1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
Denes V, Lukats A, Szarka G, Subicz R, Mester A, Kovacs-Valasek A, Geck P, Berta G, Herczeg R, Postyeni E, Gyenesei A, Gabriel R. Long-term Effects of the pituitary-adenylate cyclase-activating Polypeptide (PACAP38) in the Adult Mouse Retina: Microglial Activation and Induction of Neural Proliferation. Neurochem Res 2023; 48:3430-3446. [PMID: 37466802 PMCID: PMC10514177 DOI: 10.1007/s11064-023-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary.
| | - Akos Lukats
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Rovena Subicz
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Adrienn Mester
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Andrea Kovacs-Valasek
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Peter Geck
- Department of Medical Education, School of Medicine, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Etelka Postyeni
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Robert Gabriel
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| |
Collapse
|
3
|
Patko E, Szabo E, Vaczy A, Molitor D, Tari E, Li L, Csutak A, Toth G, Reglodi D, Atlasz T. Protective Effects of Pituitary Adenylate-Cyclase-Activating Polypeptide on Retinal Vasculature and Molecular Responses in a Rat Model of Moderate Glaucoma. Int J Mol Sci 2023; 24:13256. [PMID: 37686074 PMCID: PMC10487862 DOI: 10.3390/ijms241713256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Despite the high probability of glaucoma-related blindness, its cause is not fully understood and there is no efficient therapeutic strategy for neuroprotection. Vascular factors have been suggested to play an important role in glaucoma development and progression. Previously, we have proven the neuroprotective effects of pituitary adenylate-cyclase-activating polypeptide (PACAP) eye drops in an inducible, microbeads model in rats that is able to reproduce many clinically relevant features of human glaucoma. In the present study, we examined the potential protective effects of PACAP1-38 on the retinal vasculature and the molecular changes in hypoxia. Ocular hypertension was induced by injection of microbeads into the anterior chamber, while control rats received PBS. PACAP dissolved in vehicle (1 µg/drop) or vehicle treatment was started one day after the injections for four weeks three times a day. Retinal degeneration was assessed with optical coherence tomography (OCT), and vascular and molecular changes were assessed by immunofluorescence labeling. HIF1-α and VEGF-A protein levels were measured by Western blot. OCT images proved severe retinal degeneration in the glaucomatous group, while PACAP1-38 eye drops had a retinoprotective effect. Vascular parameters were deteriorated and molecular analysis suggested hypoxic conditions in glaucoma. PACAP treatment exerted a positive effect against these alterations. In summary, PACAP could prevent the severe damage to the retina and its vasculature induced by ocular hypertension in a microbeads model.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Dorottya Molitor
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Eniko Tari
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Lina Li
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Clinical Centre, Medical School, University of Pecs, 7632 Pecs, Hungary
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, ELKH-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary
- Department of Sportbiology, Faculty of Sciences, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
4
|
Maugeri G, D'Amico AG, Magrì B, Giunta S, Musumeci G, Saccone S, Federico C, Scollo D, Longo A, Avitabile T, D'Agata V. Regulation of UV-B-Induced Inflammatory Mediators by Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) in Corneal Epithelium. Int J Mol Sci 2023; 24:ijms24086895. [PMID: 37108060 PMCID: PMC10139171 DOI: 10.3390/ijms24086895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The corneal epithelium, representing the outermost layer of the cornea, acts as a barrier to protect the eye against external insults such as ultraviolet B (UV-B) radiations. The inflammatory response induced by these adverse events can alter the corneal structure, leading to visual impairment. In a previous study, we demonstrated the positive effects of NAP, the active fragment of activity-dependent protein (ADNP), against oxidative stress induced by UV-B radiations. Here, we investigated its role to counteract the inflammatory event triggered by this insult contributing to the disruption of the corneal epithelial barrier. The results indicated that NAP treatment prevents UV-B-induced inflammatory processes by affecting IL-1β cytokine expression and NF-κB activation, as well as maintaining corneal epithelial barrier integrity. These findings may be useful for the future development of an NAP-based therapy for corneal disease.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Section of System Biology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Benedetta Magrì
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Scollo
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Activity-Dependent Neuroprotective Protein (ADNP): An Overview of Its Role in the Eye. Int J Mol Sci 2022; 23:ijms232113654. [PMID: 36362439 PMCID: PMC9658893 DOI: 10.3390/ijms232113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Vision is one of the dominant senses in humans and eye health is essential to ensure a good quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein (ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular pathologies, while providing an overview of eye anatomy.
