.7%, 44.5%, and 37.5% of Control, TT, BCG, and BCG + TT groups, respectively. Cell proliferation marked by nuclear Ki-67 was higher in the Control compared to animals in the other groups (P = 0.03). BCG, TT, and BCG + TT groups showed proliferative cell decline and TLR4/5 labeling increase in the urothelium. BCG decreased the urothelial VEGF labeling, even in TT association. CONCLUSION TT inhibit urothelial carcinogenesis and potentiate the intravesical BCG in the treatment of bladder cancer by reducing cell proliferation and activating TLRs.
Collapse
Affiliation(s)
- Marina V Ossick
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Heloisa B Assalin
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Isis G A Kiehl
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Ana C C Salustiano
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Guilherme Zweig Rocha
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Karen L Ferrari
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Maria C B Linarelli
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Giovanna Degasperi
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| |
Collapse
|
32
|
Madda R, Chen CM, Chen CF, Wang JY, Wu PK, Chen WM. Exploring the Proteomic Alterations from Untreated and Cryoablation and Irradiation Treated Giant Cell Tumors of Bone Using Liquid-Chromatography Tandem Mass Spectrometry. Molecules 2020; 25:E5355. [PMID: 33207819 PMCID: PMC7696300 DOI: 10.3390/molecules25225355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Giant cell tumors of bone (GCT) are benign tumors that show a locally aggressive nature and affect bones' architecture. Recently, cryoablation and irradiation treatments have shown promising results in GCT patients with faster recovery and less recurrence and metastasis. Therefore, it became a gold standard surgical treatment for patients. Hence, we have compared GCT-untreated, cryoablation, and irradiation-treated samples to identify protein alterations using high-frequency liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Our label-free quantification analysis revealed a total of 107 proteins (p < 0.01) with 26 up-regulated (< 2-folds to 5-fold), and 81 down-regulated (> 0.1 to 0.5 folds) proteins were identified from GCT-untreated and treated groups. Based on pathway analysis, most of the identified up-regulated proteins involved in critical metabolic functions associated with tumor proliferation, angiogenesis, and metastasis. On the other hand, the down-regulated proteins involved in glycolysis, tumor microenvironment, and apoptosis. The observed higher expressions of matrix metalloproteinase 9 (MMP9) and TGF-beta in the GCT-untreated group associated with bones' osteolytic process. Interestingly, both the proteins showed reduced expressions after cryoablation treatment, and contrast expressions identified in the irradiation treated group. Therefore, these expressions were confirmed by immunoblot analysis. In addition to these, several glycolytic enzymes, immune markers, extracellular matrix (ECM), and heat shock proteins showed adverse expressions in the GCT-untreated group were identified with favorable regulations after treatment. Therefore, the identified expression profiles will provide a better picture of treatment efficacy and effect on the molecular environment of GCT.
Collapse
Affiliation(s)
- Rashmi Madda
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| | - Jir-You Wang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| | - Wei-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital; Taipei City 112, Taiwan; (R.M.); (C.-M.C.); (C.-F.C.); (J.-Y.W.); (W.-M.C.)
- Department of Orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital; Taipei City 112, Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University; Taipei City 112, Taiwan
| |
Collapse
|
33
|
Shlapakova TI, Kostin RK, Tyagunova EE. Reactive Oxygen Species: Participation in Cellular Processes and Progression of Pathology. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Akram N, Mansha A, Premkumar R, Franklin Benial AM, Asim S, Iqbal SZ, Ali HS. Spectroscopic, quantum chemical and molecular docking studies on 2,4-dimethoxy-1,3,5-triazine: a potent inhibitor of protein kinase CK2 for the development of breast cancer drug. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1822526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Noreen Akram
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - R. Premkumar
- PG and Research Department of Physics, N. M. S. S. V. N. College, Madurai, India
| | | | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Hafiz Saqib Ali
- ManchesterInstitute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
36
|
