1
|
Szasz-Green T, Shores K, Vanga V, Zacharias L, Lawton AK, Dapper AL. Comparative Phylogenetics Reveal Clade-specific Drivers of Recombination Rate Evolution Across Vertebrates. Mol Biol Evol 2025; 42:msaf100. [PMID: 40331240 PMCID: PMC12100477 DOI: 10.1093/molbev/msaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Meiotic recombination is an integral cellular process, required for the production of viable gametes. Recombination rate is a fundamental genomic parameter, modulating genomic responses to selection. Our increasingly detailed understanding of its molecular underpinnings raises the prospect that we can gain insight into trait divergence by examining the molecular evolution of recombination genes from a pathway perspective, as in mammals, where protein-coding changes in later stages of the recombination pathway are connected to divergence in intra-clade recombination rate. Here, we leverage increased availability of avian and teleost genomes to reconstruct the evolution of the recombination pathway across two additional vertebrate clades: birds, which have higher and more variable rates of recombination and similar divergence times to mammals, and teleost fish, which have much deeper divergence times. Rates of molecular evolution of recombination genes are highly correlated between vertebrate clades and significantly elevated compared to control panels, suggesting that they experience similar selective pressures. Avian recombination genes are significantly more likely to exhibit signatures of positive selection than other clades, unrestricted to later stages of the pathway. Signatures of positive selection in genes linked to recombination rate variation in mammalian populations and those with signatures of positive selection across the avian phylogeny are highly correlated. In contrast, teleost fish recombination genes have significantly less evidence of positive selection despite high intra-clade recombination rate variability. Gaining clade-specific understanding of patterns of variation in recombination genes can elucidate drivers of recombination rate and thus, factors influencing genetic diversity, selection efficacy, and species divergence.
Collapse
Affiliation(s)
- Taylor Szasz-Green
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Katherynne Shores
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Vineel Vanga
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Luke Zacharias
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrew K Lawton
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Wireko AA, Ben-Jaafar A, Kong JSH, Mannan KM, Sanker V, Rosenke SL, Boye ANA, Nkrumah-Boateng PA, Poornaselvan J, Shah MH, Abdul-Rahman T, Atallah O. Sonic hedgehog signalling pathway in CNS tumours: its role and therapeutic implications. Mol Brain 2024; 17:83. [PMID: 39568072 PMCID: PMC11580395 DOI: 10.1186/s13041-024-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signalling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH pathway biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved the way for a better understanding of pathway dynamics and the development of more precise therapeutic interventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongoing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration of molecular insights with advanced technologies and clinical expertise holds great promise for developing more effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
3
|
P M MM, Farheen S, Sharma RM, Shahi MH. Differential regulation of Shh-Gli1 cell signalling pathway on homeodomain transcription factors Nkx2.2 and Pax6 during the medulloblastoma genesis. Mol Biol Rep 2024; 51:1096. [PMID: 39460795 DOI: 10.1007/s11033-024-10026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Medulloblastoma is a pediatric malignant brain tumor associated with an aberrantly activated Shh pathway. The Shh pathway acts via downstream effector molecules, including Pax6 and Nkx2.2. Transcription factor Nkx2.2 plays crucial roles during early embryonic patterning and development. In this study, we aimed to determine the role of transcription factor Nkx2.2 in medulloblastoma development. METHODS AND RESULTS Here, whole transcriptome levels and suppressive effect of transcription factor Nkx2.2 on Pax6 were assessed using one normal human brain and three surgically removed medulloblastoma samples. Additionally, protein levels of Shh, Gli1, Pax6, and Nkx2.2 and co-expression patterns of Pax6 and Nkx2.2 were assessed in 14 medulloblastoma samples. Quantitative reverse transcription-polymerase chain reaction revealed the suppressive effect of Nkx2.2 on Pax6. D283 cells were treated with the Shh pathway activator, SAG, and Gli1 inhibitor, GANT61, which revealed Pax6-Nkx2.2 regulation. Increased cell proliferation was observed in D283 cells transfected with Nkx2.2 small interfering RNA. Moreover, mRNA expression levels of Shh, Pax6, Nkx2.2, and Gli1 were assessed in Daoy cells transfected with Gli1 and Nkx2.2 small interfering RNAs using quantitative reverse transcription-polymerase chain reaction. Pax6 levels were increased in Nkx2.2 siRNA-transfected cells. CONCLUSIONS Aberrantly activated Shh pathway leads to the ectopic expression of Pax6 in granular cells, inducing medulloblastoma development. Moreover, Nkx2.2 transcription factor acts as a suppressor of Pax6 during medulloblastoma development and maintenance. Overall, this study provides novel insights for the development of effective therapeutic strategies and suggests potential targets for medulloblastoma.
Collapse
Affiliation(s)
- Mubeena Mariyath P M
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Raman Mohan Sharma
- Department of Neurosurgery, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Lin IH, Li YR, Chang CH, Cheng YW, Wang YT, Tsai YS, Lin PY, Kao CH, Su TY, Hsu CS, Tung CY, Hsu PH, Ayrault O, Chung BC, Tsai JW, Wang WJ. Regulation of primary cilia disassembly through HUWE1-mediated TTBK2 degradation plays a crucial role in cerebellar development and medulloblastoma growth. Cell Death Differ 2024; 31:1349-1361. [PMID: 38879724 PMCID: PMC11445238 DOI: 10.1038/s41418-024-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 10/03/2024] Open
Abstract
Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yue-Ru Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Wen Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Ting Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Yi Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Chien-Han Kao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yu Su
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Sin Hsu
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Won-Jing Wang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
5
|
Shiohama T, Uchikawa H, Nitta N, Takatani T, Matsuda S, Ortug A, Takahashi E, Sawada D, Shimizu E, Fujii K, Aoki I, Hamada H. Brain morphological analysis in mice with hyperactivation of the hedgehog signaling pathway. Front Neurosci 2024; 18:1449673. [PMID: 39290714 PMCID: PMC11405378 DOI: 10.3389/fnins.2024.1449673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hedgehog signaling is a highly conserved pathway that plays pivotal roles in morphogenesis, tumorigenesis, osteogenesis, and wound healing. Previous investigations in patients with Gorlin syndrome found low harm avoidance traits, and increased volumes in the cerebrum, cerebellum, and cerebral ventricles, suggesting the association between brain morphology and the constitutive hyperactivation of hedgehog signaling, while the changes of regional brain volumes in upregulated hedgehog signaling pathway remains unclear so far. Herein, we investigated comprehensive brain regional volumes using quantitative structural brain MRI, and identified increased volumes of amygdala, striatum, and pallidum on the global segmentation, and increased volumes of the lateral and medial parts of the central nucleus of the amygdala on the detail segmentation in Ptch heterozygous deletion mice. Our data may enhance comprehension of the association between brain morphogenic changes and hyperactivity in hedgehog signaling.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhiro Nitta
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
- Central Institute for Experimental Medicine and Life Science Bio Imaging Center, Yokohama, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Tokyo, Japan
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatrics, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Giovannini D, Antonelli F, Casciati A, De Angelis C, Denise Astorino M, Bazzano G, Fratini E, Ampollini A, Vadrucci M, Cisbani E, Nenzi P, Picardi L, Saran A, Marino C, Mancuso M, Ronsivalle C, Pazzaglia S. Comparing the effects of irradiation with protons or photons on neonatal mouse brain: Apoptosis, oncogenesis and hippocampal alterations. Radiother Oncol 2024; 195:110267. [PMID: 38614282 DOI: 10.1016/j.radonc.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND PURPOSE Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.