Collapse
|
6
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
7
|
Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier JM, Fajloun Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2022; 151:170713. [PMID: 34929264 DOI: 10.1016/j.peptides.2021.170713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.
Collapse
Affiliation(s)
- Mireille Tabikh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Charbel Chahla
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Nathalie Okdeh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Herve Kovacic
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France
| | - Jean-Marc Sabatier
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France.
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon; Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon.
| |
Collapse
|
8
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
9
|
Effects of pituitary adenylate cyclase activating polypeptide (PACAP) in corneal epithelial regeneration and signal transduction in rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCorneal epithelium responds to insults with a rapid wound healing, which is essential for maintaining vision. The proper balance of apoptotic and proliferation-stimulating pathways is critical for normal regeneration. Pituitary adenylate cyclase activating polypeptide (PACAP) is an important growth factor during the development of the nervous system and exerts cytoprotective effects in injuries. The aim of the present study was to investigate the effects of PACAP on corneal epithelial wound healing in rats and on two important protective signaling molecules, Akt and ERK1/2, both of which have been reported to play important roles during cell survival and regeneration, including corneal wound healing. Wistar rats received PACAP treatment in form of eyedrops, containing 1, 5 and 10 µg PACAP27, immediately and every two hours after corneal abrasion. Corneas were stained with fluorescein dye and further processed for histological staining or Western blot analysis for Akt and ERK1/2 expression. Our results showed that topical PACAP application enhanced corneal wound healing, as the area of injury was significantly less in PACAP-treated groups. Furthermore, both ERK1/2 and Akt signaling was induced upon PACAP administration in both injured and intact corneas. In summary, the present results show that PACAP enhances corneal wound healing in a rat model of corneal abrasion.
Collapse
|
10
|
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022; 10:biomedicines10040877. [PMID: 35453627 PMCID: PMC9031102 DOI: 10.3390/biomedicines10040877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell–cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3′ splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Correspondence:
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Pituitary Adenylate Cyclase-Activating Polypeptide Protects Corneal Epithelial Cells against UV-B-Induced Apoptosis via ROS/JNK Pathway Inhibition. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PACAP is widely expressed throughout the body. It exerts a beneficial role in the eye, including the cornea. The corneal epithelium is regularly exposed to diverse types of insults, including ultraviolet B (UV-B) radiation. Previously, we showed the protective role played by PACAP in counteracting UV-B ray insults in human corneal endothelial cells; however, its involvement in corneal epithelium protection against ROS induced by UV-B radiation, and the underlying mechanisms, remain to be determined. Here, we demonstrated that the peptide treatment reduced UV-B-induced ROS generation by playing an anti-apoptotic role via JNK-signaling pathway inhibition. Overall, our results can provide guidance in the therapeutic use of PACAP for the treatment of epithelial corneal damage.
Collapse
|
12
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
13
|
A Broad Overview on Pituitary Adenylate Cyclase-Activating Polypeptide Role in the Eye: Focus on Its Repairing Effect in Cornea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the central and peripheral nervous system as well as in many other peripheral organs. It plays cytoprotective effects mediated mainly through the activation of specific receptors. PACAP is known to play pleiotropic effects on the eye, including the cornea, protecting it against different types of insult. This review firstly provides an overview of the anatomy of the cornea and summarizes data present in literature about PACAP’s role in the eye and, in particular, in the cornea, either in physiological or pathological conditions.