Watanabe S, Nishijima KI, Okamoto S, Magota K, Hirata K, Toyonaga T, Shiga T, Kuge Y, Tamaki N. Biodistribution and internal radiation dosimetry of a novel probe for thymidine phosphorylase imaging, [ 123I]IIMU, in healthy volunteers. Ann Nucl Med 2020; 34:595-599. [PMID: 32361818 DOI: 10.1007/s12149-020-01469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We evaluated the radiation dosage, biodistribution, human safety, and tolerability of the injection of a single dose of [123I] 5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil (IIMU), a new radiotracer targeting thymidine phosphorylase (TP), in healthy volunteers. METHODS Potential participants were tested at our hospital to confirm their eligibility. Two healthy male adults passed the screening tests. They were injected with 56 and 111 MBq of [123I]IIMU, respectively. Safety assessments were performed before and at 1, 3, 6, 9, 24, 48 h, and 1-week post-injection. Whole-body emission scans were conducted at 1, 3, 6, 24, and 48 h post-injection. Regions of interest were manually drawn to enclose the entire body at each time point, identifying high-uptake organs to obtain the time-activity curves. Urine and blood samples were collected at 1, 2, 3, 4, 5, 6, 9, 24, and 48 h post-injection. The radiation dose for each organ and the effective doses were estimated using OLINDA/EXM 1.1 software. RESULTS No adverse events were observed as of the follow-up visit > 1-week post-injection. In both subjects, the highest uptake of [123I]IIMU occurred in the liver, with peak injected activity (%IA) values of 17.7% and 15.1%, respectively. The second highest uptake was in the thyroid (0.35% and 0.66% IA). The %IA decreased gradually toward the end of the study (48 h) in all organs except the liver and thyroid. By the end of the study, 52.5% and 51.5% of the injected activity of [123I]IIMU had been excreted via the subjects' renal systems. The estimated mean effective doses of [123I]IIMU were 9.19 μSv/MBq and 10.1 μSv/MBq, respectively. CONCLUSION In this preliminary study, [123I]IIMU was safely administered to healthy adults, and its potential clinical use in TP imaging was revealed.
Collapse
Affiliation(s)
- Shiro Watanabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan. .,Department of Diagnostic Radiology, Hokkaido Cancer Center, 3-54, Kikusui4-2, Shiroishi-ku, Sapporo, 003-0804, Japan.
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Shozo Okamoto
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Radiology, Obihiro Kosei Hospital, West 14, South 10-1, Obihiro, 080-0024, Japan
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takuya Toyonaga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
37
|
Allam RM, El-Halawany AM, Al-Abd AM. Chemo-sensitizing agents from natural origin for colorectal cancer: Pharmacodynamic and cellular pharmacokinetics approaches. DRUG RESISTANCE IN COLORECTAL CANCER: MOLECULAR MECHANISMS AND THERAPEUTIC STRATEGIES 2020:93-116. [DOI: 10.1016/b978-0-12-819937-4.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
38
|
Higashikawa K, Horiguchi S, Tarisawa M, Shibata Y, Ohkura K, Yasui H, Takeda H, Kuge Y. Preclinical investigation of potential use of thymidine phosphorylase-targeting tracer for diagnosis of nonalcoholic steatohepatitis. Nucl Med Biol 2019; 82-83:25-32. [PMID: 31869736 DOI: 10.1016/j.nucmedbio.2019.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Although liver biopsy is the gold standard for the diagnosis of nonalcoholic steatohepatitis (NASH), it has several problems including high invasiveness and sampling errors. Therefore, the development of alternative methods to overcome these disadvantages is strongly required. In this study, we evaluated the potential use of our tracer targeting thymidine phosphorylase (TYMP), 5-[123I]iodo-6-[(2-iminoimidazolidinyl)methyl]uracil ([123I]IIMU) for the diagnosis of NASH. METHODS The mice used as the NASH model (hereafter, NASH mice) were prepared by feeding a methionine- and choline-deficient diet for 4 weeks. A control group was similarly given a control diet. The expression levels of the TYMP gene and protein in the liver were examined by real-time reverse-transcription polymerase chain reaction and western blot analyses. The localizations of [125I]IIMU and the TYMP protein in the liver were examined by autoradiography and immunohistochemical staining, respectively. Finally, the mice were injected with [123I]IIMU and single-photon emission tomography (SPECT) imaging was conducted. RESULTS The hepatic expression levels of TYMP were significantly lower in the NASH mice than in the control mice at both mRNA and protein levels, suggesting that a decrease in TYMP level could be an indicator of NASH. [125I]IIMU was uniformly distributed in the liver of the control mice, whereas it showed a patchy distribution in that of the NASH mice. The localization of [125I]IIMU was visually consistent with that of the TYMP protein in the liver of the control and NASH mice. SPECT analysis indicated that the hepatic accumulation of [123I]IIMU in the NASH mice was significantly lower than that in the control mice [SUV (g/ml): 4.14 ± 0.87 (Control) vs 2.31 ± 0.29 (NASH)]. CONCLUSIONS [123I]IIMU may provide a noninvasive means for imaging TYMP expression in the liver and may be applicable to the diagnosis of NASH.