Collapse
Affiliation(s)
- Daniela Giovannini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Francesca Antonelli
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Arianna Casciati
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | | | - Maria Denise Astorino
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Giulia Bazzano
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Emiliano Fratini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Alessandro Ampollini
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Monia Vadrucci
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy; Italian Space Agency, Science and Research Directorate, Via del Politecnico 00133, Rome, Italy
| | | | - Paolo Nenzi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Luigi Picardi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Anna Saran
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Carmela Marino
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Concetta Ronsivalle
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Simonetta Pazzaglia
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy.
| |
Collapse
|
8
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
10
|
Ghasemi DR, Okonechnikov K, Rademacher A, Tirier S, Maass KK, Schumacher H, Joshi P, Gold MP, Sundheimer J, Statz B, Rifaioglu AS, Bauer K, Schumacher S, Bortolomeazzi M, Giangaspero F, Ernst KJ, Clifford SC, Saez-Rodriguez J, Jones DTW, Kawauchi D, Fraenkel E, Mallm JP, Rippe K, Korshunov A, Pfister SM, Pajtler KW. Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage. Nat Commun 2024; 15:269. [PMID: 38191550 PMCID: PMC10774372 DOI: 10.1038/s41467-023-44117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.
Collapse
Affiliation(s)
- David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Resolve BioSciences GmbH, Monheim am Rhein, Germany
| | - Kendra K Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanna Schumacher
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Julia Sundheimer
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmet S Rifaioglu
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Department of Electrical and Electronics Engineering, İskenderun Technical University, Hatay, Turkey
| | - Katharina Bauer
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Kati J Ernst
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
11
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
12
|
Li Y, Wang H, Sun B, Su G, Cang Y, Zhao L, Zhao S, Li Y, Mao B, Ma P. Smurf1 and Smurf2 mediated polyubiquitination and degradation of RNF220 suppresses Shh-group medulloblastoma. Cell Death Dis 2023; 14:494. [PMID: 37537194 PMCID: PMC10400574 DOI: 10.1038/s41419-023-06025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Sonic hedgehog (Shh)-group medulloblastoma (MB) (Shh-MB) encompasses a clinically and molecularly distinct group of cancers originating from the developing nervous system with aberrant high Shh signaling as a causative driver. We recently reported that RNF220 is required for sustained high Shh signaling during Shh-MB progression; however, how high RNF220 expression is achieved in Shh-MB is still unclear. In this study, we found that the ubiquitin E3 ligases Smurf1 and Smurf2 interact with RNF220, and target it for polyubiquitination and degradation. In MB cells, knockdown or overexpression of Smurf1 or Smurf2 promotes or inhibits cell proliferation, colony formation and xenograft growth, respectively, by controlling RNF220 protein levels, and thus modulating Shh signaling. Furthermore, in clinical human MB samples, the protein levels of Smurf1 or Smurf2 were negatively correlated with those of RNF220 or GAB1, a Shh-MB marker. Overall, this study highlights the importance of the Smurf1- and Smurf2-RNF220 axes during the pathogenesis of Shh-MB and provides new therapeutic targets for Shh-MB treatment.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650203, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bin Sun
- Laboratory of Animal Tumour Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guifeng Su
- Key Laboratory of Medicinal Chemistry for Natural Resource, School of Pharmacy, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Yu Cang
- Department of Urology, the Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ling Zhao
- Animal Center of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuhua Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, School of Pharmacy, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China.
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese of Academy of Sciences, Kunming, 650201, China.
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
13
|
Funakoshi Y, Sugihara Y, Uneda A, Nakashima T, Suzuki H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci 2023; 114:741-749. [PMID: 36520034 PMCID: PMC9986075 DOI: 10.1111/cas.15691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma is the most common pediatric malignant brain tumor composed of four molecular subgroups. Recent intensive genomics has greatly contributed to our understanding of medulloblastoma pathogenesis. Sequencing studies identified novel mutations involved in the cyclic AMP-dependent pathway or RNA processing in the Sonic Hedgehog (SHH) subgroup, and core-binding factor subunit alpha (CBFA) complex in the group 4 subgroup. Likewise, single-cell sequencing provided detailed insights into the cell of origin associated with brain development. In this review, we will summarize recent findings by sequencing analyses for medulloblastoma.
Collapse
Affiliation(s)
- Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Yuriko Sugihara
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| |
Collapse
|
14
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 PMCID: PMC11415171 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
- Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5‑year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non‑canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p‑STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl‑xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non‑coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non‑coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
16
|
Junga A, Siņicins I, Pētersons A, Pilmane M. Evaluation of PGP 9.5, NGFR, TGFβ1, FGFR1, MMP-2, AT2R2, SHH, and TUNEL in Primary Obstructive Megaureter Tissue. J Histochem Cytochem 2022; 70:139-149. [PMID: 34915763 PMCID: PMC8777373 DOI: 10.1369/00221554211063515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary obstructive megaureter (POM) morphogenesis is not fully known. The aim of the study was to evaluate the appearance of different factors that might take part in the pathogenesis of POM. Megaureter tissues of 14 children were stained with hematoxylin and eosin as well as with immunohistochemistry for protein gene product 9.5, nerve growth factor receptor, transforming growth factor beta 1 (TGFβ1), fibroblast growth factor receptor 1 (FGFR1), matrix metalloproteinase 2 (MMP-2), angiotensin 2 receptor type 2, and sonic hedgehog (SHH) protein. Apoptosis was detected by terminal dUTP nick-end labeling reaction. POM tissues revealed transitional epithelium with scattered vacuolization, submucosa with inflammatory cells, and focally vacuolized and chaotically organized muscle layers. Apoptosis, appearance of MMP-2, FGFR1, and SHH prevailed, but TGFβ1 positive cell number was lower in patients. Correlation between MMP-2 in epithelium and endothelium, FGFR1 and MMP-2 in epithelium, and TGFβ1 in epithelium and connective tissue in patients was detected. POM morphopathogenesis involves an apoptotic cell death of epithelium and smooth muscle as well as tissue degradation in epithelium and connective tissue of the ureter wall. The decrease of tissue growth through diminished TGFβ1 expression and stimulation of FGFR1 and MMP-2 suggests a disbalance of tissue remodelation in the megaureter wall.
Collapse
Affiliation(s)
- Anna Junga
- Anna Junga, Institute of Anatomy and
Anthropology, Riga Stradins University, Kronvalda bulv 9, Riga LV-1010, Latvia.