Collapse
|
14
|
Hirabayashi T, Shibato J, Kimura A, Yamashita M, Takenoya F, Shioda S. Potential Therapeutic Role of Pituitary Adenylate Cyclase-Activating Polypeptide for Dry Eye Disease. Int J Mol Sci 2022; 23:664. [PMID: 35054857 PMCID: PMC8775530 DOI: 10.3390/ijms23020664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022] Open
Abstract
Dry eye disease (DED) is caused by a reduction in the volume or quality of tears. The prevalence of DED is estimated to be 100 million in the developed world. As aging is a risk factor for DED, the prevalence of DED is expected to grow at a rapid pace in aging populations, thus creating an increased need for new therapies. This review summarizes DED medications currently in clinical use. Most current medications for DED focus on stimulating tear secretion, mucin secretion, or suppressing inflammation, rather than simply replenishing the ocular surface with moisture to improve symptoms. We recently reported that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) induces tear secretion and suppresses corneal injury caused by a reduction in tears. Moreover, it has been reported that a PACAP in water and a 0.9% saline solution at +4 °C showed high stability and achieved 80-90% effectiveness after 2 weeks of treatment. These results reveal PACAP as a candidate DED medication. Further research on the clinical applications of PACAP in DED is necessary.
Collapse
Affiliation(s)
- Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Junko Shibato
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Ai Kimura
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| |
Collapse
|
15
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
16
|
Yamamoto Y, Otsuka A, Ishida Y, Wong LS, Seidel JA, Nonomura Y, Nakashima C, Nakajima S, Kitoh A, Nomura T, Dainichi T, Honda T, Amano W, Konishi N, Hayashi M, Matsushita M, Kabashima K. Pituitary adenylate cyclase-activating polypeptide promotes cutaneous dendritic cell functions in contact hypersensitivity. J Allergy Clin Immunol 2021; 148:858-866. [PMID: 33609627 DOI: 10.1016/j.jaci.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting on local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified. OBJECTIVE This study aimed to explore the effect of peripheral nerves on cutaneous immune cells in cutaneous acquired immune responses. METHODS We analyzed contact hypersensitivity (CHS) responses as a murine model of delayed-type hypersensitivity in absence or presence of resiniferatoxin-induced sensory nerve denervation. We conducted ear thickness measurements, flow cytometric analyses, and mRNA expression analyses in CHS. RESULTS CHS responses were attenuated in mice that were denervated during the sensitization phase of CHS. By screening neuropeptides, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA expression was decreased in the dorsal root ganglia after denervation. Administration of PACAP restored attenuated CHS response in resiniferatoxin-treated mice, and pharmacological inhibition of PACAP suppressed CHS. Flow cytometric analysis of skin-draining lymph nodes showed that cutaneous dendritic cell migration and maturation were reduced in both denervated mice and PACAP antagonist-treated mice. The expression of chemokine receptors CCR7 and CXCR4 of dendritic cell s was enhanced by addition of PACAP in vitro. CONCLUSION These findings indicate that a neuropeptide PACAP promotes the development of CHS responses by inducing cutaneous dendritic cell functions during the sensitization phase.
Collapse
Affiliation(s)
- Yasuo Yamamoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Translational Research Department for Skin and Brain Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Lai San Wong
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Judith A Seidel
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumi Nonomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wataru Amano
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Noriko Konishi
- Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Mikio Hayashi
- Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | | | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network and Skin Research Institute of Singapore, Technology and Research, Biopolis, Singapore.