Collapse
Affiliation(s)
- Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Hokkaido 060-0815, Japan; Graduate School of Biomedical Science and Engineering, Hokkaido University, Hokkaido 060-0815, Japan.
| | - Sawako Horiguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Makoto Tarisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Yuki Shibata
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Hokkaido 060-0815, Japan
| | - Kazue Ohkura
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Hokkaido 060-0815, Japan; Graduate School of Biomedical Science and Engineering, Hokkaido University, Hokkaido 060-0815, Japan
| | - Hiroshi Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Hokkaido 060-0815, Japan; Graduate School of Biomedical Science and Engineering, Hokkaido University, Hokkaido 060-0815, Japan
| |
Collapse
|
39
|
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2019; 206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Citation(s) in RCA: 582] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
40
|
Zizzo N, Passantino G, D'alessio RM, Tinelli A, Lopresti G, Patruno R, Tricarico D, Maqoud F, Scala R, Zito FA, Ranieri G. Thymidine Phosphorylase Expression and Microvascular Density Correlation Analysis in Canine Mammary Tumor: Possible Prognostic Factor in Breast Cancer. Front Vet Sci 2019; 6:368. [PMID: 31709268 PMCID: PMC6823610 DOI: 10.3389/fvets.2019.00368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: The thymidine phosphorylase (TP) is a key enzyme involved in the metabolism of pyrimidines. Inhibition or downregulation of this enzyme causes accumulation of metabolites with consequences in DNA replication. TP regulates angiogenesis and chemotactic activity of endothelial cells. Different studies showed the presence of TP upregulation in human cancer but the correlation between TP expression and the microvascular density (MVD) in canine mammary tumors is unknown. The aim of this study was to investigate a possible correlation between the MVD and TP expression in tumor cells of canine mammary tumors of different degree of severity (G1–G3) by immunohistochemical analysis. Methods: Sixty-eight samples of spontaneous mammary neoplasia of 5–12 cm in diameter were collected from purebred and mixed-breed dogs (mean aged = 9.5 ± 7), not subject to chemotherapy treatments in veterinary clinics. Histopathological analysis and immunostaining were performed. Results: Carcinoma simple samples have been classified as 72.06% of tubule-papillary, 20.59% cysto-papillary, and 7.35% tubular carcinomas. Immunostainings revealed a marked cytoplasmic expression of TP in 30.88% of samples, mild in 32.35%, weaker in 22.07%, and negative in 14.70%. The correlation analysis and two-way ANOVA showed a linear correlation between MVD and TP with a coefficient of correlation (r) > 0.5 (p < 0.05) in G2 and G3. No correlation between variables was found in G1. Conclusions: These findings suggest that cytoplasmic TP overexpression is correlated with microvascular density in canine mammary tumors, in severe grade, and it can be a potential prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Roberta Maria D'alessio
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy.,MD Freelancer, Bristol, United Kingdom
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Lopresti
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Rosa Patruno
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
41
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
42
|
de Moura Sperotto ND, Deves Roth C, Rodrigues-Junior VS, Ev Neves C, Reisdorfer Paula F, da Silva Dadda A, Bergo P, Freitas de Freitas T, Souza Macchi F, Moura S, Duarte de Souza AP, Campos MM, Valim Bizarro C, Santos DS, Basso LA, Machado P. Design of Novel Inhibitors of Human Thymidine Phosphorylase: Synthesis, Enzyme Inhibition, in Vitro Toxicity, and Impact on Human Glioblastoma Cancer. J Med Chem 2019; 62:1231-1245. [DOI: 10.1021/acs.jmedchem.8b01305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Fávero Reisdorfer Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, 97508-000 Uruguaiana, RS, Brazil
| | | | | | | | | | - Sidnei Moura
- Laboratório de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
The inhibition of thymidine phosphorylase can reverse acquired 5FU-resistance in gastric cancer cells. Gastric Cancer 2019; 22:497-505. [PMID: 30276573 PMCID: PMC6476841 DOI: 10.1007/s10120-018-0881-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND 5FU can be converted to its active metabolite fluoro-deoxyuridine monophosphate (FdUMP) through two pathways: the orotate phosphoribosyl transferase-ribonucleotide reductase (OPRT-RR) pathway and the thymidine phosphorylase-thymidine kinase (TP-TK) pathway. We investigated the mechanism underlying 5FU-resistance, focusing on the changes in the 5FU metabolisms. METHODS MKN45 and 5FU-resistant MKN45/F2R cells were treated with 5FU or fluoro-deoxyuridine (FdU) in combination with hydroxyurea (HU) or tipiracil (TPI). The amount of FdUMP was determined by the density of the upper band of thymidylate synthase on Western blotting. RESULTS The MKN45/F2R cells