E-mail:
| | - Ivo Siņicins
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| | - Aigars Pētersons
- Department of Children Surgery, Riga Stradins
University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| |
Collapse
|
17
|
Li Y, Yang C, Wang H, Zhao L, Kong Q, Cang Y, Zhao S, Lv L, Li Y, Mao B, Ma P. Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression. J Mol Cell Biol 2022; 14:6510822. [PMID: 35040952 PMCID: PMC8982406 DOI: 10.1093/jmcb/mjab082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential for the proliferation of cerebellar granule neuron progenitors (CGNPs), and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma (MB). During vertebrate neural development, RNF220, a ubiquitin E3 ligase, is involved in spinal cord patterning by modulating the subcellular location of glioma-associated oncogene homologs (Glis) through ubiquitination. RNF220 is also required for full activation of Shh signaling during cerebellum development in an epigenetic manner through targeting embryonic ectoderm development. ZC4H2 was reported to be involved in spinal cord patterning by acting as an RNF220 stabilizer. Here, we provided evidence to show that ZC4H2 is also required for full activation of Shh signaling in CGNP and MB progression by stabilizing RNF220. In addition, we found that the ubiquitin E3 ligase RING finger LIM domain-binding protein (RLIM) is responsible for ZC4H2 stabilization via direct ubiquitination, through which RNF220 is also thus stabilized. RLIM is a direct target of Shh signaling and is also required for full activation of Shh signaling in CGNP and MB cell proliferation. We further provided clinical evidence to show that the RLIM‒ZC4H2‒RNF220 cascade is involved in Shh-group MB progression. Disease-causative human RLIM and ZC4H2 mutations affect their interaction and regulation. Therefore, our study sheds light on the regulation of Shh signaling during cerebellar development and MB progression and provides insights into neural disorders caused by RLIM or ZC4H2 mutations.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Chencheng Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Ling Zhao
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qinghua Kong
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Cang
- Department of Urology, the Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Shuhua Zhao
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Longbao Lv
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yan Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
18
|
De Stefano I, Leonardi S, Casciati A, Pasquali E, Giardullo P, Antonelli F, Novelli F, Babini G, Tanori M, Tanno B, Saran A, Mancusoa M, Pazzaglia S. Contribution of Genetic Background to the Radiation Risk for Cancer and Non-Cancer Diseases in Ptch1+/- Mice. Radiat Res 2022; 197:43-56. [PMID: 33857285 DOI: 10.1667/rade-20-00247.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Experimental mouse studies are important to gain a comprehensive, quantitative and mechanistic understanding of the biological factors that modify individual risk of radiation-induced health effects, including age at exposure, dose, dose rate, organ/tissue specificity and genetic factors. In this study, neonatal Ptch1+/- mice bred on CD1 and C57Bl/6 background received whole-body irradiation at postnatal day 2. This time point represents a critical phase in the development of the eye lens, cerebellum and dentate gyrus (DG), when they are also particularly susceptible to radiation effects. Irradiation was performed with γ rays (60Co) at doses of 0.5, 1 and 2 Gy, delivered at 0.3 Gy/min or 0.063 Gy/min. Wild-type and mutant mice were monitored for survival, lens opacity, medulloblastoma (MB) and neurogenesis defects. We identified an inverse genetic background-driven relationship between the radiosensitivity to induction of lens opacity and MB and that to neurogenesis deficit in Ptch1+/- mutants. In fact, high incidence of radiation-induced cataract and MB were observed in Ptch1+/-/CD1 mutants that instead showed no consequence of radiation exposure on neurogenesis. On the contrary, no induction of radiogenic cataract and MB was reported in Ptch1+/-/C57Bl/6 mice that were instead susceptible to induction of neurogenesis defects. Compared to Ptch1+/-/CD1, the cerebellum of Ptch1+/-/C57Bl/6 mice showed increased radiosensitivity to apoptosis, suggesting that differences in processing radiation-induced DNA damage may underlie the opposite strain-related radiosensitivity to cancer and non-cancer pathologies. Altogether, our results showed lack of dose-rate-related effects and marked influence of genetic background on the radiosensitivity of Ptch1+/-mice, supporting a major contribution of individual sensitivity to radiation risk in the population.
Collapse
Affiliation(s)
- I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancusoa
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
19
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
20
|
Osuna-Marco MP, López-Barahona M, López-Ibor B, Tejera ÁM. Ten Reasons Why People With Down Syndrome are Protected From the Development of Most Solid Tumors -A Review. Front Genet 2021; 12:749480. [PMID: 34804119 PMCID: PMC8602698 DOI: 10.3389/fgene.2021.749480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
People with Down syndrome have unique characteristics as a result of the presence of an extra chromosome 21. Regarding cancer, they present a unique pattern of tumors, which has not been fully explained to date. Globally, people with Down syndrome have a similar lifetime risk of developing cancer compared to the general population. However, they have a very increased risk of developing certain tumors (e.g., acute leukemia, germ cell tumors, testicular tumors and retinoblastoma) and, on the contrary, there are some other tumors which appear only exceptionally in this syndrome (e.g., breast cancer, prostate cancer, medulloblastoma, neuroblastoma and Wilms tumor). Various hypotheses have been developed to explain this situation. The genetic imbalance secondary to the presence of an extra chromosome 21 has molecular consequences at several levels, not only in chromosome 21 but also throughout the genome. In this review, we discuss the different proposed mechanisms that protect individuals with trisomy 21 from developing solid tumors: genetic dosage effect, tumor suppressor genes overexpression, disturbed metabolism, impaired neurogenesis and angiogenesis, increased apoptosis, immune system dysregulation, epigenetic aberrations and the effect of different microRNAs, among others. More research into the molecular pathways involved in this unique pattern of malignancies is still needed.
Collapse
Affiliation(s)
- Marta Pilar Osuna-Marco
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain.,Pediatric Oncology and Hematology Unit, HM Hospitals, Madrid, Spain
| | | | | | - Águeda Mercedes Tejera
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
21
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
22
|
The Hedgehog Signaling Pathway is Expressed in the Adult Mouse Hypothalamus and Modulated by Fasting. eNeuro 2021; 8:ENEURO.0276-21.2021. [PMID: 34535504 PMCID: PMC8482854 DOI: 10.1523/eneuro.0276-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
The hedgehog signaling pathway is best known for its role in developmental patterning of the neural tube and limb bud. More recently, hedgehog signaling has been recognized for its roles in growth of adult tissues and maintenance of progenitor cell niches. However, the role of hedgehog signaling in fully differentiated cells like neurons in the adult brain is less clear. In mammals, coordination of hedgehog pathway activity relies on primary cilia and patients with ciliopathies such as Bardet–Biedl and Alström syndrome exhibit clinical features clearly attributable to errant hedgehog such as polydactyly. However, these ciliopathies also present with features not clearly associated with hedgehog signaling such as hyperphagia-associated obesity. How hedgehog signaling may contribute to feeding behavior is complex and unclear, but cilia are critical for proper energy homeostasis. Here, we provide a detailed analysis of the expression of core components of the hedgehog signaling pathway in the adult mouse hypothalamus with an emphasis on feeding centers. We show that hedgehog pathway genes continue to be expressed in differentiated neurons important for the regulation of feeding behavior. Furthermore, we demonstrate for the first time that pathway activity is regulated at the transcriptional level by fasting. These data suggest that hedgehog signaling is involved in the proper functioning of brain regions that regulate feeding behavior and that hedgehog pathway dysfunction may play a role in the obesity observed in certain ciliopathies.
