1
|
Rashed MK, El-Senousy WM, Sayed ETAE, AlKhazindar M. Infectious Pepper Mild Mottle Virus and Human Adenoviruses as Viral Indices in Sewage and Water Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:246-257. [PMID: 35713790 PMCID: PMC9458564 DOI: 10.1007/s12560-022-09525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/27/2022] [Indexed: 05/14/2023]
Abstract
The objective of this study was to compare human adenoviruses (HAdVs) genome and infectivity, polyomaviruses (JC and BK) genome (JCPyVs) and (BKPyVs), Pepper Mild Mottle Virus (PMMoV) genome and infectivity, and infectious bacteriophages as viral indices for sewage and water samples. One hundred and forty-four samples were collected from inlets and outlets of water and wastewater treatment plants (WTPs), and WWTPs within Greater Cairo from October 2015 till March 2017. Two methods of viral concentration [Aluminium hydroxide (Al(OH)3) precipitation method and adsorption-elution technique followed by organic flocculation method] were compared to determine which of them was the best method to concentrate viruses from sewage and water. Although samples with only one litre volume were concentrated using Al(OH)3 precipitation method and the same samples with larger volumes (5-20 L) were concentrated using the adsorption-elution technique followed by the organic flocculation method, a non-significant difference was observed between the efficiency of the two methods in all types of samples except for the drinking water samples. Based on the qualitative prevalence of studied viruses in water and wastewater samples, the number of genome copies and infectious units in the same samples, resistance to treatment processes in water and wastewater treatment plants, higher frequency of both adenoviruses and PMMoV genomes as candidate viral indices in treated sewage and drinking water was observed. The problem of having a viral genome as indices of viral pollution is that it does not express the recent viral pollution because of the longer survivability of the viral genome than the infectious units in water and wastewater. Both infectious adenovirus and infectious phiX174 bacteriophage virus showed similar efficiencies as indices for viral pollution in drinking water and treated sewage samples. On the other hand, qualitative detection of infectious PMMoV failed to express efficiently the presence/absence of infectious enteric viruses in drinking water samples. Infectious adenoviruses and infectious bacteriophage phiX174 virus may be better candidates than adenoviruses genome, polyomaviruses genome, and PMMoV genome and infectivity as viral indices for water and wastewater.
Collapse
Affiliation(s)
- Mohammed Kamal Rashed
- Environmental Virology Lab, Water Pollution Research Department, Environmental and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, P. O. 12622, Dokki, Giza, Egypt
| | - Waled Morsy El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, Environmental and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, P. O. 12622, Dokki, Giza, Egypt
| | | | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Oteiza JM, Prez VE, Pereyra D, Jaureguiberry MV, Sánchez G, Sant'Ana AS, Barril PA. Occurrence of Norovirus, Rotavirus, Hepatitis a Virus, and Enterovirus in Berries in Argentina. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:170-177. [PMID: 35305250 DOI: 10.1007/s12560-022-09518-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Berries have been implicated as the probable vehicle of infection in multiple outbreaks of norovirus and hepatitis A virus (HAV). These foods often receive minimal or no processing and may be exposed to virus contamination at each stage of production. In an increasingly globalized world, berries have a wide distribution and can give rise to the spread of diseases in distant parts of the world. With the aim of describing the virological quality of the berries cultivated in Argentina, a total of 184 soft fruits of different varieties (strawberries, blueberries, raspberries, blackberries, currants, pomegranate arils, cassis, and elder) were collected during the periods 2016-2018 and 2020. Viral particles were eluted and concentrated by polyethylene glycol precipitation according to ISO 15216-2:2019 guidelines. Genome detection of norovirus (NoV) genogroups I (GI) and II (GII), HAV, rotavirus, and enterovirus was performed by real-time RT-PCR with TaqMan probes. Positive samples were amplified by conventional RT-PCR and the amplicons were purified and sequenced in both directions. Phylogenetic analysis was performed using the Neighbor-Joining method based on the evolutionary model Kimura-2-parameters. NoV GII.6 was detected in 1/184 (0.5%) of the soft fruits, corresponding to a raspberry sample obtained during the fall of 2017. No presence of other human enteric viruses was found in the other berries analyzed. The collected data are the first in Argentina in relation to the prevalence of enteric viruses in berries and is useful as reference data for a risk assessment of soft fruits as vehicles of foodborne pathogenic viruses.
Collapse
Affiliation(s)
- Juan Martín Oteiza
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, 8309, Centenario, Neuquen, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica Emilse Prez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Laboratorio de Gastroenteritis Virales, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, 5016, Córdoba, Argentina.
