1
|
Read JE, Vasile‐Tudorache A, Newsome A, Lorente MJ, Agustín‐Pavón C, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024; 1541:83-99. [PMID: 39431640 PMCID: PMC11580780 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E. Read
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alexandru Vasile‐Tudorache
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Carmen Agustín‐Pavón
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
- Department of Paediatric EndocrinologyBarts Health NHS TrustLondonUK
| |
Collapse
|
2
|
Xu Y, Li W, Shi M, Xu X, Guo D, Liu Z, Chen L, Zhong X, Cao W. Systemic treatment with GnRH agonist produces antidepressant-like effects in LPS induced depression male mouse model. Neuropharmacology 2023; 233:109560. [PMID: 37094770 DOI: 10.1016/j.neuropharm.2023.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is at the head of the neuroendocrine reproductive axis. However, the non-reproductive functions of GnRH expressed in various tissues, including hippocampus, are still not known. Here, we unveil a previously unknown effect of GnRH, which mediates depression-like behaviors through the modulation of microglia function during immune challenge. Specifically, we found that either systemic treatment with GnRH agonist or over-expression of endogenous hippocampal GnRH via viral tool abolished the depression-like behavior after LPS challenges in mice. And the anti-depressant of GnRH was dependent on the hippocampal GnRHR signaling, since antagonizing GnRHR by drug treatment or by hippocampal GnRHR knockdown could block the antidepressant-effect of GnRH agonist. Interestingly, we found that the peripheral GnRH treatment prevented the microglia activation mediated inflammation in the hippocampus of mice. In light of the research findings presented here, we propose that, at least in the hippocampus, GnRH appears to act on GnRHR to regulate higher order non-reproductive functions associated with the microglia mediated neuroinflammation. These findings also provide insights into the function and cross-talk of GnRH, a known neuropeptide hormone, in neuro-immune response.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Li
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mengmeng Shi
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaofan Xu
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dongmin Guo
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenghai Liu
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Díaz-Galindo C, Calderón-Vallejo D, Hernández-Jasso I, Cervantes-García D, Martínez-Díaz D, Ibarra-Martínez D, Muñoz-Ortega M, Quintanar JL. Gonadotropin-Releasing Hormone Receptor Expression in Human Spinal Cord. Neurochem Res 2020; 46:165-170. [PMID: 33206314 DOI: 10.1007/s11064-020-03178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
The expression of the gonadotrophin-releasing hormone receptor expression on pituitary gonadotrophs in humans is well characterized. In nervous system they have also been found in hippocampi and cerebral cortex. However, gonadotrophin-releasing hormone receptor expression in human spinal cord has not been reported. This study was to analyze the gonadotrophin-releasing hormone receptor expression in human spinal cord by immunohistochemistry, mRNAs by reverse transcriptase polymerase chain reaction, cDNA cloning and Western blot. The results show immunoreactive material to gonadotrophin-releasing hormone receptor in motoneurons of the spinal cord. Further, the study revealed that spinal cord expressed the gonadotrophin-releasing hormone receptor mRNA. The amplicon sequence corresponds to 100% of identity to GenBank. In Western blot, a band of 37 kDa were found in extracts of spinal cord and placenta as a control. In conclusion, human spinal cord expresses gonadotrophin-releasing hormone receptor analyzed through immunohistochemistry, the expression of its mRNA, cloning its cDNA and Western blot analysis. The presence of gonadotrophin-releasing hormone receptor in the spinal cord suggests the possibility of an extrapituitary functional role independent of reproductive system.
Collapse
Affiliation(s)
- Carmen Díaz-Galindo
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - Denisse Calderón-Vallejo
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
- Department of Morphology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Irma Hernández-Jasso
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Diego Martínez-Díaz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - David Ibarra-Martínez
- Department of Morphology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Martín Muñoz-Ortega
- Department of Chemistry, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - J Luis Quintanar
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico.
| |
Collapse
|
4
|
Cellular identity and Ca 2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Sci Rep 2020; 10:18590. [PMID: 33122709 PMCID: PMC7596717 DOI: 10.1038/s41598-020-75344-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.