Collapse
|
23
|
Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis. Biomedicines 2021; 9:biomedicines9080861. [PMID: 34440066 PMCID: PMC8389629 DOI: 10.3390/biomedicines9080861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Blunt-force traumatic brain injury (TBI) affects an increasing number of people worldwide as the range of injury severity and heterogeneity of injury pathologies have been recognized. Most current damage models utilize non-regenerative organisms, less common TBI mechanisms (penetrating, chemical, blast), and are limited in scalability of injury severity. We describe a scalable blunt-force TBI model that exhibits a wide range of human clinical pathologies and allows for the study of both injury pathology/progression and mechanisms of regenerative recovery. We modified the Marmarou weight drop model for adult zebrafish, which delivers a scalable injury spanning mild, moderate, and severe phenotypes. Following injury, zebrafish display a wide range of severity-dependent, injury-induced pathologies, including seizures, blood–brain barrier disruption, neuroinflammation, edema, vascular injury, decreased recovery rate, neuronal cell death, sensorimotor difficulties, and cognitive deficits. Injury-induced pathologies rapidly dissipate 4–7 days post-injury as robust cell proliferation is observed across the neuroaxis. In the cerebellum, proliferating nestin:GFP-positive cells originated from the cerebellar crest by 60 h post-injury, which then infiltrated into the granule cell layer and differentiated into neurons. Shh pathway genes increased in expression shortly following injury. Injection of the Shh agonist purmorphamine in undamaged fish induced a significant proliferative response, while the proliferative response was inhibited in injured fish treated with cyclopamine, a Shh antagonist. Collectively, these data demonstrate that a scalable blunt-force TBI to adult zebrafish results in many pathologies similar to human TBI, followed by recovery, and neuronal regeneration in a Shh-dependent manner.
Collapse
|
24
|
Choi JM, Acharya R, Marasini S, Narayan B, Lee KW, Hwang WS, Chang DY, Kim SS, Suh-Kim H. Cell Type-specific Knockout with Gli1-mediated Cre Recombination in the Developing Cerebellum. Exp Neurobiol 2021; 30:203-212. [PMID: 34230222 PMCID: PMC8278141 DOI: 10.5607/en21017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP-flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.
Collapse
Affiliation(s)
- Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Bashyal Narayan
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Kwang-Wook Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| |
Collapse
|
25
|
Ohgami N, Iizuka A, Hirai H, Yajima I, Iida M, Shimada A, Tsuzuki T, Jijiwa M, Asai N, Takahashi M, Kato M. Loss-of-function mutation of c-Ret causes cerebellar hypoplasia in mice with Hirschsprung disease and Down's syndrome. J Biol Chem 2021; 296:100389. [PMID: 33561442 PMCID: PMC7950328 DOI: 10.1016/j.jbc.2021.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.
Collapse
Affiliation(s)
- Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Akira Iizuka
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
26
|
Ma P, An T, Zhu L, Zhang L, Wang H, Ren B, Sun B, Zhou X, Li Y, Mao B. RNF220 is required for cerebellum development and regulates medulloblastoma progression through epigenetic modulation of Shh signaling. Development 2020; 147:dev.188078. [PMID: 32376680 DOI: 10.1242/dev.188078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule neuron progenitors (CGNPs) and its mis-regulation is linked to various disorders, including the cerebellar cancer medulloblastoma (MB). We recently identified RNF220, a ubiquitin E3 ligase promoting K63-linked polyubiquitylation and nuclear exportation of Gli transcription factors, as an Shh/Gli regulator involved in ventral neural patterning. Here, we report that RNF220 is required for the proliferation of CGNPs and Daoy cells (an Shh-grouped MB cell line), working as a positive regulator of Shh signaling. Mechanistic investigation demonstrated that RNF220 promotes Shh target gene expression by targeting the PRC2 component EED, and alters levels of epigenetic modification marks on Shh target promoters. We provided evidence that RNF220+/-; Ptch1+/- mice showed lower spontaneous MB occurrence compared with Ptch1+/- mice. Furthermore, in human clinical MB samples, RNF220 expression correlated well with that of GAB1, an Shh-group MB marker. Our findings provide new insights into the epigenetic regulation of Shh signaling and identify RNF220 as a potential new diagnostic marker and therapeutic target for Shh-group MB.
Collapse
Affiliation(s)
- Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,School of Pharmaceutical Sciences, QILU university of Technology, Jinan 250353, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Longlong Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Biyu Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Institute of Health Sciences, Anhui University, Hefei 230601, China
| | - Bin Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Xia Zhou
- Institute of Health Sciences, Anhui University, Hefei 230601, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
27
|
Frasca A, Spiombi E, Palmieri M, Albizzati E, Valente MM, Bergo A, Leva B, Kilstrup‐Nielsen C, Bianchi F, Di Carlo V, Di Cunto F, Landsberger N. MECP2 mutations affect ciliogenesis: a novel perspective for Rett syndrome and related disorders. EMBO Mol Med 2020; 12:e10270. [PMID: 32383329 PMCID: PMC7278541 DOI: 10.15252/emmm.201910270] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Michela Palmieri
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Albizzati
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Maria Maddalena Valente
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Anna Bergo
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Barbara Leva
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | | | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri OttolenghiOrbassanoItaly
- Department of NeuroscienceUniversity of TorinoTorinoItaly
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
28
|
Singh S, Adam M, Matkar PN, Bugyei-Twum A, Desjardins JF, Chen HH, Nguyen H, Bazinet H, Michels D, Liu Z, Mebrahtu E, Esene L, Joseph J, Ehsan M, Qadura M, Connelly KA, Leong-Poi H, Singh KK. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep 2020; 10:4466. [PMID: 32161282 PMCID: PMC7066128 DOI: 10.1038/s41598-020-61292-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Intraflagellar transport protein 88 (Ift88) is required for ciliogenesis and shear stress-induced dissolution of cilia in embryonic endothelial cells coincides with endothelial-to-mesenchymal transition (EndMT) in the developing heart. EndMT is also suggested to underlie heart and lung fibrosis, however, the mechanism linking endothelial Ift88, its effect on EndMT and organ fibrosis remains mainly unexplored. We silenced Ift88 in endothelial cells (ECs) in vitro and generated endothelial cell-specific Ift88-knockout mice (Ift88endo) in vivo to evaluate EndMT and its contribution towards organ fibrosis, respectively. Ift88-silencing in ECs led to mesenchymal cells-like changes in endothelial cells. The expression level of the endothelial markers (CD31, Tie-2 and VE-cadherin) were significantly reduced with a concomitant increase in the expression level of mesenchymal markers (αSMA, N-Cadherin and FSP-1) in Ift88-silenced ECs. Increased EndMT was associated with increased expression of profibrotic Collagen I expression and increased proliferation in Ift88-silenced ECs. Loss of Ift88 in ECs was further associated with increased expression of Sonic Hedgehog signaling effectors. In vivo, endothelial cells isolated from the heart and lung of Ift88endo mice demonstrated loss of Ift88 expression in the endothelium. The Ift88endo mice were born in expected Mendelian ratios without any adverse cardiac phenotypes at baseline. Cardiac and pulmonary endothelial cells isolated from the Ift88endo mice demonstrated signs of EndMT and bleomycin treatment exacerbated pulmonary fibrosis in Ift88endo mice. Pressure overload stress in the form of aortic banding did not reveal a significant difference in cardiac fibrosis between Ift88endo mice and control mice. Our findings demonstrate a novel association between endothelial cilia with EndMT and cell proliferation and also show that loss of endothelial cilia-associated increase in EndMT contributes specifically towards pulmonary fibrosis.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mohamed Adam
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Antoinette Bugyei-Twum
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Jean-Francois Desjardins
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Hao H Chen
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Hien Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Hannah Bazinet
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David Michels
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Zongyi Liu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Elizabeth Mebrahtu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Lillian Esene
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jameela Joseph
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Department of Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mehroz Ehsan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mohammad Qadura
- Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada. .,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Departments of Surgery, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
29
|
Glial Factors Regulating White Matter Development and Pathologies of the Cerebellum. Neurochem Res 2020; 45:643-655. [PMID: 31974933 PMCID: PMC7058568 DOI: 10.1007/s11064-020-02961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be targeted to molecular pathways also playing a role in development and disease of the cerebellum.