- Laboratorio de Gastroenteritis Virales, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| | - Dayana Pereyra
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, 8309, Centenario, Neuquen, Argentina
| | - María Virginia Jaureguiberry
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, 8309, Centenario, Neuquen, Argentina
| | - Gloria Sánchez
- Departamento de Tecnologías de Conservación y Seguridad Alimentaria, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), C/ Catedrático Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Patricia Angélica Barril
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, 8309, Centenario, Neuquen, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
El-Senousy WM, Shouman M. Human Coronavirus NL63 Among Other Respiratory Viruses in Clinical Specimens of Egyptian Children and Raw Sewage Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:322-328. [PMID: 34086254 PMCID: PMC8176886 DOI: 10.1007/s12560-021-09479-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate human coronavirus NL63 (HCoV-NL63) prevalence among the other respiratory viruses such as parainfluenza, respiratory syncytial virus, and non-enteric adenoviruses in clinical specimens of Egyptian children and raw sewage samples. One hundred clinical specimens were collected from Egyptian children suffering from upper and lower respiratory viral infections in the years 2005-2006 to detect HCoV-NL63 genome using RT-PCR. All the specimens were negative for the virus. Also, a complete absence of HCoV-NL63 genome was observed in the twenty-four raw sewage samples collected from two wastewater treatment plants within Greater Cairo from February 2006 to January 2007. Using nested RT-PCR, parainfluenza virus type 1, respiratory syncytial virus type A, adenovirus type 4, and adenovirus type 7 were detected in 3%, 2%, 5%, and 2% of the clinical specimens, respectively. Of these viruses, only adenovirus type 4 was detected in 1/24 (4.17%) of the raw sewage samples, while a complete absence of the other investigated respiratory viruses was observed in the raw sewage samples. The low percentage of positivity in the clinical specimens, the concentration method of the raw sewage samples, and the indirect routes of transmission may be the reasons for the absence of respiratory viruses in raw sewage samples. On the other hand, enteric adenoviruses were detected in 21/24 (87.5%) of the raw sewage samples with a higher prevalence of adenovirus type 41 than adenovirus type 40. A direct route of transmission of enteric viruses to raw sewage may be the reason for the high positivity percentage of enteric adenoviruses in raw sewage samples.
Collapse
Affiliation(s)
- Waled Morsy El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, Environmental Research Division and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, 12622, Egypt.
| | - Mohamed Shouman
- Pediatric Department, Centre of Medical Excellence, Medical Research Division, NRC, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
6
|
El-Senousy WM, Abu Senna ASM, Mohsen NA, Hasan SF, Sidkey NM. Clinical and Environmental Surveillance of Rotavirus Common Genotypes Showed High Prevalence of Common P Genotypes in Egypt. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:99-117. [PMID: 32279222 PMCID: PMC7224034 DOI: 10.1007/s12560-020-09426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
The objective of this study was to compare the prevalence of human rotavirus group A common G and P genotypes in human Egyptian stool specimens and raw sewage samples to determine the most common genotypes for future vaccine development. From 1026 stool specimens of children with acute diarrhea and using nested RT-PCR, 250 samples (24.37%) were positive for human rotavirus group A. Using multiplex RT-PCR, rotavirus common P and G genotypes were detected as 89.20% and 46.40% of the positive clinical specimens respectively. This low percentage of common G genotypes frequency may affect the efficiency of the available live attenuated oral rotavirus vaccines [Rotarix® (human rotavirus G1P[8]) and RotaTeq® (reassortant bovine-human rotavirus G1-4P[5] and G6P[8])], however the percentage of clinical specimens which were negative for common G genotypes but positive for P[8] genotype was 12.00%. From 24 positive raw sewage samples for rotavirus group A VP6 collected from Zenin and El-Gabal El-Asfar wastewater treatment plants (WWTPs), 21 samples (87.50%) were typeable for common P genotypes while 13 samples (54.17%) were typeable for common G genotypes. Phylogenetic analysis of a VP8 partial gene of 45 P-typeable clinical isolates and 20 P-typeable raw sewage samples showed high similarity to reference strains and the majority of mutations were silent and showed lower to non-significant similarity with the two vaccine strains. This finding is useful for determining the most common antigens required for future vaccine development.