Collapse
|
5
|
Morquette B, Juźwik CA, Drake SS, Charabati M, Zhang Y, Lécuyer MA, Galloway DA, Dumas A, de Faria Junior O, Paradis-Isler N, Bueno M, Rambaldi I, Zandee S, Moore C, Bar-Or A, Vallières L, Prat A, Fournier AE. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain 2019; 142:2979-2995. [DOI: 10.1093/brain/awz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of miRNAs has been observed in many neurodegenerative diseases, including multiple sclerosis. Morquette et al. show that overexpression of miR-223-3p prevents accumulation of axonal damage in a rodent model of multiple sclerosis, in part through regulation of glutamate receptor signalling. Manipulation of miRNA levels may have therapeutic potential.
Collapse
Affiliation(s)
- Barbara Morquette
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Camille A Juźwik
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Sienna S Drake
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Marc Charabati
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Yang Zhang
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | | | - Dylan A Galloway
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | | | | | - Mardja Bueno
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Isabel Rambaldi
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Stephanie Zandee
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Craig Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Amit Bar-Or
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luc Vallières
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | - Alexandre Prat
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Alyson E Fournier
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| |
Collapse
|
6
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|
7
|
Busby ER, Sherwood NM. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice. PLoS One 2017; 12:e0174452. [PMID: 28346489 PMCID: PMC5367835 DOI: 10.1371/journal.pone.0174452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 11/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.
Collapse
Affiliation(s)
- Ellen R. Busby
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
8
|
Quintanar JL, Calderón-Vallejo D, Hernández-Jasso I. Effects of GnRH on Neurite Outgrowth, Neurofilament and Spinophilin Proteins Expression in Cultured Spinal Cord Neurons of Rat Embryos. Neurochem Res 2016; 41:2693-2698. [PMID: 27339868 DOI: 10.1007/s11064-016-1983-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
It has been previously described the presence of GnRH receptor in spinal cord neurons of rat embryos and adult rats. However, the functional role of these receptors has not been studied. In this work, the effect of GnRH on neurite outgrowth and cytoskeletal protein expression in cultured spinal cord neurons of rat embryos was analyzed. Specifically, neurofilaments of 68 and 200 kDa by immunoblot assays and spinophilin mRNA expression by RT-PCR. Results show that GnRH stimulates neurite outgrowth in addition to an increase in neurofilaments and spinophilin expression. These findings suggest that GnRH may play a role as neuromodulator in neuronal plasticity and that could be considered as a potential factor for neuronal regeneration in spinal cord injuries.
Collapse
Affiliation(s)
- J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, Aguascalientes, AGS, C.P. 20131, Mexico.
| | - Denisse Calderón-Vallejo
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, Aguascalientes, AGS, C.P. 20131, Mexico
| | - Irma Hernández-Jasso
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, Aguascalientes, AGS, C.P. 20131, Mexico
| |
Collapse
|
9
|
Ferris JK, Tse MT, Hamson DK, Taves MD, Ma C, McGuire N, Arckens L, Bentley GE, Galea LAM, Floresco SB, Soma KK. Neuronal Gonadotrophin-Releasing Hormone (GnRH) and Astrocytic Gonadotrophin Inhibitory Hormone (GnIH) Immunoreactivity in the Adult Rat Hippocampus. J Neuroendocrinol 2015; 27:772-86. [PMID: 26258544 DOI: 10.1111/jne.12307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) and gonadotrophin inhibitory hormone (GnIH) are neuropeptides secreted by the hypothalamus that regulate reproduction. GnRH receptors are not only present in the anterior pituitary, but also are abundantly expressed in the hippocampus of rats, suggesting that GnRH regulates hippocampal function. GnIH inhibits pituitary gonadotrophin secretion and is also expressed in the hippocampus of a songbird; its role outside of the reproductive axis is not well established. In the present study, we employed immunohistochemistry to examine three forms of GnRH [mammalian GnRH-I (mGnRH-I), chicken GnRH-II (cGnRH-II) and lamprey GnRH-III (lGnRH-III)] and GnIH in the adult rat hippocampus. No mGnRH-I and cGnRH-II+ cell bodies were present in the hippocampus. Sparse mGnRH-I and cGnRH-II+ fibres were present within the CA1 and CA3 fields of the hippocampus, along the hippocampal fissure, and within the hilus of the dentate gyrus. No lGnRH-III was present in the rodent hippocampus. GnIH-immunoreactivity was present in the hippocampus in cell bodies that resembled astrocytes. Males had more GnIH+ cells in the hilus of the dentate gyrus than females. To confirm the GnIH+ cell body phenotype, we performed double-label immunofluorescence against GnIH, glial fibrillary acidic protein (GFAP) and NeuN. Immunofluorescence revealed that all GnIH+ cell bodies in the hippocampus also contained GFAP, a marker of astrocytes. Taken together, these data suggest that GnRH does not reach GnRH receptors in the rat hippocampus primarily via synaptic release. By contrast, GnIH might be synthesised locally in the rat hippocampus by astrocytes. These data shed light on the sites of action and possible functions of GnRH and GnIH outside of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- J K Ferris
