1
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Ding L, Hou B, Zang J, Su T, Feng F, Zhu Z, Peng B. Imaging of Angiogenesis in White Matter Hyperintensities. J Am Heart Assoc 2023; 12:e028569. [PMID: 37889177 PMCID: PMC10727415 DOI: 10.1161/jaha.122.028569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Background White matter hyperintensities (WMHs) are areas of increased signal intensity on T2-weighted magnetic resonance imaging (MRI). WMH penumbra may be a potential target for early intervention in WMHs. We explored the relationship between angiogenesis and WMH penumbra in patients with WMHs. Methods and Results Twenty-one patients with confluent WMHs of Fazekas grade ≥2 were included. All the participants underwent 68Ga-NOTA-PRGD2 positron emission tomography/magnetic resonance imaging. WMH penumbra was analyzed with masks created for the WMH and 7 normal-appearing white matter layers; each layer was dilated away from the WMH by 2 mm. Angiogenesis array and ELISA were used to detect the serum levels of angiogenic factors, inflammatory factors, HIF-1 alpha, and S100B. Fourteen patients with increased 68Ga-NOTA-PRGD2 maximum standardized uptake (>0.17) were classified into group 2. Seven patients with maximum standardized uptake ≤0.17 were classified as group 1. WMH volume and serum levels of integrin αvβ3, vascular endothelial growth factor receptor 22, and interleukin-1β tended to be higher in group 2 than in group 1. In group 2, 68Ga-NOTA-PRGD2 uptake was significantly increased at the border between the WMH and normal-appearing white matter than in WMHs (P=0.004). The structure penumbra, defined by fractional anisotropy, was wider in group 2 (8 mm) than in group 1 (2 mm). The cerebral blood flow penumbra was 12 mm in both groups. Angiogenesis showed a correlation with reduced cerebral blood flow and microstructure integrity. Conclusions Our study provides evidence that angiogenesis occurs in the WMH penumbra. Further studies are warranted to verify the effect of angiogenesis on WMH growth.
Collapse
Affiliation(s)
- Lingling Ding
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Jie Zang
- Department of Nuclear MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Zhaohui Zhu
- Department of Nuclear MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Peng
- Department of NeurologyPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
- Department of NeurologyState Key Laboratory of Complex Severe and Rare DiseasesBeijingChina
| |
Collapse
|
3
|
Nakahara T, Strauss HW, Narula J, Jinzaki M. Vulnerable Plaque Imaging. Semin Nucl Med 2023; 53:230-240. [PMID: 36333157 DOI: 10.1053/j.semnuclmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
Atherosclerotic plaques progress as a result of inflammation. Both invasive and noninvasive imaging techniques have been developed to identify and characterize plaque as vulnerable (more likely to rupture and cause a clinical event). Imaging techniques to identify vulnerable include identifying vessels with focal subendothelial collections of I) inflammatory cells; II) lipid/ fatty acid; III) local regions of hypoxia; IV) local expression of angiogenesis factors; V) local expression of protease; VI) intravascular foci of thrombus; hemorrhage (most often seen in the aftermath of a clinical event); VII) apoptosis and VIII) microcalcification. This review provides an overview of atherosclerotic plaque progression and tracers which can visualize specific molecules associated with vulnerability.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mahahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Barton AK, Tzolos E, Bing R, Singh T, Weber W, Schwaiger M, Varasteh Z, Slart RHJA, Newby DE, Dweck MR. Emerging molecular imaging targets and tools for myocardial fibrosis detection. Eur Heart J Cardiovasc Imaging 2023; 24:261-275. [PMID: 36575058 PMCID: PMC9936837 DOI: 10.1093/ehjci/jeac242] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022] Open
Abstract
Myocardial fibrosis is the heart's common healing response to injury. While initially seeking to optimize the strength of diseased tissue, fibrosis can become maladaptive, producing stiff poorly functioning and pro-arrhythmic myocardium. Different patterns of fibrosis are associated with different myocardial disease states, but the presence and quantity of fibrosis largely confer adverse prognosis. Current imaging techniques can assess the extent and pattern of myocardial scarring, but lack specificity and detect the presence of established fibrosis when the window to modify this process may have ended. For the first time, novel molecular imaging methods, including gallium-68 (68Ga)-fibroblast activation protein inhibitor positron emission tomography (68Ga-FAPI PET), may permit highly specific imaging of fibrosis activity. These approaches may facilitate earlier fibrosis detection, differentiation of active vs. end-stage disease, and assessment of both disease progression and treatment-response thereby improving patient care and clinical outcomes.