exhibited 5FU resistance (37.1-fold) and showed decreased OPRT and increased TP levels. In both cells, the FdUMP after treatment with 5FU was decreased when RR was inhibited by HU but not when TP was inhibited by TPI. A metabolome analysis revealed the loss of intracellular deoxyribose 1-phosphate (dR1P) in both cells, indicating that FdUMP was synthesized from 5FU only through the OPRT-RR pathway because of the loss of dR1P. After the knockdown of TK, the FdUMP after treatment with FdU was decreased in MKN45 cells. However, it was not changed in MKN45/F2R cells. Furthermore, TP inhibition caused an increase in FdUMP after treatment with 5FU or FdU and reversed the 5FU resistance in MKN45/F2R cells, indicating that FdUMP was reduced through the TP-TK pathway in MKN45/F2R cells. CONCLUSIONS In MKN45/F2R cells, the reduction of FdUMP through the TP-TK pathway caused 5FU resistance, and the inhibition of TP reversed the resistance to 5FU, suggesting that the combination of 5FU and TPI is a promising cancer therapy.
Collapse
|
44
|
Hatano A, Wakana H, Terado N, Kojima A, Nishioka C, Iizuka Y, Imaizumi T, Uehara S. Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01063g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unnatural nucleosides are attracting interest as potential diagnostic tools, medicines, and functional molecules.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Hiroyuki Wakana
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Nanae Terado
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Aoi Kojima
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Chisato Nishioka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Yu Iizuka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Takuya Imaizumi
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Sanae Uehara
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| |
Collapse
|
45
|
Levene M, Enguita FJ, Bax BE. Discovery profiling and bioinformatics analysis of serum microRNA in Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE). NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:618-629. [PMID: 30587073 DOI: 10.1080/15257770.2018.1492138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare and fatal inherited metabolic disorder due to mutations in the nuclear TYMP gene and leads to a deficiency in the enzyme thymidine phosphorylase. This results in an accumulation of the deoxynucleosides, thymidine and deoxyuridine in the cellular and extracellular compartments, ultimately leading to mitochondrial failure. The understanding of the precise molecular mechanisms that underlie the disease pathology is limited, being hampered by the rarity of the disorder. Expression profiling of serum based mircoRNAs and subsequent bioinformatical analyses provide an approach to facilitate the identity of dysregulated genes and signalling pathways potentially involved in the pathogenesis of MNGIE.
Collapse
Affiliation(s)
- Michelle Levene
- a Cell Biology and Genetics Research Centre , St George's University of London, Molecular and Cell Sciences Institute , London , United Kingdom
| | - Francisco J Enguita
- b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Bridget E Bax
- a Cell Biology and Genetics Research Centre , St George's University of London, Molecular and Cell Sciences Institute , London , United Kingdom
| |
Collapse
|
46
|
Himuro N, Niiya Y, Minakata T, Oshima Y, Kataoka D, Yamamoto S, Suzuki T, Kadokura M. Thymidine phosphorylase affects clinical outcome following surgery and mRNA expression levels of four key enzymes for 5-fluorouracil metabolism in patients with stage I and II non-small cell lung cancer. Mol Clin Oncol 2018; 9:640-646. [PMID: 30546894 DOI: 10.3892/mco.2018.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
The expression levels of thymidine phosphorylase (TP), dihydropyrimidine dehydrogenase (DPD), thymidylate synthase (TS) and orotate phosphoribosyltransferase (OPRT) may predict the clinical efficacy of 5-fluorouracil-based chemotherapy in patients with cancer. We herein investigated the differences in the mRNA levels of these enzymes in non-small-cell lung cancer (NSCLC) and evaluated their prognostic value for NSCLC treated by surgical resection. The intratumoral mRNA levels of TP, DPD, TS, and OPRT were quantified in 66 patients with pathological stage I and II NSCLC (adenocarcinoma or squamous cell carcinoma) following complete resection according to the Danenberg Tumor Profile method. The TP level was the only significant prognostic factor for disease-specific survival (DSS) following complete resection; the mean TP mRNA level differed significantly between the high and low mRNA expression groups. The DSS at 5 years was significantly higher in the low TP mRNA compared with that in the high TP mRNA expression group (83.4 vs. 58.6%, respectively; P=0.005). A Cox proportional hazards model revealed that pathological stage, sex, and TP expression were independent prognostic factors for DSS in patients with stage I and II NSCLC following complete resection. Thus, TP level may be used to monitor treatment efficacy and predict the outcome of NSCLC patients.