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - M T Tse
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D K Hamson
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - M D Taves
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - C Ma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - N McGuire
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - L Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, University of Leuven, Leuven, Belgium
| | - G E Bentley
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - S B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - K K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Calderón-Vallejo D, Quintanar-Stephano A, Hernández-Jasso I, Jiménez-Hernández V, Ruiz-Ornelas J, Jiménez I, Quintanar JL. Functional and structural recovery of the injured spinal cord in rats treated with gonadotropin-releasing hormone. Neurochem Res 2015; 40:455-62. [PMID: 25618391 DOI: 10.1007/s11064-014-1486-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Abstract
Several studies have shown that gonadotropin-releasing hormone (GnRH) have extra-pituitary roles, including neurotrophic effects. This study was to evaluate the effects of GnRH treatment on the spinal cord injury (SCI) of rats. Ovariectomized rats were divided into: sham SCI surgery (Sham), SCI treated with saline solution (SCI + SS), and SCI treated with GnRH (SCI + GnRH). The SCI was induced by compression. One day after the lesion, SCI + GnRH group was injected with GnRH (60 µg/kg/twice/day; i.m.) for 15 days and the other groups with saline solution. To kinematic gait analysis, length and velocity of the stride were measured. In spinal cord, axonal morphometry and spared white and gray matter were analyzed by histochemistry. Protein expression of spinophilin was evaluated by western blot. The results showed that, 5 weeks after the injury, the group of animals treated with GnRH, significantly increased the length and velocity of the stride compared to SCI + SS group and they were similar to Sham group. In spinal cord, GnRH treatment increased the number and caliber of nerve axons and in the case of white matter, spared tissue was significantly higher than those animals treated with saline solution. The expression of spinophilin in spinal cord of SCI + GnRH group was slightly increased with respect to those not treated. In conclusion, GnRH treatment improves recovery of gait and decreases histopathological damage in the injured spinal cord of rat. These findings suggest that GnRH acts as a neurotrophic factor and can be used as a potential therapeutic agent for treatment of SCI.
Collapse
Affiliation(s)
- Denisse Calderón-Vallejo
- Laboratory of Neurophysiology, Depto. de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, C.P. 20131, Aguascalientes, AGS, Mexico
| | | | | | | | | | | | | |
Collapse
|
11
|
Molecular cloning, sequencing, and distribution of feline GnRH receptor (GnRHR) and resequencing of canine GnRHR. Theriogenology 2014; 83:266-75. [PMID: 25442384 DOI: 10.1016/j.theriogenology.2014.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022]
Abstract
GnRH receptors play vital roles in mammalian reproduction via regulation of gonadotropin secretion, which is essential for gametogenesis and production of gonadal steroids. GnRH receptors for more than 20 mammalian species have been sequenced, including human, mouse, and dog. This study reports the molecular cloning and sequencing of GnRH receptor (GnRHR) cDNA from the pituitary gland of the domestic cat, an important species in biomedical research. Feline GnRHR cDNA is composed of 981 nucleotides and encodes a 327 amino acid protein. Unlike the majority of mammalian species sequenced so far, but similar to canine GnRHR, feline GnRHR protein lacks asparagine in position three of the extracellular domain of the protein. At the amino acid level, feline GnRHR exhibits 95.1% identity with canine, 93.8% with human, and 88.9% with mouse GnRHR. Comparative sequence analysis of GnRHRs for multiple mammalian species led to resequencing of canine GnRHR, which differed from that previously published by a single base change that translates to a different amino acid in position 193. This single base change was confirmed in dogs of multiple breeds. Reverse transcriptase PCR analysis of GnRHR messenger RNA in different tissues from four normal cats indicated the presence of amplicons of varying lengths, including full-length as well as shortened GnRHR amplicons, pointing to the existence of truncated GnRHR transcripts in the domestic cat. This study is the first insight into molecular composition and expression of feline GnRHR and promotes better understanding of receptor organization, and distribution in various tissues of this species.