Collapse
|
30
|
Spiombi E, Angrisani A, Fonte S, De Feudis G, Fabretti F, Cucchi D, Izzo M, Infante P, Miele E, Po A, Di Magno L, Magliozzi R, Guardavaccaro D, Maroder M, Canettieri G, Giannini G, Ferretti E, Gulino A, Di Marcotullio L, Moretti M, De Smaele E. KCTD15 inhibits the Hedgehog pathway in Medulloblastoma cells by increasing protein levels of the oncosuppressor KCASH2. Oncogenesis 2019; 8:64. [PMID: 31685809 PMCID: PMC6828672 DOI: 10.1038/s41389-019-0175-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumor. About 30% of all MBs belong to the I molecular subgroup, characterized by constitutive activation of the Sonic Hedgehog (Hh) pathway. The Hh pathway is involved in several fundamental processes during embryogenesis and in adult life and its deregulation may lead to cerebellar tumorigenesis. Indeed, Hh activity must be maintained via a complex network of activating and repressor signals. One of these repressor signals is KCASH2, belonging to the KCASH family of protein, which acts as negative regulators of the Hedgehog signaling pathway during cerebellar development and differentiation. KCASH2 leads HDAC1 to degradation, allowing hyperacetylation and inhibition of transcriptional activity of Gli1, the main effector of the Hh pathway. In turn, the KCASH2 loss leads to persistent Hh activity and eventually tumorigenesis. In order to better characterize the physiologic role and modulation mechanisms of KCASH2, we have searched through a proteomic approach for new KCASH2 interactors, identifying Potassium Channel Tetramerization Domain Containing 15 (KCTD15). KCTD15 is able to directly interact with KCASH2, through its BTB/POZ domain. This interaction leads to increase KCASH2 stability which implies a reduction of the Hh pathway activity and a reduction of Hh-dependent MB cells proliferation. Here we report the identification of KCTD15 as a novel player in the complex network of regulatory proteins, which modulate Hh pathway, this could be a promising new target for therapeutic approach against MB.
Collapse
Affiliation(s)
- Eleonora Spiombi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090, Segrate, Milan, Italy
| | - Annapaola Angrisani
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Simone Fonte
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppina De Feudis
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Barts Cancer Institute, Queen Mary University of London, Centre for Molecular Oncology, John Vane Science Center, London, EC1M 6BQ, UK
| | - Mariapaola Izzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Evelina Miele
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | | | | | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| |
Collapse
|
31
|
Robinson MH, Maximov V, Lallani S, Farooq H, Taylor MD, Read RD, Kenney AM. Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. Sci Rep 2019; 9:13611. [PMID: 31541170 PMCID: PMC6754407 DOI: 10.1038/s41598-019-50088-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Medulloblastoma is a malignant pediatric tumor that arises from neural progenitors in the cerebellum. Despite a five-year survival rate of ~70%, nearly all patients incur adverse side effects from current treatment strategies that drastically impact quality of life. Roughly one-third of medulloblastoma are driven by aberrant activation of the Sonic Hedgehog (SHH) signaling pathway. However, the scarcity of genetic mutations in medulloblastoma has led to investigation of other mechanisms contributing to cancer pathogenicity including epigenetic regulation of gene expression. Here, we show that Helicase, Lymphoid Specific (HELLS), a chromatin remodeler with epigenetic functions including DNA methylation and histone modification, is induced by Sonic Hedgehog (SHH) in SHH-dependent cerebellar progenitor cells and the developing murine cerebella. HELLS is also up-regulated in mouse and human SHH medulloblastoma. Others have shown that HELLS activity generally results in a repressive chromatin state. Our results demonstrate that increased expression of HELLS in our experimental systems is regulated by the oncogenic transcriptional regulator YAP1 downstream of Smoothened, the positive transducer of SHH signaling. Elucidation of HELLS as one of the downstream effectors of the SHH pathway may lead to novel targets for precision therapeutics with the promise of better outcomes for SHH medulloblastoma patients.
Collapse
Affiliation(s)
- M Hope Robinson
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA
- Cancer Biology Graduate Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Victor Maximov
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Shoeb Lallani
- Department of Pharmacology, Emory University, Atlanta, GA, 30322, USA
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Renee D Read
- Department of Pharmacology, Emory University, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Shiraishi RD, Miyashita S, Yamashita M, Adachi T, Shimoda MM, Owa T, Hoshino M. Expression of transcription factors and signaling molecules in the cerebellar granule cell development. Gene Expr Patterns 2019; 34:119068. [PMID: 31437514 DOI: 10.1016/j.gep.2019.119068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/14/2019] [Indexed: 01/16/2023]
Abstract
Cerebellar granule cell precursors (GCPs) and granule cells (GCs) constitute a good model system to investigate proliferation of neural precursors and differentiation of neurons. During development, GCPs proliferate in the outer external granule cell layer (outer EGL) and then exit the cell cycle in the inner EGL to become GCs, which inwardly migrate to the inner granule cell layer (IGL). Misregulation of GCP proliferation or GC differentiation leads to maldevelopment of the cerebellum and the formation of a cerebellar tumor, medulloblastoma. Despite many efforts in this field, the mechanisms underlying GC development remain elusive. In this study, we performed detailed immunostaining in the developing cerebellum, with particular focus on GCPs and GCs, looking at several transcription factors, signaling molecules, cell cycle regulators, some of which are known to regulate neural development. Interestingly, we found distinct distribution patterns of certain proteins within the outer and inner EGL, suggesting the existence of subpopulations of GCPs and GCs in those layers. This study provides a basis for future studies on the cerebellar GC development and medulloblastoma.