| |
Collapse
|
17
|
Szabo E, Patko E, Vaczy A, Molitor D, Csutak A, Toth G, Reglodi D, Atlasz T. Retinoprotective Effects of PACAP Eye Drops in Microbead-Induced Glaucoma Model in Rats. Int J Mol Sci 2021; 22:8825. [PMID: 34445531 PMCID: PMC8396165 DOI: 10.3390/ijms22168825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Glaucoma is associated with increased intraocular pressure (IOP), causing the apoptosis of retinal ganglion cells (RGCs) and the loss of their axons leading to blindness. Pituitary adenylate cyclase activating polypeptide (PACAP) is neuroprotective in several neural injuries, including retinopathies. The aim of this study was to investigate the effects of PACAP1-38 eye drops in a model of glaucoma. IOP was elevated bilaterally by injections of microbeads to block the aqueous humor outflow. The control groups received the same volume of saline. Animals were treated with PACAP1-38 (1 µg/drop, 3 × 1 drop/day) or vehicle for 4 weeks starting one day after the injections. Retinal morphology by histology and optical coherence tomography, function by electroretinography, and IOP changes were analyzed. Animals were sacrificed 8 weeks after the injections. Microbeads injections induced a significant increase in the IOP, while PACAP1-38 treatment lowered it to normal levels (~10 mmHg). Significant retinal degeneration and functional impairment were observed in the microbead-injected group without PACAP1-38 treatment. In the microbeads + PACAP1-38 group, the retinal morphology and functionality were close to the normal values. In summary, our results show that PACAP1-38, given in form of eye drops, is neuroprotective in glaucoma, providing the basis for potential future therapeutic administration.
Collapse
Affiliation(s)
- Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
| | - Evelin Patko
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
| | - Alexandra Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
| | - Dorottya Molitor
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
| | - Adrienne Csutak
- Department of Ophthalmology, Clinical Centre, University of Pecs Medical School, 7632 Pecs, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, 7624 Pecs, Hungary; (E.S.); (E.P.); (A.V.); (D.M.); (D.R.)
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
- Department of Sportbiology, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
18
|
Fábián E, Horváth G, Opper B, Atlasz T, Tóth G, Reglődi D. PACAP is Protective Against Cellular Stress in Retinal Pigment Epithelial Cells. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe integrity of the innermost, pigment epithelial layer of the retina is crucial for the photoreceptor survival and for maintaining the outer blood–retina barrier. In several ocular degenerations, such as diabetic retinopathy or macular edema, the stress caused by various harmful stimuli (hypoxia, oxidative stress, hyperosmosis) lead to severe molecular biological changes in this layer, promoting neovascularization of the retina. Pituitary adenylate cyclase activating polypeptide (PACAP) occurs throughout the whole body, including the eye. It has numerous functions in the retina, including the previously described anti-apoptotic and anti-angiogenic effects in retinal pigment epithelial cells. The aim of this present study was to investigate the influence of PACAP on different stress factors. In accordance with previous findings, PACAP significantly ameliorated the increased Hif1-α levels in hypoxic conditions. In H2O2-induced oxidative stress PACAP had an anti-apoptotic effect, it could decrease the expression of cytochrome-c and p53, while it upregulated the concentration of three antioxidants, namely SOD2, PON2 and thioredoxin. In conclusion, we provided new information on the molecular biological background of the retinoprotective effect of PACAP.
Collapse
|
19
|
Delivery Systems of Retinoprotective Proteins in the Retina. Int J Mol Sci 2021; 22:ijms22105344. [PMID: 34069505 PMCID: PMC8160820 DOI: 10.3390/ijms22105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Retinoprotective proteins play important roles for retinal tissue integrity. They can directly affect the function and the survival of photoreceptors, and/or indirectly target the retinal pigment epithelium (RPE) and endothelial cells that support these tissues. Retinoprotective proteins are used in basic, translational and in clinical studies to prevent and treat human retinal degenerative disorders. In this review, we provide an overview of proteins that protect the retina and focus on pigment epithelium-derived factor (PEDF), and its effects on photoreceptors, RPE cells, and endothelial cells. We also discuss delivery systems such as pharmacologic and genetic administration of proteins to achieve photoreceptor survival and retinal tissue integrity.