Collapse
|
12
|
Robinson JE, Evans NP, Dumbell R, Solbakk AK, Ropstad E, Haraldsen IRH. Effects of inhibition of gonadotropin releasing hormone secretion on the response to novel objects in young male and female sheep. Psychoneuroendocrinology 2014; 40:130-9. [PMID: 24485485 DOI: 10.1016/j.psyneuen.2013.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/03/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
This study investigated the actions of blocking the GnRH receptor using a specific agonist on the response of male and female sheep to a novel object placed in their pen. The study is part of a series performed on 46 same sex twin animals. One of the pair received a subcutaneous implant of the GnRH agonist Goserelin acetate every four weeks while the other remained untreated. Implantation began immediately prior to puberty; at 8 weeks in the males and 28 weeks in the females (as timing of puberty is sex specific). To determine the effects of agonist treatment on the reproductive axis blood samples were collected for measurement of testosterone in the males and progesterone in the females. In addition the volume of the scrotum was determined. The present study aimed to determine whether there are sexually differentiated behavioural responses to a novel object at different stages of brain development (8, 28 and 48 weeks of age) and whether these responses are altered by GnRHa treatment. Approach behaviour towards and interactions with the novel object were monitored as was the number of vocalisations per unit time during the test period. GnRHa treatment suppressed testosterone concentrations and testicular growth in the males and progesterone release in the females. Sheep vocalised significantly more prior to weaning (8 weeks of age) than post weaning (28 and 48 weeks of age) suggesting stress on separation from their dams. Our current study shows that males are more likely to leave their conspecifics to approach a novel object than females. As this behaviour was not altered by suppression of the reproductive axis we suggest that, although sex differences are more obviously expressed in the phenotype after puberty, these may be developed during adolescence but not primarily altered during puberty by sex hormones.
Collapse
Affiliation(s)
- Jane E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK.
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK
| | - Rebecca Dumbell
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK
| | - Anne-Kristin Solbakk
- Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Erik Ropstad
- Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Ira Ronit Hebold Haraldsen
- Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
13
|
Expression of FSH and its co-localization with FSH receptor and GnRH receptor in rat cerebellar cortex. J Mol Histol 2012; 44:19-26. [PMID: 22972435 DOI: 10.1007/s10735-012-9449-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/27/2023]
Abstract
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.
Collapse
|
14
|
Kusakabe TG, Sakai T, Aoyama M, Kitajima Y, Miyamoto Y, Takigawa T, Daido Y, Fujiwara K, Terashima Y, Sugiuchi Y, Matassi G, Yagisawa H, Park MK, Satake H, Tsuda M. A conserved non-reproductive GnRH system in chordates. PLoS One 2012; 7:e41955. [PMID: 22848672 PMCID: PMC3407064 DOI: 10.1371/journal.pone.0041955] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/27/2012] [Indexed: 01/28/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuroendocrine peptide that plays a central role in the vertebrate hypothalamo-pituitary axis. The roles of GnRH in the control of vertebrate reproductive functions have been established, while its non-reproductive function has been suggested but less well understood. Here we show that the tunicate Ciona intestinalis has in its non-reproductive larval stage a prominent GnRH system spanning the entire length of the nervous system. Tunicate GnRH receptors are phylogenetically closest to vertebrate GnRH receptors, yet functional analysis of the receptors revealed that these simple chordates have evolved a unique GnRH system with multiple ligands and receptor heterodimerization enabling complex regulation. One of the gnrh genes is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord of vertebrates. Correspondingly, GnRH receptor genes were found to be expressed in the tail muscle and notochord of embryos, both of which are phylotypic axial structures along the nerve cord. Our findings suggest a novel non-reproductive role of GnRH in tunicates. Furthermore, we present evidence that GnRH-producing cells are present in the hindbrain and spinal cord of the medaka, Oryzias latipes, thereby suggesting the deep evolutionary origin of a non-reproductive GnRH system in chordates.