Collapse
Affiliation(s)
- Waled M El-Senousy
- Environmental Virology Lab., Water Pollution Research Department, Environmental Research Division and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth st., Dokki, P.O. 12622, Giza, Egypt.
| | - Amel S M Abu Senna
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Yossuf Abbas st., Nasr city, P.O. 11754, Cairo, Egypt
| | - Nabil A Mohsen
- Pediatrics Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy st, P.O. 11562, Cairo, Egypt
| | - Seham F Hasan
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Yossuf Abbas st., Nasr city, P.O. 11754, Cairo, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Yossuf Abbas st., Nasr city, P.O. 11754, Cairo, Egypt
| |
Collapse
|
7
|
Aboubakr H, Goyal S. Involvement of Egyptian Foods in Foodborne Viral Illnesses: The Burden on Public Health and Related Environmental Risk Factors: An Overview. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:315-339. [PMID: 31560123 DOI: 10.1007/s12560-019-09406-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 05/18/2023]
Abstract
Foodborne viral diseases are a major public health threat and pose a huge burden on the economies of both developed and developing countries. Enteric viruses are the causative agents of most foodborne illnesses and outbreaks. Egypt is classified by WHO among the regions with intermediate to high endemicity for various enteric viruses. This is manifested by the high prevalence rates of different enteric virus infections among Egyptian population such as Hepatitis A and E viruses, human rotaviruses, human noroviruses, human astroviruses, and human adenovirus. Recently, a number of foodborne gastroenteritis and acute hepatitis outbreaks have occurred in the US, Canada, Australia, and the European Union countries. Some of these outbreaks were attributed to the consumption of minimally processed foods imported from Egypt indicating the possibility that Egyptian foods may also be partially responsible for high prevalence of enteric virus infections among Egyptian population. In the absence of official foodborne-pathogen surveillance systems, evaluating the virological safety of Egyptian foods is a difficult task. In this review, we aim to provide a preliminary evaluation of the virological safety of Egyptian foods. A comprehensive review of prevalence studies on enteric virus infections shows hyperendemicity of several enteric viruses in Egypt and provides strong evidence of implication of Egyptian foods in these infections. We also address possible environmental risk factors that may lead to the contamination of Egyptian foods with enteric viruses. In addition, we describe potential obstacles to any plan that might be considered for improving the virological safety of Egyptian foods.
Collapse
Affiliation(s)
- Hamada Aboubakr
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN, 55108, USA.
- Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, 21545, Alexandria, Egypt.
| | - Sagar Goyal
- Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, 21545, Alexandria, Egypt
| |
Collapse
|
8
|
Badur S, Öztürk S, Pereira P, AbdelGhany M, Khalaf M, Lagoubi Y, Ozudogru O, Hanif K, Saha D. Systematic review of the rotavirus infection burden in the WHO-EMRO region. Hum Vaccin Immunother 2019; 15:2754-2768. [PMID: 30964372 PMCID: PMC6930073 DOI: 10.1080/21645515.2019.1603984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus gastroenteritis imposes a heavy burden on low- and middle-income countries. The World Health Organization defines the Eastern Mediterranean region (WHO-EMRO) as a diverse area in terms of socioeconomic status and health indicators. Rotavirus vaccination has been introduced, at least partially, in 19 out of the 22 EM countries; however, vaccine coverage remains low, and data on rotavirus disease burden is scarce.Available data on rotavirus prevalence, seasonality, vaccination status, and genotype evolution was systematically compiled following a literature review that identified 165 relevant WHO-EMRO epidemiology studies published between 1990 and 2017.Although the infectious agents responsible for acute gastroenteritis vary over time, rotavirus remained the leading cause of acute gastroenteritis in children, as seen in 76.3% of reviewed publications. Younger children (<2 years old) were at higher risk and thus increased vaccination coverage and surveillance systems are required to reduce the rotavirus gastroenteritis burden in WHO-EMRO countries.