Collapse
Affiliation(s)
- Naoya Himuro
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yumiko Niiya
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Takao Minakata
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yutaka Oshima
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Daisuke Kataoka
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Shigeru Yamamoto
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Takashi Suzuki
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Mitsutaka Kadokura
- Division of Chest Surgery, Department of Surgery, Showa University School of Medicine, Tokyo 142-8666, Japan
| |
Collapse
|
47
|
Sun X, Guo S. The Prognostic and Predictive Value of Dihydropyrimidine Dehydrogenase-Related Indicators in Clinical Outcomes of Chemotherapy in Colorectal Cancer Patients: a Systematic Review and Meta-Analysis. Pathol Oncol Res 2018; 26:121-131. [PMID: 30519982 DOI: 10.1007/s12253-018-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Predictive biomarkers are needed to predict patients' outcomes and to select a chemotherapy regimen. We assessed whether dihydropyrimidine dehydrogenase (DPD)-related indicators can predict CRC patients' outcomes. We searched the studies in PubMed, EmBase, and the Cochrane Library up to March 4, 2018. We mainly analyzed different CRC patients' outcomes according to specific DPD-related indicators. Twenty-five articles were included in the meta-analysis. The results showed that for disease-free survival (DFS), low DPD expression was significantly superior to high expression (I2 = 72%; HR: 1.59; 95%CI: 1.21-2.09; p = 0.001). However, this result had a potential publication bias (Begg's test: p = 0.007; Egger's test: p = 0.004). Among patients treated with chemotherapy, a high thymidylate phosphorylase (TP)/DPD ratio was advantageous for DFS (I2 = 63.7%; HR: 0.65; 95%CI: 0.46-0.92; p = 0.015), and this result did not have a publication bias. For overall survival (OS), low DPD expression was superior to high expression (I2 = 74.4%; HR: 2.11; 95%CI: 1.48-3.00; p < 0.001), although this result had a publication bias (Egger's test: p = 0.003; Begg's test: p = 0.010). There was no difference in OS according to the TP/DPD ratio (I2 = 0%; HR: 0.92; 95%CI: 0.75-1.13; p = 0.420). DFS and OS were better in CRC patients with low DPD expression than in those with high DPD expression. However, because of publication bias, more DPD indicator-related studies, especially with negative results, are still needed. Patients with a high TP/DPD ratio have better DFS but not OS.
Collapse
Affiliation(s)
- Xiaojun Sun
- Inpatients department, Nanjing Qi-xia Xi-gang community health service centers, Nanjing, 210033, Jiangsu, China
| | - Shilei Guo
- R&D department, Nanjing Regenerative Medicine Engineering and Technology Research Center, No.108, Ganjiabian East, Qixia District, Nanjing, 210046, Jiangsu, China.