Collapse
Affiliation(s)
- Takehiro G. Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tsubasa Sakai
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Masato Aoyama
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Yuka Kitajima
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yuki Miyamoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Toru Takigawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yutaka Daido
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kentaro Fujiwara
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yasuko Terashima
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yoko Sugiuchi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Giorgio Matassi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Department of Agriculture and Environmental Sciences, University of Udine, Udine, Italy
| | - Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Min Kyun Park
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Honoo Satake
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Motoyuki Tsuda
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
15
|
Paul A, Cai Y, Atwal GS, Huang ZJ. Developmental Coordination of Gene Expression between Synaptic Partners During GABAergic Circuit Assembly in Cerebellar Cortex. Front Neural Circuits 2012; 6:37. [PMID: 22754500 PMCID: PMC3385560 DOI: 10.3389/fncir.2012.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/01/2012] [Indexed: 01/14/2023] Open
Abstract
The assembly of neural circuits involves multiple sequential steps such as the specification of cell-types, their migration to proper brain locations, morphological and physiological differentiation, and the formation and maturation of synaptic connections. This intricate and often prolonged process is guided by elaborate genetic mechanisms that regulate each step. Evidence from numerous systems suggests that each cell-type, once specified, is endowed with a genetic program that unfolds in response to, and is regulated by, extrinsic signals, including cell–cell and synaptic interactions. To a large extent, the execution of this intrinsic program is achieved by the expression of specific sets of genes that support distinct developmental processes. Therefore, a comprehensive analysis of the developmental progression of gene expression in synaptic partners of neurons may provide a basis for exploring the genetic mechanisms regulating circuit assembly. Here we examined the developmental gene expression profiles of well-defined cell-types in a stereotyped microcircuit of the cerebellar cortex. We found that the transcriptomes of Purkinje cell and stellate/basket cells are highly dynamic throughout postnatal development. We revealed “phasic expression” of transcription factors, ion channels, receptors, cell adhesion molecules, gap junction proteins, and identified distinct molecular pathways that might contribute to sequential steps of cerebellar inhibitory circuit formation. We further revealed a correlation between genomic clustering and developmental co-expression of hundreds of transcripts, suggesting the involvement of chromatin level gene regulation during circuit formation.
Collapse
Affiliation(s)
- Anirban Paul
- Cold Spring Harbor Laboratory, Neuroscience Cold Spring Harbor, New York, NY, USA
| | | | | | | |
Collapse
|
16
|
Kobayashi F, Kurihara Y, Nagasaka K, Iida H, Shindo K, Takiyama Y. [A patient with cerebellar ataxia, hypogonadotropic hypogonadism and vitelliform macular dystrophy: Boucher-Neuhäuser syndrome]. Rinsho Shinkeigaku 2010; 50:98-102. [PMID: 20196491 DOI: 10.5692/clinicalneurol.50.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 28-year-old man had experienced non-progressive gait disturbance since early childhood. He was admitted because of hypogonadism and cerebellar ataxia. On admission, bilateral vitelliform macular dystrophy, fixation nystagmus, slurred speech, cerebellar ataxia, decreased tendon reflexes, and pes cavus were present. Higher brain function, auditory function, and olfactory function were not disturbed. A gene abnormality related to known hereditary spinocerebellar degeneration and Kallman syndrome was not observed. Brain MRI demonstrated cerebellar atrophy. ECD-SPECT revealed decreased blood flow in the brain stem and cerebellum. Endocrinological tests indicated that the hypogonadism seemed to be due to a primary pituitary disturbance. This is the second case of Boucher-Neuhäuser syndrome in Japan.
Collapse
Affiliation(s)
- Fumikazu Kobayashi
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
OBJECTIVE Menopausal hot flashes compromise the quality of life for most women. The physiological mechanisms underlying hot flashes remain poorly understood, and the absence of an animal model to investigate hot flashes hinders investigations in this field. METHODS We first developed the sheep as a model to study peripheral skin temperature changes using fever-inducing lipopolysaccharide (LPS; 200 microg/kg) administered to ovary-intact ewes. Because a strong correlation between luteinizing hormone pulses and hot flashes has previously been reported, we then determined whether intravenous gonadotropin-releasing hormone (GnRH; 1 mg), a dose sufficient to elevate cerebrospinal fluid-GnRH concentrations, could modulate ear skin temperature in both ovariectomized and low-estrogen-replaced ovariectomized ewes. RESULTS Some ewes responded to LPS in heart rate and abdominal temperature, but there was no significant effect on either parameter or cheek temperature for the group. In contrast, LPS injection caused a significant (P < 0.001) change in skin temperature at the ear. Ear temperature showed no significant change in response to GnRH relative to control injections in both ovariectomized and low estrogen ewes. CONCLUSIONS We developed a model animal system in the ewe that can accurately detect small changes in peripheral skin temperature. This system has the potential to be extremely useful in future studies investigating the pathology of hot flashes and holds several advantages over previous model systems developed for this research. GnRH per se does not seem to be involved in thermoregulatory events.