Collapse
Affiliation(s)
- Selim Badur
- MENA, Medical & Clinical Emerging Markets, GSK, Istanbul, Turkey
| | - Serdar Öztürk
- MENA, Medical & Clinical Emerging Markets, GSK, Istanbul, Turkey
| | - Priya Pereira
- Global Medical Affairs Rota/MMRV, GSK, Wavre, Belgium
| | | | - Mansour Khalaf
- EM Central Vaccines Medical/Clinical, GSK, Jeddah, Saudi Arabia
| | - Youness Lagoubi
- EM Central Vaccines Medical/Clinical, GSK, Casablanca, Morocco
| | - Onur Ozudogru
- EM Central Vaccines Medical/Clinical, GSK, Dubai, United Arab Emirates
| | - Kashif Hanif
- EM Central Vaccines Medical/Clinical, GSK, Karachi, Pakistan
| | - Debasish Saha
- Epidemiology/Health Economics EM, GSK, Wavre, Belgium
| |
Collapse
|
9
|
Fernandez-Cassi X, Timoneda N, Martínez-Puchol S, Rusiñol M, Rodriguez-Manzano J, Figuerola N, Bofill-Mas S, Abril JF, Girones R. Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:870-880. [PMID: 29108696 DOI: 10.1016/j.scitotenv.2017.08.249] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 04/14/2023]
Abstract
The application of next-generation sequencing (NGS) techniques for the identification of viruses present in urban sewage has not been fully explored. This is partially due to a lack of reliable and sensitive protocols for studying viral diversity and to the highly complex analysis required for NGS data processing. One important step towards this goal is finding methods that can efficiently concentrate viruses from sewage samples. Here the application of a virus concentration method based on skimmed milk organic flocculation (SMF) using 10L of sewage collected in different seasons enabled the detection of many viruses. However, some viruses, such as human adenoviruses, could not always be detected using metagenomics, even when quantitative PCR (qPCR) assessments were positive. A targeted metagenomic assay for adenoviruses was conducted and 59.41% of the obtained reads were assigned to murine adenoviruses. However, up to 20 different human adenoviruses (HAdV) were detected by this targeted assay being the most abundant HAdV-41 (29.24%) and HAdV-51 (1.63%). To improve metagenomics' sensitivity, two different protocols for virus concentration were comparatively analysed: an ultracentrifugation protocol and a lower-volume SMF protocol. The sewage virome contained 41 viral families, including pathogenic viral species from families Caliciviridae, Adenoviridae, Astroviridae, Picornaviridae, Polyomaviridae, Papillomaviridae and Hepeviridae. The contribution of urine to sewage metavirome seems to be restricted to a few specific DNA viral families, including the polyomavirus and papillomavirus species. In experimental infections with sewage in a rhesus macaque model, infective human hepatitis E and JC polyomavirus were identified. Urban raw sewage consists of the excreta of thousands of inhabitants; therefore, it is a representative sample for epidemiological surveillance purposes. The knowledge of the metavirome is of significance to public health, highlighting the presence of viral strains that are circulating within a population while acting as a complex matrix for viral discovery.
Collapse
Affiliation(s)
- X Fernandez-Cassi
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain.
| | - N Timoneda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - S Martínez-Puchol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - M Rusiñol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - N Figuerola
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - S Bofill-Mas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J F Abril
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - R Girones
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
El-Senousy WM, Abdel-Moneim A, Abdel-Latif M, El-Hefnawy MH, Khalil RG. Coxsackievirus B4 as a Causative Agent of Diabetes Mellitus Type 1: Is There a Role of Inefficiently Treated Drinking Water and Sewage in Virus Spreading? FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:89-98. [PMID: 29022248 DOI: 10.1007/s12560-017-9322-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/03/2017] [Indexed: 05/09/2023]
Abstract
This study proposed to detect the enterovirus (EV) infection in children with type 1 diabetes mellitus (T1D) and to assess the role of insufficiently treated water and sewage as sources of viral spreading. Three hundred and eighty-two serum specimens of children with T1D, one hundred serum specimens of children who did not suffer from T1D as control, and forty-eight water and sewage samples were screened for EV RNA using nested RT-PCR. The number of genome copies and infectious units of EVs in raw and treated sewage and water samples were investigated using real-time (RT)-PCR and plaque assay, respectively. T1D markers [Fasting blood glucose (FBG), HbA1c, and C-peptide], in addition to anti-Coxsackie A & B viruses (CVs A & B) IgG, were measured in control, T1D-negative EV (T1D-EV-), and T1D-positive EV (T1D-EV+) children specimens. The prevalence of EV genome was significantly higher in diabetic children (26.2%, 100 out of 382) than the control children (0%, 0 out of 100). FBG and HbA1c in T1D-EV- and T1D-EV+ children specimens were significantly higher than those in the control group, while c-peptide in T1D-EV- and T1D-EV+ children specimens was significantly lower than that in the control (n = 100; p < 0.001). Positivity of anti-CVs A & B IgG was 70.7, 6.7, and 22.9% in T1D-EV+, T1D-EV-, and control children specimens, respectively. The prevalence of EV genome in drinking water and treated sewage samples was 25 and 33.3%, respectively. The prevalence of EV infectious units in drinking water and treated sewage samples was 8.5 and 25%, respectively. Quantification assays were performed to assess the capabilities of both wastewater treatment plants (WWTPs) and water treatment plants (WTPs) to remove EV. The reduction of EV genome in Zenin WWTP ranged from 2 to 4 log10, while the reduction of EV infectious units ranged from 1 to 4 log10. The reduction of EV genome in El-Giza WTP ranged from 1 to 3 log10, while the reduction of EV infectious units ranged from 1 to 2 log10. This capability of reduction did not prevent the appearance of infectious EV in treated sewage and drinking water. Plaque purification was performed for isolation of separate EV isolates from treated and untreated water and sewage samples. Characterization of the EV amplicons by RT-PCR followed by sequencing of these isolates revealed high homology (97%) with human coxsackievirus B4 (CV B4) in 60% of the isolates, while the rest of the isolates belonged to poliovirus type 1 and type 2 vaccine strains. On the other hand, characterization of the EV amplicons by RT-PCR followed by sequencing for T1D-EV+ children specimens indicated that all samples contained CV B4 with the same sequence characterized in the environmental samples. CV B4-contaminated drinking water or treated sewage may play a role as a causative agent of T1D in children.