Collapse
Affiliation(s)
- Anna K Barton
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Trisha Singh
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Wolfgang Weber
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Riemer H J A Slart
- Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
5
|
Huang JY, Lin YH, Hung CL, Chen WP, Tamaki N, Bax JJ, Morris DA, Korosoglou G, Wu YW. Editorial: Atherosclerosis and functional imaging. Front Cardiovasc Med 2022; 9:1053100. [PMID: 36561766 PMCID: PMC9767462 DOI: 10.3389/fcvm.2022.1053100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Lieh Hung
- Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jeroen J. Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel A. Morris
- Department of Internal Medicine and Cardiology, Charité University Hospital, Berlin, Germany
| | - Grigorios Korosoglou
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,*Correspondence: Yen-Wen Wu
| |
Collapse
|
6
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Dietz M, Kamani CH, Deshayes E, Dunet V, Mitsakis P, Coukos G, Nicod Lalonde M, Schaefer N, Prior JO. Imaging angiogenesis in atherosclerosis in large arteries with 68Ga-NODAGA-RGD PET/CT: relationship with clinical atherosclerotic cardiovascular disease. EJNMMI Res 2021; 11:71. [PMID: 34390409 PMCID: PMC8364589 DOI: 10.1186/s13550-021-00815-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/14/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Integrin alpha-V-beta-3 (αvβ3) pathway is involved in intraplaque angiogenesis and inflammation and represents a promising target for molecular imaging in cardiovascular diseases such as atherosclerosis. The aim of this study was to assess the clinical correlates of arterial wall accumulation of 68Ga-NODAGA-RGD, a specific αvβ3 integrin ligand for PET. MATERIALS AND METHODS The data of 44 patients who underwent 68Ga-NODAGA-RGD PET/CT scans were retrospectively analyzed. Tracer accumulation in the vessel wall of major arteries was analyzed semi-quantitatively by blood-pool-corrected target-to-background ratios. Tracer uptake was compared with clinically documented atherosclerotic cardiovascular disease, cardiovascular risk factors and calcified plaque burden. Data were compared using the Mann-Whitney U test, Pearson correlation and Spearman correlation. RESULTS 68Ga-NODAGA-RGD arterial uptake was significantly higher in patients with previous clinically documented atherosclerotic cardiovascular disease (mean TBR 2.44 [2.03-2.55] vs. 1.81 [1.56-1.96], p = 0.001) and showed a significant correlation with prior cardiovascular or cerebrovascular event (r = 0.33, p = 0.027), BMI (ρ = 0.38, p = 0.01), plaque burden (ρ = 0.31, p = 0.04) and hypercholesterolemia (r = 0.31, p = 0.04). CONCLUSIONS 68Ga-NODAGA-RGD holds promise as a non-invasive marker of disease activity in atherosclerosis, providing information about intraplaque angiogenesis.