Collapse
|
18
|
Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. THE CEREBELLUM 2009; 8:137-54. [PMID: 19669387 DOI: 10.1007/s12311-009-0127-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebellar ataxias represent a group of disabling neurological disorders. Our understanding of the pathogenesis of cerebellar ataxias is continuously expanding. A considerable number of laboratory animals with neurological mutations have been reported and numerous relevant animal models mimicking the phenotype of cerebellar ataxias are becoming available. These models greatly help dissecting the numerous mechanisms of cerebellar dysfunction, a major step for the assessment of therapeutics targeting a given deleterious pathway and for the screening of old or newly synthesized chemical compounds. Nevertheless, differences between animal models and human disorders should not be overlooked and difficulties in terms of characterization should not be occulted. The identification of the mutations of many hereditary ataxias, the development of valuable animal models, and the recent identifications of the molecular mechanisms underlying cerebellar disorders represent a combination of key factors for the development of anti-ataxic innovative therapies. It is anticipated that the twenty-first century will be the century of effective therapies in the field of cerebellar ataxias. The animal models are a cornerstone to reach this goal.
Collapse
|
19
|
Quintanar JL, Salinas E, González R. Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats. Neurosci Lett 2009; 461:21-4. [PMID: 19539704 DOI: 10.1016/j.neulet.2009.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/03/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
Abstract
Mammalian gonadotropin-releasing hormone (GnRH) and its receptor have been found in the neuroendocrine reproductive axis. However, they can be localized in other extra-pituitary tissues as well including the central nervous system. The present study reports the expression of GnRH receptor and its mRNA in spinal cord neurons of rat embryos and adult rats, using immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR). Immunohistochemistry showed that the spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor. The study of GnRH receptor mRNAs revealed that both cultured spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor mRNA. Additional in vitro experiments showed that the expression of GnRH receptor mRNA was less in the spinal cord neurons exposed to GnRH compared to unexposed ones. These results raise the possibility that GnRH may play other roles independently from its participation in reproductive function.
Collapse
Affiliation(s)
- J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940 C.P. 20100, Aguascalientes, Mexico.
| | | | | |
Collapse
|
20
|
Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 2009; 21:282-92. [PMID: 19187469 PMCID: PMC2669307 DOI: 10.1111/j.1365-2826.2009.01842.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Collapse
Affiliation(s)
- D C Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Skinner DC, Lang AL, Pahl L, Wang Q. Substance P-immunoreactive cells in the ovine pars tuberalis. Neuroendocrinology 2009; 89:3-8. [PMID: 18974628 PMCID: PMC3141346 DOI: 10.1159/000167797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 08/24/2008] [Indexed: 11/19/2022]
Abstract
The pars tuberalis (PT) is a distinct subdivision of the anterior pituitary gland that plays a central role in regulating seasonal prolactin release. In sheep, there is compelling evidence that seasonal changes in light, transformed into a melatonin signal, are interpreted by the PT to modulate the release of a factor which affects prolactin release. The identity of this factor(s) is unknown but has been preemptively called 'tuberalin'. In the present study, we report on an initial immunocytochemical investigation where we have identified that many ovine PT cells are immunoreactive for the tachykinin substance P (SP). Few cells in the pars distalis immunoreact for SP. The SP-immunoreactive cells did not colocalize with beta-luteinizing hormone. RT-PCR confirmed the presence of preprotachykinin A mRNA in the PT. We hypothesize that SP, and possibly other preprotachykinin A-derived tachykinins, may play a role in the seasonal regulation of prolactin secretion in sheep.
Collapse
Affiliation(s)
- Donal C Skinner
- Department of Zoology and Physiology, and Neurobiology Program, University of Wyoming, Laramie, Wyo. 82071, USA.
| | | | | | | |
Collapse
|