Collapse
|
20
|
Van Der Meulen KL, Vöcking O, Weaver ML, Meshram NN, Famulski JK. Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity During Zebrafish Ocular Anterior Segment Development. Front Cell Dev Biol 2020; 8:379. [PMID: 32528955 PMCID: PMC7266958 DOI: 10.3389/fcell.2020.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Assembly of the ocular anterior segment (AS) is a critical event during development of the vertebrate visual system. Failure in this process leads to anterior segment dysgenesis (ASD), which is characterized by congenital blindness and predisposition to glaucoma. The anterior segment is largely formed via a neural crest-derived population, the Periocular Mesenchyme (POM). In this study, we aimed to characterize POM behaviors and transcriptional identities during early establishment of the zebrafish AS. Two-color fluorescent in situ hybridization suggested that early AS associated POM comprise of a heterogenous population. In vivo and time-course imaging analysis of POM distribution and migratory dynamics analyzed using transgenic zebrafish embryos (Tg[foxc1b:GFP], Tg[foxd3:GFP], Tg[pitx2:GFP], Tg[lmx1b.1:GFP], and Tg[sox10:GFP]) revealed unique AS distribution and migratory behavior among the reporter lines. Based on fixed timepoint and real-time analysis of POM cell behavior a comprehensive model for colonization of the zebrafish AS was assembled. Furthermore, we generated single cell transcriptomic profiles (scRNA) from our POM reporter lines and characterized unique subpopulation expression patterns. Based on scRNA clustering analysis we observed cluster overlap between neural crest associated (sox10/foxd3), POM (pitx2) and finally AS specified cells (lmx1b, and foxc1b). scRNA clustering also revealed several novel markers potentially associated with AS development and/or function including lum, fmoda, adcyap1b, tgfbi, and hmng2. Taken together, our data indicates that AS-associated POM, or Anterior Segment Mesenchyme (ASM), is not homogeneous but rather comprised of several subpopulations with differing colonization patterns, migration behavior, and transcriptomic profiles.
Collapse
Affiliation(s)
| | - Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Nishita N Meshram
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Maugeri G, D'Amico AG, Amenta A, Saccone S, Federico C, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, Longo A, D'Agata V. Protective effect of PACAP against ultraviolet B radiation-induced human corneal endothelial cell injury. Neuropeptides 2020; 79:101978. [PMID: 31791645 DOI: 10.1016/j.npep.2019.101978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The human cornea, a sophisticated example of natural engineering, is composed in the innermost layer by endothelial cells maintaining stromal hydration and clarity. Different types of insults, including ultraviolet (UV) radiations, can lead to corneal opacity due to their degenerative and limited proliferative capability. In our previous studies, we have shown the protective effects of pituitary adenylate cyclase activating polypeptide (PACAP) in human corneal endothelial cells (HCECs), after growth factors deprivation. The aim of the present work has been to investigate the effect of this peptide on UV-B-induced HCECs injury. The results have shown that UV-B irradiations induced apoptotic cells death and consequently alteration in human corneal endothelial barrier. We found that PACAP treatment significantly increased viability, trans-endothelial electrical resistance and tight junctions expression of HCECs exposed to UV-B insult. In conclusion, data have suggested that this peptide could have protective effect to preserve the physiological state of human corneal endothelium exposed to UV-B damage.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Alessia Amenta
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Vincenza Bonfiglio
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy.