Collapse
Affiliation(s)
- Matthieu Dietz
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Christel H Kamani
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Periklis Mitsakis
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Sun T, Wei L, Tian H, Zhan W, Ma H, Nie D, Wang S, Chen X, Tang G. Novel PET/CT tracers for targeted imaging of membrane receptors to evaluate cardiomyocyte apoptosis and tissue repair process in a rat model of myocardial infarction. Apoptosis 2021; 26:460-473. [PMID: 34185202 DOI: 10.1007/s10495-021-01681-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to employ novel tracers PET imaging approach to define the time course and intensity of myocardial repair after apoptosis and to correlate the imaging signal to immunohistochemical staining in myocardial infarction (MI). We designed novel αVβ3-targeted and radio-functionalized tracers for detection of apoptosis in H9C2 cells and myocardial tissue. MI rats were imaged with [18F]FDG, [18F]ANP-Cin or [18F]ANP-RGD2 using a small-animal PET/CT device. Rats were sacrificed, and tissue samples from viable and injured myocardial areas were sectioned for TUNEL assay and histology. The uncorrected radiochemical yield of [18F]ANP-Cin and [18F]ANP-RGD2 were 41.3 ± 5.4% and 21.17 ± 4.7%, respectively. Two tracers meet many criteria for cardiac imaging, including high stability, high binding, no toxicity, fast renal clearance and excellent biodistribution in rat models. The uptake of [18F]ANP-Cin was significantly higher on the 1st and 3rd day than the 7th or 28th day after MI induction, a timeframe associated with increased cardiomyocyte apoptosis. Higher uptake of [18F]ANP-Cin was observed in MI rats than in N-acetylcysteine (NAC)-treated rats on the 3rd days. In contrast with [18F]ANP-Cin, no hot-spots was observed with [18F]ANP-RGD2 on the 1st day and more hot-spots was observed from the 3rd day to the 7th day, then less on the 28th days in the high apoptotic site. There was no uptake of [18F]FDG in or around the apoptotic region. On the 7th day the uptake of [18F]ANP-RGD2 was higher in NAC-treated rats than MI rats. [18F]ANP-Cin and [18F]ANP-RGD2 are superior to [18F]FDG for PET/CT imaging for evaluation of cardiomyocyte apoptosis and tissue repair processes in the MI rats.
Collapse
Affiliation(s)
- Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lijiang Wei
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Wanlin Zhan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hui Ma
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shilin Wang
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xin Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ganghua Tang
- Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Wang X, Ziegler M, McFadyen JD, Peter K. Molecular Imaging of Arterial and Venous Thrombosis. Br J Pharmacol 2021; 178:4246-4269. [PMID: 34296431 DOI: 10.1111/bph.15635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: 1) Better markers for diseases, with increased sensitivity and selectivity; 2) Optimised contrast agents with improved signal to noise ratio; 3) Progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include, magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease, and raises the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Cardiometabolic Health, University of Melbourne.,Clinical Hematology Department, Alfred Hospital
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne.,Department of Cardiology, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
13
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Vigne J, Hyafil F. Inflammation imaging to define vulnerable plaque or vulnerable patient. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:21-34. [PMID: 32077668 DOI: 10.23736/s1824-4785.20.03231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The role of nuclear imaging in the characterization of high-risk atherosclerotic plaque is increasing thanks to its high sensitivity to detect radiopharmaceuticals signal in tissues. Currently, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most studied and widely used radiopharmaceutical for the molecular imaging of atherosclerotic plaques with positron emission tomography (PET). [18F]FDG PET is a valuable tool to non-invasively detect, monitor and quantify inflammatory processes occurring in atherosclerotic plaques. The aim of this review is to gather insights provided by [18F]FDG PET to better understand the role of inflammation in the definitions of the vulnerable plaque and the vulnerable patient. Alternatives radiopharmaceuticals targeting inflammation and other potential high-risk plaque related processed are also discussed.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France -
- Department of Pharmacy, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Paris, France
| |
Collapse
|
15
|