Collapse
Affiliation(s)
- Ryo D Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, 113- 8510, Japan
| | - Sathoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, 113- 8510, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480, Japan
| | - Mana M Shimoda
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
| |
Collapse
|
33
|
Gaitanou M, Segklia K, Matsas R. Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
34
|
Abdel-Salam GMH, Mazen I, Eid M, Ewida N, Shaheen R, Alkuraya FS. Biallelic novel missense HHAT variant causes syndromic microcephaly and cerebellar-vermis hypoplasia. Am J Med Genet A 2019; 179:1053-1057. [PMID: 30912300 DOI: 10.1002/ajmg.a.61133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/09/2022]
Abstract
We report two siblings with microcephaly, early infantile onset seizures, and cerebellar vermis hypoplasia, in whom whole exome sequencing revealed a novel homozygous missense (c.770T>C, p.[Leu257Pro]) variant in the hedgehog acyl-transferase gene (HHAT), encoding an enzyme required for the attachment of palmitoyl residues that are critical for multimerization and long and short range hedgehog signaling. There is a report of one family with Nivelon-Nivelon-Mabille syndrome in which HHAT was proposed as the likely candidate gene. The phenotypic overlap with the family we report herein provides further evidence implicating HHAT in cerebellar development and the pathogenesis of this rare spectrum.
Collapse
Affiliation(s)
- Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Inas Mazen
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Mazzonetto PC, Ariza CB, Ocanha SG, de Souza TA, Ko GM, Menck CFM, Massironi SMG, Porcionatto MA. Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1502-1515. [PMID: 30853403 DOI: 10.1016/j.bbadis.2019.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023]
Abstract
Abnormalities in cerebellar structure and function may cause ataxia, a neurological dysfunction of motor coordination. In the course of the present study, we characterized a mutant mouse lineage with an ataxia-like phenotype. We localized the mutation on chromosome 17 and mapped it to position 1534 of the Nox3 gene, resulting in p.Asn64Tyr change. The primary defect observed in Nox3eqlb mice was increased proliferation of cerebellar granule cell precursors (GCPs). cDNA microarray comparing Nox3eqlb and BALB/c neonatal cerebellum revealed changes in the expression of genes involved in the control of cell proliferation. Nox3eqlb GCPs and NSC produce higher amounts of reactive oxygen species (ROS) and upregulate the expression of SHH target genes, such as Gli1-3 and Ccnd1 (CyclinD1). We hypothesize that this new mutation is responsible for an increase in proliferation via stimulation of the SHH pathway. We suggest this mutant mouse lineage as a new model to investigate the role of ROS in neuronal precursor cell proliferation.
Collapse
Affiliation(s)
- P C Mazzonetto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C B Ariza
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of General Pathology, Center of Biological Sciences, Universidade Estadual de Londrina (UEL), Brazil
| | - S G Ocanha
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - T A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - G M Ko
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - S M G Massironi
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - M A Porcionatto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil.
| |
Collapse
|
36
|
Fu Y, Dong J, You M, Cong Z, Wei L, Fu H, Wang Y, Wang Y, Chen J. Maternal di-(2-ethylhexyl) phthalate exposure inhibits cerebellar granule precursor cell proliferation via down-regulating the Shh signaling pathway in male offspring. CHEMOSPHERE 2019; 215:313-322. [PMID: 30336312 DOI: 10.1016/j.chemosphere.2018.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disrupting chemical (EDC) widely used as a plasticizer in many materials. Epidemiological investigations have shown that DEHP exposure during early development is related to cerebellar-related adverse neurodevelopmental outcomes. However, animal studies involving the effect of DEHP exposure on cerebellar development have rarely been reported and the potential mechanisms are unclear. The aim of this study was to investigate the effect of maternal DEHP exposure on the proliferation of cerebellar granule cell precursor cells (GCPs) and the mechanisms involved. Wistar rats were randomly assigned to four exposure groups and given 0, 30, 300, or 750 mg/kg/d DEHP by intragastric administration from gestational day (GD) 0 to postnatal day (PN) 21. Exposure to 300 and 750 mg/kg/d DEHP restrained GCPs proliferation and impaired neurodevelopment for males. Furthermore, exposure to 300 and 750 mg/kg/d DEHP decreased male pups protein expressions and mRNA levels of molecules related to proliferation, including Shh, Gli1, N-Myc, CyclinD1. In addition, the estrogen level and aromatase expression also reduced in male pups after maternal exposure to DEHP. However, effects on females were not obvious. These results suggested that 300 and 750 mg/kg/d DEHP exposure inhibit the proliferation of GCPs in male offspring and ultimately contribute to the impairment of neuromotor development. This, may be caused by the down-regulation of Shh signaling. And the susceptibility of male offspring to DEHP exposure may be attributed to the decreased estrogen level and aromatase expression in male pup's cerebellum.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Zhangzhao Cong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
37
|
Higashine K, Hashimoto K, Tsujimoto E, Oishi Y, Hayashi Y, Miyamoto Y. Promotion of differentiation in developing mouse cerebellar granule cells by a cell adhesion molecule BT-IgSF. Neurosci Lett 2018; 686:87-93. [PMID: 30176341 DOI: 10.1016/j.neulet.2018.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/30/2023]
Abstract
Brain- and testis-specific immunoglobulin superfamily (BT-IgSF) (also known as IgSF11), one of the immunoglobulin superfamily proteins, is a cell adhesion molecule, expressed in the developing cerebellum. We hypothesized that BT-IgSF might have some function in the development of cerebellum, although the physiological roles of BT-IgSF in the cerebellum remain unclear. To investigate the role of BT-IgSF in the development of mouse cerebellum, we first determined the presence of BT-IgSF in the newborn mouse cerebellum; its expression level was found to be much higher than that in the adults. BT-IgSF was abundantly expressed in the molecular layer, where cerebellar granule cell precursors (CGCPs) are in the differentiation stage during migration. We subsequently analyzed the effects of BT-IgSF-knockdown and -overexpression on the proliferation and differentiation of primary cultured CGCPs. BT-IgSF suppressed the proliferation of CGCPs, and promoted their differentiation into cerebellar granule cells. Taken together, our results suggested that BT-IgSF is one of the important cell adhesion molecules that regulate the developmentof mouse cerebellum.