Collapse
Affiliation(s)
- Waled M El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, National Research Centre (NRC), El Bohouth st., Dokki, Giza, 12622, Egypt.
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud Abdel-Latif
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed H El-Hefnawy
- Department of Pediatric, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Rehab G Khalil
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
11
|
Zaraket H, Charide R, Kreidieh K, Dbaibo G, Melhem NM. Update on the epidemiology of rotavirus in the Middle East and North Africa. Vaccine 2017; 35:6047-6058. [PMID: 28986034 DOI: 10.1016/j.vaccine.2017.09.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/07/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Rotavirus (RV) is the leading cause of severe acute gastroenteritis (AGE) worldwide. Consequently, we conducted a systematic literature review on articles studying RV in the 25 countries of the MENA region during the past 15years (2000-2015). The methods and reporting were set according to the 2015 preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) and based on the elements from the international prospective register of systematic reviews (PROSPERO). Our literature search identified 169 studies meeting our predefined inclusion criteria. Studies reporting on RV were conducted in 19 out of the 24 countries of the MENA region. The largest number of studies was reported in Turkey (n=32), Iran (n=31), Saudi Arabia (n=19) and Egypt (n=17). The majority of studies reporting on RV gastroenteritis rates were clinical observational studies. In 115 studies out of 169, RV was reported among in-patients whereas 35 studies reported RV among outpatients. The predominantly reported RV genotype in the region was G1[P8] followed by G2[P4] and G9[P8]. The majority of studies (n=108) were conducted among children less than 5years of age whereas the remaining studies reported on AGE among other age groups and rarely adults. In MENA countries, RV infection was reported all year round with peaks described in cold as well as hot months. This systematic review provides a current update on the epidemiology of RV-associated gastroenteritis in countries of the MENA region and draws attention to the major gaps existing in the continuous monitoring of RV.
Collapse
Affiliation(s)
- Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana Charide
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Khalil Kreidieh
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon; Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada M Melhem
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Parada-Fabián JC, Juárez-García P, Natividad-Bonifacio I, Vázquez-Salinas C, Quiñones-Ramírez EI. Identification of Enteric Viruses in Foods from Mexico City. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:215-220. [PMID: 27221088 DOI: 10.1007/s12560-016-9244-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Foodborne viruses are a common and, probably, the most under-recognized cause of outbreaks of gastroenteritis. Among the main foods involved in the transmission of human enteric viruses are mollusks, and fruits and vegetables irrigated with wastewater and/or washed with non-potable water or contaminated by contact with surfaces or hands of the infected personnel during its preparation. In this study, 134 food samples were analyzed for the detection of Norovirus, Rotavirus, and Hepatitis A virus (HAV) by amplification of conserved regions of these viruses. From the 134 analyzed samples, 14 were positive for HAV, 6 for Norovirus, and 11 for Rotavirus. This is the first report in Mexico where emphasis is given to the presence of HAV and Norovirus on perishable foods and food from fisheries, as well as Rotavirus on frozen vegetables, confirming the role of vegetables and bivalve mollusks as transmitting vehicles of enteric viruses.
Collapse
Affiliation(s)
- José Carlos Parada-Fabián
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Patricia Juárez-García
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Iván Natividad-Bonifacio
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Carlos Vázquez-Salinas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, C.P. 09340, Mexico City, Mexico
| | - Elsa Irma Quiñones-Ramírez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
13
|
Abstract
Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families - Cystoviridae, Orthomyxoviridae and Reoviridae - and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.
Collapse
|