Jenkins WS, Vesey AT, Vickers A, Neale A, Moles C, Connell M, Joshi NV, Lucatelli C, Fletcher AM, Spratt JC, Mirsadraee S, van Beek EJ, Rudd JH, Newby DE, Dweck MR. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart 2019; 105:1868-1875. [PMID: 31422361 PMCID: PMC6929706 DOI: 10.1136/heartjnl-2019-315103] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Intraplaque angiogenesis and inflammation are key promoters of atherosclerosis and are mediated by the alpha-V beta-3 (αvβ3) integrin pathway. We investigated the applicability of the αvβ3-integrin receptor-selective positron emission tomography (PET) radiotracer 18F-fluciclatide in assessing human aortic atherosclerosis. METHODS Vascular 18F-fluciclatide binding was evaluated using ex vivo analysis of carotid endarterectomy samples with autoradiography and immunohistochemistry, and in vivo kinetic modelling following radiotracer administration. Forty-six subjects with a spectrum of atherosclerotic disease categorised as stable (n=27) or unstable (n=19; recent myocardial infarction) underwent PET and CT imaging of the thorax after administration of 229 (IQR 217-237) MBq 18F-fluciclatide. Thoracic aortic 18F-fluciclatide uptake was quantified on fused PET-CT images and corrected for blood-pool activity using the maximum tissue-to-background ratio (TBRmax). Aortic atherosclerotic burden was quantified by CT wall thickness, plaque volume and calcium scoring. RESULTS 18F-Fluciclatide uptake co-localised with regions of increased αvβ3 integrin expression, and markers of inflammation and angiogenesis. 18F-Fluciclatide vascular uptake was confirmed in vivo using kinetic modelling, and on static imaging correlated with measures of aortic atherosclerotic burden: wall thickness (r=0.57, p=0.001), total plaque volume (r=0.56, p=0.001) and aortic CT calcium score (r=0.37, p=0.01). Patients with recent myocardial infarction had greater aortic 18F-fluciclatide uptake than those with stable disease (TBRmax 1.29 vs 1.21, p=0.02). CONCLUSIONS In vivo expression of αvβ3 integrin in human aortic atheroma is associated with plaque burden and is increased in patients with recent myocardial infarction. Quantification of αvβ3 integrin expression with 18F-fluciclatide PET has potential to assess plaque vulnerability and disease activity in atherosclerosis.
Collapse
Affiliation(s)
- William S Jenkins
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alex T Vesey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anna Vickers
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anoushka Neale
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Catriona Moles
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Martin Connell
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Nikhil Vilas Joshi
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Alison M Fletcher
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - James C Spratt
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Saeed Mirsadraee
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Edwin Jr van Beek
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - James Hf Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH, Pol RA, Zeebregts CJ, Hillebrands JL, Slart RHJA, Boersma HH, Doorduin J, Mulder DJ. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol 2019; 26:1064-1075. [PMID: 29943142 PMCID: PMC6660502 DOI: 10.1007/s12350-018-1325-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/15/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND 18F-NaF positron emission tomography (PET) targets microcalcifications. We compared in vitro microPET assessed 18F-NaF uptake between culprit and non-culprit human carotid plaques. Furthermore, we compared 18F-NaF uptake with calcification visualized on microcomputed tomography (microCT). METHODS Carotid plaques from stroke patients undergoing surgery were incubated in 18F-NaF and scanned using a microPET and a microCT scan. The average PET assessed 18F-NaF uptake was expressed as percentage of the incubation dose per gram (%Inc/g). 18F-NaF PET volume of interest (VOI) was compared with CT calcification VOI. RESULTS 23 carotid plaques (17 culprit, 6 non-culprit) were included. The average 18F-NaF uptake in culprit carotid plaques was comparable with the uptake in non-culprit carotid plaques (median 2.32 %Inc/g [IQR 1.98 to 2.81] vs. median 2.35 %Inc/g [IQR 1.77 to 3.00], P = 0.916). Only a median of 10% (IQR 4 to 25) of CT calcification VOI showed increased 18F-NaF uptake, while merely a median of 35% (IQR 6 to 42) of 18F-NaF PET VOI showed calcification on CT. CONCLUSIONS 18F-NaF PET represents a different stage in the calcification process than CT. We observed a similar PET assessed 18F-NaF uptake and pattern in culprit and non-culprit plaques of high-risk patients, indicating that this method may be of more value in early atherosclerotic stenosis development.