Collapse
Affiliation(s)
- Kasumi Higashine
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Hashimoto
- Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan; Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Emi Tsujimoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Yuko Oishi
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Yokichi Hayashi
- Department of Life Science, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
38
|
Zhou X, Ma C, Hu B, Tao Y, Wang J, Huang X, Zhao T, Han B, Li H, Liang C, Chen Q, Li F. FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. FASEB J 2018; 32:fj201800373R. [PMID: 29890089 DOI: 10.1096/fj.201800373r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Adipose tissue-derived stem cell (ADSC)-based therapy is promising for the treatment of intervertebral disc (IVD) degeneration, but the difficulty in inducing nucleus pulposus (NP)-like differentiation limits its clinical applications. Forkhead box (Fox)-A2 is an essential transcription factor for the formation of a normal NP. We demonstrated that type II collagen stimulates NP-like differentiation of ADSCs, partly by increasing the expression of FoxA2. We constructed FoxA2-overexpressing and -knockdown ADSCs by using lentiviral vectors. FoxA2 overexpression significantly enhanced NP-specific gene expression and the synthesis of glycosaminoglycan and collagen, whereas FoxA2 knockdown decreased NP-like differentiation and the expression of aggrecan and collagen II. The enhanced NP-like differentiation related to FoxA2 overexpression was partially rescued by an Shh signaling pathway inhibitor. In addition, FoxA2 inhibited the expression of Itg-α2 and further promoted NP-like differentiation induced by type II collagen. Furthermore, FoxA2-overexpressing ADSCs combined with type II collagen hydrogels promoted regeneration of degenerated NP in vivo. Our findings suggest that FoxA2 plays an essential role in the NP-like differentiation of ADSCs by activating the Shh signaling pathway.-Zhou, X., Ma, C., Hu, B., Tao, Y., Wang, J., Huang, X., Zhao, T., Han, B., Li, H., Liang, C., Chen, Q., Li, F. FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Hu
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Han
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Hao Li
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Qixin Chen
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| | - Fangcai Li
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Ogawa K, Suga H, Ozone C, Sakakibara M, Yamada T, Kano M, Mitsumoto K, Kasai T, Kodani Y, Nagasaki H, Yamamoto N, Hagiwara D, Goto M, Banno R, Sugimura Y, Arima H. Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors. Sci Rep 2018; 8:3615. [PMID: 29483626 PMCID: PMC5827757 DOI: 10.1038/s41598-018-22053-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/09/2018] [Indexed: 01/11/2023] Open
Abstract
Arginine-vasopressin (AVP) neurons exist in the hypothalamus, a major region of the diencephalon, and play an essential role in water balance. Here, we established the differentiation method for AVP-secreting neurons from human embryonic stem cells (hESCs) by recapitulating in vitro the in vivo embryonic developmental processes of AVP neurons. At first, the differentiation efficiency was improved. That was achieved through the optimization of the culture condition for obtaining dorsal hypothalamic progenitors. Secondly, the induced AVP neurons were identified by immunohistochemistry and these neurons secreted AVP after potassium chloride stimulation. Additionally, other hypothalamic neuropeptides were also detected, such as oxytocin, corticotropin-releasing hormone, thyrotropin-releasing hormone, pro-opiomelanocortin, agouti-related peptide, orexin, and melanin-concentrating hormone. This is the first report describing the generation of secretory AVP neurons derived from hESCs. This method will be applicable to research using disease models and, potentially, for regenerative medicine of the hypothalamus.
Collapse
Affiliation(s)
- Koichiro Ogawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Chikafumi Ozone
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomiko Yamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yu Kodani
- Department of Physiology, Fujita Health University, Toyoake, 470-1192, Japan
| | - Hiroshi Nagasaki
- Department of Physiology, Fujita Health University, Toyoake, 470-1192, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Institute of Joint Research, Toyoake, 470-1192, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
40
|
Tanno B, Babini G, Leonardi S, Giardullo P, De Stefano I, Pasquali E, Ottolenghi A, Atkinson MJ, Saran A, Mancuso M. Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma. Oncotarget 2018; 7:68253-68269. [PMID: 27626168 PMCID: PMC5356552 DOI: 10.18632/oncotarget.11938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy.,Department of Sciences, Roma Tre University, Rome, Italy
| | - Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
41
|
Shiohama T, Fujii K, Miyashita T, Mizuochi H, Uchikawa H, Shimojo N. Brain morphology in children with nevoid basal cell carcinoma syndrome. Am J Med Genet A 2017; 173:946-952. [PMID: 28328116 DOI: 10.1002/ajmg.a.38115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/05/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022]
Abstract
Brain morphology is tightly regulated by diverse signaling pathways. Hedgehog signaling is a candidate pathway considered responsible for regulating brain morphology. Nevoid basal cell carcinoma syndrome (NBCCS), caused by a PTCH1 mutation in the hedgehog signaling pathway, occasionally exhibits macrocephaly and medulloblastoma. Although cerebellar enlargement occurs in ptch1 heterozygous-deficient mice, its impact on human brain development remains unknown. We investigated the brain morphological characteristics of children with NBCCS. We evaluated brain T1-weighted images from nine children with NBCCS and 15 age-matched normal control (NC) children (mean [standard deviation], 12.2 [2.8] vs. 11.6 [2.3] years old). The diameters of the cerebrum, corpus callosum, and brain stem and the cerebellar volume were compared using two-tailed t-tests with Welch's correction. The transverse diameters (150.4 [9.9] vs. 136.0 [5.5] mm, P = 0.002) and longitudinal diameters (165.4 [8.0] vs. 151.3 [8.7] mm, P = 0.0007) of the cerebrum, cross-sectional area of the cerebellar vermis (18.7 [2.6] vs. 11.8 [1.7] cm2 , P = 0.0001), and total volume of the cerebellar hemispheres (185.1 [13.0] vs. 131.9 [10.4] cm3 , P = 0.0001) were significantly larger in the children with NBCCS than in NC children. Thinning of the corpus callosum and ventricular enlargement were also confirmed in children with NBCCS. We demonstrate that, on examination of the brain morphology, an increase in the size of the cerebrum, cerebellum, and cerebral ventricles is revealed in children with NBCCS compared to NC children. This suggests that constitutively active hedgehog signaling affects human brain morphology and the PI3K/AKT and RAS/MAPK pathways.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiromi Mizuochi
- Department of Pediatrics, Eastern Chiba Medical Center, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Eastern Chiba Medical Center, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Scheuer T, Sharkovska Y, Tarabykin V, Marggraf K, Brockmöller V, Bührer C, Endesfelder S, Schmitz T. Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Mol Neurobiol 2017; 55:3901-3915. [PMID: 28547531 DOI: 10.1007/s12035-017-0612-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Impaired postnatal brain development of preterm infants often results in neurological deficits. Besides pathologies of the forebrain, maldeveolopment of the cerebellum is increasingly recognized to contribute to psychomotor impairments of many former preterm infants. However, causes are poorly defined. We used a hyperoxia model to define neonatal damage in cerebellar granule cell precursors (GCPs) and in Purkinje cells (PCs) known to be essential for interaction with GCPs during development. We exposed newborn rats to 24 h 80% O2 from age P6 to P7 to identify postnatal and long-term damage in cerebellar GCPs at age P7 after hyperoxia and also after recovery in room air thereafter until P11 and P30. We determined proliferation and apoptosis of GCPs and immature neurons by immunohistochemistry, quantified neuronal damage by qPCR and Western blots for neuronal markers, and measured dendrite outgrowth of PCs by CALB1 immunostainings and by Sholl analysis of Golgi stainings. After hyperoxia, proliferation of PAX6+ GCPs was decreased at P7, while DCX + CASP3+ cells were increased at P11. Neuronal markers Pax6, Tbr2, and Prox1 were downregulated at P11 and P30. Neuronal damage was confirmed by reduced NeuN protein expression at P30. Sonic hedgehog (SHH) was significantly decreased at P7 and P11 after hyperoxia and coincided with lower CyclinD2 and Hes1 expression at P7. The granule cell injury was accompanied by hampered PC maturation with delayed dendrite formation and impaired branching. Neonatal injury induced by hyperoxia inhibits PC functioning and impairs granule cell development. As a conclusion, maldevelopment of the cerebellar neurons found in preterm infants could be caused by postnatal oxygen toxicity.