| |
Collapse
|
22
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
24
|
Zhu XX, Weng LJ, Qian XW, Huang CY, Yao WF, Lu YL. Decreased Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Levels Were Linked with Disease Severity of Postmenopausal Osteoporosis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09937-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Maugeri G, D'Amico AG, Bucolo C, D'Agata V. Protective effect of PACAP-38 on retinal pigmented epithelium in an in vitro and in vivo model of diabetic retinopathy through EGFR-dependent mechanism. Peptides 2019; 119:170108. [PMID: 31247223 DOI: 10.1016/j.peptides.2019.170108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes. In the last years, several in vivo studies have demonstrated the protective role of pituitary adenylate cyclase-activating peptide (PACAP-38) to counteract several alterations occurring during DR. Recently, different studies have demonstrated that some PACAP-38 effects are mediated by EGFR trans-activation, although no data exist regarding the link between this peptide and EGFR in DR. The aim of the present study has been to investigate whether retinal effect of PACAP-38 against high glucose damage is mediated by EGFR phosphorylation. Diabetes was induced by a single injection of streptozotocin (STZ) in rats. After 1 week, a group of animals was treated with a single intravitreal injection of 100 μM PACAP-38 or saline solution. Immunohistochemistry and western blot analysis have demonstrated that intravitreal injection of PACAP-38 induced p-EGFR over-expression in retina of diabetic rats. Several pathogenic mechanisms may contribute to diabetic retinopathy including BRB alteration. To better clarify the relationship between PACAP-38 and EGFR, we have also carried out a study on ARPE-19 cells, representing a model in vitro of outer BRB. Our results have shown that PACAP-38 treatment improved cell viability in ARPE-19 cells exposed to hyperglycemic/hypoxic insult mimicking tissue microenvironment occurring in DR. Binding to PAC1R, peptide induces EGFR phosphorylation via PKA-signaling cascade stimulation. EGFR trans-activation triggers MAPK/ERK signaling pathway involved in cell survival and proliferation. In conclusion, data have suggested that PACAP-38 acts through EGFR phosphorylation in DR and this effect particularly occurs on RPE layer.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Agata Grazia D'Amico
- San Raffaele Open University of Rome, Department of Human Science and Promotion of quality of Life, Italy
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
26
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
27
|
Denes V, Hideg O, Nyisztor Z, Lakk M, Godri Z, Berta G, Geck P, Gabriel R. The Neuroprotective Peptide PACAP1-38 Contributes to Horizontal Cell Development in Postnatal Rat Retina. Invest Ophthalmol Vis Sci 2019; 60:770-778. [PMID: 30795011 DOI: 10.1167/iovs.18-25719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose PACAP1-38, a member of the secretin/glucagon superfamily, is expressed in the developing retina with documented neuroprotective effects. However, its function in retinal cell differentiation has yet to be elucidated. Our goals, therefore, were to identify PAC1 expressing cells morphologically, investigate the PACAP1-38 action functionally, and establish PACAP1-38 regulated events developmentally during the first postnatal week in rat retina. Methods P1 retinal sections or whole mounts of Wistar rats were used to reveal PAC1 and calbindin immunoreactive structures. P1, P3, or P7 pups were injected intravitreally with 100 pmol PACAP1-38. Tissues were harvested 24 hours post-treatment, then processed for calbindin immunohistochemistry to determine horizontal cell number, or 6, 12, 24 hours post-treatment for real-time PCR and immunoblots to detect PCNA expression. To localize proliferating cells, anti-PCNA antibody was applied. Results We showed various PAC1 expressing cells in RPE, NBL, and GCL in P1 retina including calbindin positive horizontal cells. We found that PACAP1-38 induced a marked cell number increase at P3 and P7 and showed upregulated cell proliferation as its mechanism; however, it was ineffective at P1. PACAP1-38 induced proliferative cells localized in the NBL, and double-marker studies demonstrated that the induced proliferative cells were horizontal cells. Conclusions PACAP1-38 appears to act in retinal differentiation by inducing mitosis selectively in a time and cell specific manner through PAC1. The control of horizontal cell proliferation raises the novel possibilities that (1) PACAP1-38 may be a major player in retinal patterning and (2) PACAP signaling may be critical in retinoblastoma.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Zoltan Godri
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
28
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2019. [PMID: 30542799 DOI: 10.1007/s12031-018-1229-5/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, Pecs, Hungary.