Collapse
Affiliation(s)
- H Hop
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - S A de Boer
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - M Reijrink
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - P W Kamphuisen
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - M H de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R A Pol
- Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C J Zeebregts
- Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J L Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - H H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - D J Mulder
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
17
|
Abstract
Noninvasive imaging technologies offer to identify several anatomic and molecular features of high-risk plaques. For the noninvasive molecular imaging of atherosclerotic plaques, nuclear medicine constitutes one of the best imaging modalities, thanks to its high sensitivity for the detection of probes in tissues. 18F-fluorodeoxyglucose (FDG) is currently the most widely used radiopharmaceutical for molecular imaging of atherosclerotic plaques with positron emission tomography. The intensity of FDG uptake in the vascular wall correlates closely with the degree of macrophage infiltration in atherosclerotic plaques. FDG positron emission tomographic imaging has become a powerful tool to identify and monitor noninvasively inflammatory activities in atherosclerotic plaques over time. This review examines how FDG positron emission tomographic imaging has given us deeper insight into the role of inflammation in atherosclerotic plaque progression and discusses perspectives for alternative radiopharmaceuticals to FDG that could provide a more specific and simple identification of high-risk lesions and help improve risk stratification of atherosclerotic patients.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Fabien Hyafil
- From the Department of Nuclear Medicine, Bichat University Hospital, Assistance Publique–Hôpitaux de Paris (F.H.), University Paris 7 René Diderot, France
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
| | - Jonathan Vigne
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University, UNICAEN, France (J.V.)
| |
Collapse
|
18
|
Lee JS, Kovalski G, Sharir T, Lee DS. Advances in imaging instrumentation for nuclear cardiology. J Nucl Cardiol 2019; 26:543-556. [PMID: 28718074 DOI: 10.1007/s12350-017-0979-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
Advances in imaging instrumentation and technology have greatly contributed to nuclear cardiology. Dedicated cardiac SPECT cameras incorporating novel, highly efficient detector, collimator, and system designs have emerged with the expansion of nuclear cardiology. Solid-state radiation detectors incorporating cadmium zinc telluride, which directly convert radiation to electrical signals and yield improved energy resolution and spatial resolution and enhanced count sensitivity geometries, are increasingly gaining favor as the detector of choice for application in dedicated cardiac SPECT systems. Additionally, hybrid imaging systems in which SPECT and PET are combined with X-ray CT are currently widely used, with PET/MRI hybrid systems having also been recently introduced. The improved quantitative SPECT/CT has the potential to measure the absolute quantification of myocardial blood flow and flow reserve. Rapid development of silicon photomultipliers leads to enhancement in PET image quality and count rates. In addition, the reduction of emission-transmission mismatch artifacts via application of accurate time-of-flight information, and cardiac motion de-blurring aided by anatomical images, are emerging techniques for further improvement of cardiac PET. This article reviews recent advances such as these in nuclear cardiology imaging instrumentation and technology, and the corresponding diagnostic benefits.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | | | - Tali Sharir
- Department of Nuclear Cardiology, Assuta Medical Centers, 96 Igal Alon, C Building, 67891, Tel Aviv, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
19
|
Abstract
Purpose of Review A variety of approaches and molecular targets have emerged in recent years for radionuclide-based imaging of atherosclerosis and vulnerable plaque using single photon emission computed tomography (SPECT) and positron emission tomography (PET), with numerous methods focused on characterizing the mechanisms underlying plaque progression and rupture. This review highlights the ongoing developments in both the preclinical and clinical environment for radionuclide imaging of atherosclerosis and atherothrombosis. Recent Findings Numerous physiological processes responsible for the evolution of high-risk atherosclerotic plaque, such as inflammation, thrombosis, angiogenesis, and microcalcification, have been shown to be feasible targets for SPECT and PET imaging. For each physiological process, specific molecular markers have been identified that allow for sensitive non-invasive detection and characterization of atherosclerotic plaque. Summary The capabilities of SPECT and PET imaging continue to evolve for physiological evaluation of atherosclerosis. This review summarizes the latest developments related to radionuclide imaging of atherothrombotic diseases.