| |
Collapse
|
48
|
Chen YY, Lin YJ, Huang WT, Hung CC, Lin HY, Tu YC, Liu DM, Lan SJ, Sheu MJ. Demethoxycurcumin-Loaded Chitosan Nanoparticle Downregulates DNA Repair Pathway to Improve Cisplatin-Induced Apoptosis in Non-Small Cell Lung Cancer. Molecules 2018; 23:E3217. [PMID: 30563166 PMCID: PMC6320861 DOI: 10.3390/molecules23123217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
Demethoxycurcumin (DMC), through a self-assembled amphiphilic carbomethyl-hexanoyl chitosan (CHC) nanomatrix has been successfully developed and used as a therapeutic approach to inhibit cisplatin-induced drug resistance by suppressing excision repair cross-complementary 1 (ERCC1) in non-small cell lung carcinoma cells (NSCLC). Previously, DMC significantly inhibited on-target cisplatin resistance protein, ERCC1, via PI3K-Akt-snail pathways in NSCLC. However, low water solubility and bioavailability of DMC causes systemic elimination and prevents its clinical application. To increase its bioavailability and targeting capacity toward cancer cells, a DMC-polyvinylpyrrolidone core phase was prepared, followed by encapsulating in a CHC shell to form a DMC-loaded core-shell hydrogel nanoparticles (DMC-CHC NPs). We aimed to understand whether DMC-CHC NPs efficiently potentiate cisplatin-induced apoptosis through downregulation of ERCC1 in NSCLC. DMC-CHC NPs displayed good cellular uptake efficiency. Dissolved in water, DMC-CHC NPs showed comparable cytotoxic potency with free DMC (dissolved in DMSO). A sulforhodamine B (SRB) assay indicated that DMC-CHC NPs significantly increased cisplatin-induced cytotoxicity by highly efficient intracellular delivery of the encapsulated DMC. A combination of DMC-CHC NPs and cisplatin significantly inhibited on-target cisplatin resistance protein, ERCC1, via the PI3K-Akt pathway. Also, this combination treatment markedly increased the post-target cisplatin resistance pathway including bax, and cytochrome c expressions. Thymidine phosphorylase (TP), a main role of the pyrimidine salvage pathway, was also highly inhibited by the combination treatment. The results suggested that enhancement of the cytotoxicity to cisplatin via administration of DMC-CHC NPs was mediated by down-regulation of the expression of TP, and ERCC1, regulated via the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Ying-Yi Chen
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Yu-Jung Lin
- Department of Pharmacy, Chang Bing Show Chwan Memorial Hospital, No.6, Lugong Rd. Lugang Town, Changhua County 505, Taiwan.
| | - Wei-Ting Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.
| | - Chin-Chuan Hung
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Yu-Chen Tu
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Dean-Mo Liu
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| |
Collapse
|
49
|
Kamel S, Weiß M, Klare HF, Mikhailopulo IA, Neubauer P, Wagner A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Liu W, Zhang J, Yao X, Jiang C, Ni P, Cheng L, Liu J, Ni S, Chen Q, Li Q, Zhou K, Wang G, Zhou F. Bevacizumab-enhanced antitumor effect of 5-fluorouracil via upregulation of thymidine phosphorylase through vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-specificity protein 1 pathway. Cancer Sci 2018; 109:3294-3304. [PMID: 30151975 PMCID: PMC6172063 DOI: 10.1111/cas.13779] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022] Open
Abstract
Bevacizumab (Bv) can be used synergistically with fluoropyrimidine-based chemotherapy to treat colorectal cancer. Whether and how it affects the delivery of fluoropyrimidine drugs is unknown. The present study aimed to explore the effect of Bv on the delivery of 5-fluorouracil (5-FU) to tumors and the underlying mechanism from metabolic perspective. Bv enhanced the anti-tumor effects of 5-FU in LoVo colon cancer xenograft mice and increased the 5-FU concentration in tumors without affecting hepatic 5-FU metabolism. Interestingly, Bv remarkably upregulated thymidine phosphorylase (TP) in tumors, which mediated the metabolic activation of 5-FU. Although TP is reported to promote angiogenesis and resistance, the combination of Bv and 5-FU resulted in anti-angiogenesis and vessel normalization in tumors, indicating that the elevated TP mainly contributed to the enhanced response to 5-FU. Bv also induced TP upregulation in LoVo cancer cells. Treatment with vascular endothelial growth factor receptor 2 (VEGFR2) antagonist apatinib and VEGFR2 silencing further confirmed TP upregulation. Bv and apatinib both enhanced the cytotoxicity of 5-FU in LoVo cells, but there was no synergism with adriamycin and paclitaxel. We further demonstrated that the effect of Bv was dependent on VEGFR2 blockade and specificity protein 1 activation via MDM2 inhibition. In summary, Bv enhanced the accumulation of 5-FU in tumors and the cytotoxicity of 5-FU via TP upregulation. We provide data to better understand how Bv synergizes with 5-FU from metabolic perspective, and it may give clues to the superiority of Bv in combination with fluoropyrimidine drugs compared to other chemotherapeutic drugs in colon cancer.
Collapse
Affiliation(s)
- Wenyue Liu
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jingwei Zhang
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xuequan Yao
- Department of Digestive Tumor SurgeryAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Chao Jiang
- Department of Digestive Tumor SurgeryAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Ping Ni
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Lingge Cheng
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jiali Liu
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Suiying Ni
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Qianying Chen
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Qingran Li
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Kai Zhou
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Guangji Wang
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Fang Zhou
- State Key Laboratory of Natural MedicinesKey Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|