Collapse
Affiliation(s)
- Till Scheuer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany. .,Institute of Bioanalytics, Technische Universität Berlin, 13355, Berlin, Germany. .,Klinik für Neonatologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuliya Sharkovska
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Katharina Marggraf
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Vivien Brockmöller
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | | | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
43
|
Canterini S, Dragotto J, Dardis A, Zampieri S, De Stefano ME, Mangia F, Erickson RP, Fiorenza MT. Shortened primary cilium length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 disease. Hum Mol Genet 2017; 26:2277-2289. [DOI: 10.1093/hmg/ddx118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/25/2017] [Indexed: 11/13/2022] Open
|
44
|
Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep 2017; 7:42523. [PMID: 28205531 PMCID: PMC5311982 DOI: 10.1038/srep42523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.
Collapse
Affiliation(s)
- Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Chih-Ming Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Kerstin Buttler
- Department of Anatomy and Cell Biology, University Medicine Göttingen, 37075-Göttingen, Germany
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| |
Collapse
|
45
|
Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, Tocchini-Valentini GP. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol 2017; 37:145-154. [PMID: 26935062 PMCID: PMC11482194 DOI: 10.1007/s10571-016-0354-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy.
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Zeinab Abbaszadeh
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Elisabetta Golini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
46
|
Ward SA, Warrington NM, Taylor S, Kfoury N, Luo J, Rubin JB. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4. Cancer Res 2016; 77:1416-1426. [PMID: 28031228 DOI: 10.1158/0008-5472.can-16-0847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
Abstract
The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR.
Collapse
Affiliation(s)
- Stacey A Ward
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Najla Kfoury
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri. .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
47
|
Mangum R, Varga E, Boué DR, Capper D, Benesch M, Leonard J, Osorio DS, Pierson CR, Zumberge N, Sahm F, Schrimpf D, Pfister SM, Finlay JL. SHH desmoplastic/nodular medulloblastoma and Gorlin syndrome in the setting of Down syndrome: case report, molecular profiling, and review of the literature. Childs Nerv Syst 2016; 32:2439-2446. [PMID: 27444290 DOI: 10.1007/s00381-016-3185-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Individuals with Down syndrome (DS) have an increased risk of acute leukemia compared to a markedly decreased incidence of solid tumors. Medulloblastoma, the most common malignant brain tumor of childhood, is particularly rare in the DS population, with only one published case. As demonstrated in a mouse model, DS is associated with cerebellar hypoplasia and a decreased number of cerebellar granule neuron progenitor cells (CGNPs) in the external granule cell layer (EGL). Treatment of these mice with sonic hedgehog signaling pathway (Shh) agonists promote normalization of CGNPs and improved cognitive functioning. CASE REPORT We describe a 21-month-old male with DS and concurrent desmoplastic/nodular medulloblastoma (DNMB)-a tumor derived from Shh dysregulation and over-activation of CGNPs. Molecular profiling further classified the tumor into the new consensus SHH molecular subgroup. Additional testing revealed a de novo heterozygous germ line mutation in the PTCH1 gene encoding a tumor suppressor protein in the Shh pathway. DISCUSSION The developmental failure of CGNPs in DS patients offers a plausible explanation for the rarity of medulloblastoma in this population. Conversely, patients with PTCH1 germline mutations experience Shh overstimulation resulting in Gorlin (Nevoid Basal Cell Carcinoma) syndrome and an increased incidence of malignant transformation of CGNPs leading to medulloblastoma formation. This represents the first documented report of an individual with DS simultaneously carrying PTCH1 germline mutation. CONCLUSION We have observed a highly unusual circumstance in which the PTCH1 mutation appears to "trump" the effects of DS in causation of Shh-activated medulloblastoma.
Collapse
Affiliation(s)
- Ross Mangum
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
| | - Elizabeth Varga
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Daniel R Boué
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - David Capper
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Medical University of Graz, Graz, Austria
| | - Jeffrey Leonard
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Diana S Osorio
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Christopher R Pierson
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicholas Zumberge
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Felix Sahm
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schrimpf
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan L Finlay
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Widespread cerebellar transcriptome changes in Ts65Dn Down syndrome mouse model after lifelong running. Behav Brain Res 2016; 296:35-46. [DOI: 10.1016/j.bbr.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
49
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
50
|
A positive feedback loop between Gli1 and tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma. Oncogenesis 2015; 4:e176. [PMID: 26619401 PMCID: PMC4670963 DOI: 10.1038/oncsis.2015.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is critical during normal development, and the abnormal activation of the Shh pathway is involved in many human cancers. As a target gene of the Shh pathway and as a transcription activator downstream of Shh signaling, Gli1 autoregulates and increases Shh signaling output. Gli1 is one of the key oncogenic factors in Shh-induced tumors such as medulloblastoma. Gli1 is posttranslationally modified, but the nature of the active form of Gli1 was unclear. Here we identified a Src family kinase Hck as a novel activator of Gli1. In Shh-responsive NIH3T3 cells, Hck interacts with Gli1 and phosphorylates multiple tyrosine residues in Gli1. Gli1-mediated target gene activation was significantly enhanced by Hck with both kinase activity-dependent and -independent mechanisms. We provide evidence showing that Hck disrupts the interaction between Gli1 and its inhibitor Sufu. In both NIH3T3 cells and cerebellum granule neuron precursors, the Hck gene is also a direct target of Gli1. Therefore, Gli1 and Hck form a positive feedback loop that amplifies Shh signaling transcription outcomes. In Shh-induced medulloblastoma, Hck is highly expressed and Gli1 is tyrosine phosphorylated, which may enhance the tumorigenic effects of the Gli1 oncogene. RNAi-mediated inhibition of Hck expression significantly repressed medulloblastoma cell growth. In summary, a novel positive feedback loop contributes to maximal Gli1 oncogenic activities in Shh-induced tumors such as medulloblastoma.
Collapse
|