Collapse
|
20
|
Abstract
Molecular imaging provides multiple imaging techniques to identify characteristics of vulnerable plaque including I) Inflammatory cells (the presence and metabolic activity of macrophages), II) synthesis of lipid and fatty acid in the plaque, III) the presence of hypoxia in severely inflamed lesions, IV) expression of factors stimulating angiogenesis, V) expression of protease enzymes in the lesion, VI) development of microthrombi in late-phase lesions, VII) apoptosis, and VIII) microcalcification.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY.; Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
21
|
Moss AJ, Adamson PD, Newby DE, Dweck MR. Positron emission tomography imaging of coronary atherosclerosis. Future Cardiol 2018; 12:483-96. [PMID: 27322032 PMCID: PMC4926532 DOI: 10.2217/fca-2016-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inflammation has a central role in the progression of coronary atherosclerosis. Recent developments in cardiovascular imaging with the advent of hybrid positron emission tomography have provided a window into the molecular pathophysiology underlying coronary plaque inflammation. Using novel radiotracers targeted at specific cellular pathways, the potential exists to observe inflammation, apoptosis, cellular hypoxia, microcalcification and angiogenesis in vivo. Several clinical studies are now underway assessing the ability of this hybrid imaging modality to inform about atherosclerotic disease activity and the prediction of future cardiovascular risk. A better understanding of the molecular mechanisms governing coronary atherosclerosis may be the first step toward offering patients a more stratified, personalized approach to treatment.
Collapse
Affiliation(s)
- Alastair J Moss
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Philip D Adamson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Translation Molecular Imaging Institute, Icahn School of Medicine at Mount-Sinai, NY, USA
| |
Collapse
|
22
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
23
|
Schindler TH. Cardiovascular PET/MR imaging: Quo Vadis? J Nucl Cardiol 2017; 24:1007-1018. [PMID: 27659454 DOI: 10.1007/s12350-016-0451-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
With the recent advent of PET/MRI scanners, the combination of molecular imaging with a variety of known and novel PET radiotracers, the high spatial resolution of MRI, and its potential for multi-parametric imaging are anticipated to increase the diagnostic accuracy in cardiovascular disease detection, while providing novel mechanistic insights into the initiation and progression of the disease state. For the time being, cardiac PET/MRI emerges as potential clinical tool in the identification and characterization of infiltrative cardiac diseases, such as sarcoidosis, acute or chronic myocarditis, and cardiac tumors, respectively. The application of PET/MRI in conjunction with various radiotracer probes in the identification of the vulnerable atherosclerotic plaque also holds much promise but needs further translation and validation in clinical investigations. The combination of molecular imaging and creation of multi-parametric imaging maps with PET/MRI, however, are likely to set new horizons to develop predictive parameters for myocardial recovery and treatment response in ischemic and non-ischemic cardiomyopathy patients. Molecular imaging and multi-parametric imaging in cardiovascular disease with PET/MRI at current stage are at its infancy but bear a bright future.
Collapse
Affiliation(s)
- Thomas Hellmut Schindler
- Department of Radiology and Radiological Science, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, 3225, 601 N. Caroline Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
24
|
Abstract
Background Integrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of 68Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of 68Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atherosclerotic plaques. Five male patients underwent whole-body time-of-flight (TOF) PET/CT scans 10, 60 and 120 min after tracer injection (200 MBq). Quantification of 68Ga activity concentration was first validated by a phantom study. To be used as input in OLINDA/EXM, time-activity curves were derived from manually drawn regions of interest over the following organs: brain, thyroid, lungs, heart, liver, spleen, stomach, kidneys, red marrow, pancreas, small intestine, colon, urinary bladder and whole body. A separate dosimetric analysis was performed for the choroid plexuses. Female dosimetry was extrapolated from male data. Effective doses (EDs) were estimated according to both ICRP60 and ICRP103 assuming 30-min and 1-h voiding cycles. Results The body regions receiving the highest dose were urinary bladder, kidneys and choroid plexuses. For a 30-min voiding cycle, the EDs were 15.7 and 16.5 μSv/MBq according to ICRP60 and ICRP103, respectively. The extrapolation to female dosimetry resulted in organ absorbed doses 17% higher than those of male patients, on average. The 1-h voiding cycle extrapolation resulted in EDs of 19.3 and 19.8 μSv/MBq according to ICRP60 and ICRP103, respectively. A comparison is made with previous mouse dosimetry and with other human studies employing different RGD-based radiopharmaceuticals. Conclusions According to ICRP60/ICRP103 recommendations, an injection of 200 MBq 68Ga-NODAGA-RGDyK leads to an ED in man of 3.86/3.92 mSv. For future therapeutic applications, specific attention should be directed to delivered dose to kidneys and potentially also to the choroid plexuses. Trial registration Clinical trial.gov, NCT01608516
Collapse
|
25
|
Wang X, Peter K. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler Thromb Vasc Biol 2017; 37:1029-1040. [PMID: 28450298 DOI: 10.1161/atvbaha.116.306483] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
van Hoof RHM, Heeneman S, Wildberger JE, Kooi ME. Dynamic Contrast-Enhanced MRI to Study Atherosclerotic Plaque Microvasculature. Curr Atheroscler Rep 2016; 18:33. [PMID: 27115144 PMCID: PMC4846686 DOI: 10.1007/s11883-016-0583-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rupture of a vulnerable atherosclerotic plaque of the carotid artery is an important underlying cause of clinical ischemic events, such as stroke. Abundant microvasculature has been identified as an important aspect contributing to plaque vulnerability. Plaque microvasculature can be studied non-invasively with dynamic contrast-enhanced (DCE-)MRI in animals and patients. In recent years, several DCE-MRI studies have been published evaluating the association between microvasculature and other key features of plaque vulnerability (e.g., inflammation and intraplaque hemorrhage), as well as the effects of novel therapeutic interventions. The present paper reviews this literature, focusing on DCE-MRI methods of acquisition and analysis of atherosclerotic plaques, the current state and future potential of DCE-MRI in the evaluation of plaque microvasculature in clinical and preclinical settings.
Collapse
Affiliation(s)
- Raf H. M. van Hoof
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - Sylvia Heeneman
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
- />Department of Pathology, Maastricht University Medical Center (MUMC), P.O. Box 5800, Maastricht, 6202 AZ The Netherlands
| | - Joachim E. Wildberger
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - M. Eline Kooi
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| |
Collapse
|
27
|
|
28
|
Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology. J Clin Med 2016; 5:jcm5060057. [PMID: 27275836 PMCID: PMC4929412 DOI: 10.3390/jcm5060057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation.
Collapse
|
29
|
Shimizu Y, Kuge Y. Recent Advances in the Development of PET/SPECT Probes for Atherosclerosis Imaging. Nucl Med Mol Imaging 2016; 50:284-291. [PMID: 27994683 DOI: 10.1007/s13139-016-0418-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
The rupture of vulnerable atherosclerotic plaques and subsequent thrombus formation are the major causes of myocardial and cerebral infarction. Accordingly, the detection of vulnerable plaques is important for risk stratification and to provide appropriate treatment. Inflammation imaging using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) has been most extensively studied for detecting vulnerable atherosclerotic plaques. It is of great importance to develop PET/SPECT probes capable of specifically visualizing the biological molecules involved in atherosclerotic plaque formation and/or progression. In this article, we review recent advances in the development of PET/SPECT probes for visualizing atherosclerotic plaques and their application to therapy monitoring, mainly focusing on experimental studies.
Collapse
Affiliation(s)
- Yoichi Shimizu
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, 060-0815 Japan ; Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Hu Q, Wang XY, Kang LK, Wei HM, Xu CM, Wang T, Wen ZH. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo. PLoS One 2016; 11:e0149075. [PMID: 26862757 PMCID: PMC4749330 DOI: 10.1371/journal.pone.0149075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. METHODS RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. RESULTS The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). CONCLUSIONS RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.
Collapse
Affiliation(s)
- Qiao Hu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- * E-mail:
| | - Xiao-Yan Wang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li-Ke Kang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hai-Ming Wei
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chun-Mei Xu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Wang
- Department of Otolaryngology-Head & Neck Surgery, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zong-Hua Wen
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
31
|
Withofs N, Hustinx R. Integrin αvβ3 and RGD-based radiopharmaceuticals. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
William Strauss H. Atheroma and the inflammasome. J Nucl Cardiol 2015; 22:1187-90. [PMID: 25698483 DOI: 10.1007/s12350-015-0086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Affiliation(s)
- H William Strauss
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, Room S113A, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|