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
29
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
30
|
Nakamachi T, Tanigawa A, Konno N, Shioda S, Matsuda K. Expression Patterns of PACAP and PAC1R Genes and Anorexigenic Action of PACAP1 and PACAP2 in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:227. [PMID: 31031705 PMCID: PMC6473066 DOI: 10.3389/fendo.2019.00227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with potent suppressive effects on feeding behavior in rodents, chicken, and goldfish. Teleost fish express two PACAPs (PACAP1, encoded by the adcyap1a gene, and PACAP2, encoded by the adcyap1b gene) and two PACAP receptors (PAC1Rs; PAC1Ra, encoded by the adcyap1r1a gene, and PAC1Rb, encoded by the adcyap1r1b gene). However, the mRNA expression patterns of the two PACAPs and PAC1Rs, and the influence and relationship of the two PACAPs on feeding behavior in teleost fish remains unclear. Therefore, we first examined mRNA expression patterns of PACAP and PAC1R in tissue and brain. All PACAP and PAC1Rs mRNAs were dominantly expressed in the zebrafish brain. However, adcyap1a mRNA was also detected in the gut and testis. In the brain, adcyap1b and adcyap1r1a mRNA levels were greater than that of adcyap1a and adcyap1r1b, respectively. Moreover, adcyap1b and adcyap1r1a mRNA were dominantly expressed in telencephalon and diencephalon. The highest adcyap1a mRNA levels were detected in the brain stem and diencephalon, while the highest levels of adcyap1r1b were detected in the cerebellum. To clarify the relationship between PACAP and feeding behavior in the zebrafish, the effects of zebrafish (zf) PACAP1 or zfPACAP2 intracerebroventricular (ICV) injection were examined on food intake, and changes in PACAP mRNA levels were assessed against feeding status. Food intake was significantly decreased by ICV injection of zfPACAP1 (2 pmol/g body weight), zfPACAP2 (2 or 20 pmol/g body weight), or mammalian PACAP (2 or 20 pmol/g). Meanwhile, the PACAP injection group did not change locomotor activity. Real-time PCR showed adcyap1 mRNA levels were significantly increased at 2 and 3 h after feeding compared with the pre-feeding level, but adcyap1b, adcyap1r1a, and adcyap1r1b mRNA levels did not change after feeding. These results suggest that the expression levels and distribution of duplicated PACAP and PAC1R genes are different in zebrafish, but the anorexigenic effects of PACAP are similar to those seen in other vertebrates.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- *Correspondence: Tomoya Nakamachi
| | - Ayano Tanigawa
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, Tokyo, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2018; 68:397-407. [PMID: 30542799 PMCID: PMC6581923 DOI: 10.1007/s12031-018-1229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Pecs, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
32
|
Maugeri G, D'Amico AG, Castrogiovanni P, Saccone S, Federico C, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, Longo A, D'Agata V. PACAP through EGFR transactivation preserves human corneal endothelial integrity. J Cell Biochem 2018; 120:10097-10105. [PMID: 30548314 DOI: 10.1002/jcb.28293] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Abstract
The corneal endothelium is composed of a single hexagonal-shaped cells layer adherent to the Descemet's membrane. The primary function of these cells is maintaining of tissue clarity by regulating its hydration. Trauma, aging or other pathologies cause their loss, counterbalanced by enlargement of survived cells unable to guarantee an efficient fluid pumping to and from the stroma. Regenerative medicine using human corneal endothelial cells (HCECs) isolated from peripheral corneal-scleral tissue of a donor could be an attractive solution, overcoming transplantation problems. In a previous study, we have demonstrated that HCECs treatment with pituitary adenylate cyclase-activating polypeptide (PACAP) following growth factors deprivation prevents their degeneration. However, the molecular mechanism mediating this effect has not been clarified, yet. Here, we have shown for the first time the expression of PACAP and its receptor (PAC1R) in human corneal endothelium and demonstrated that this peptide, selectively binding to PAC1R, induces epidermal growth factor receptor (EGFR) phosphorylation and the MAPK/ERK1/2 signaling pathway activation. In conclusion, our data have suggested that PACAP could represent an important trophic factor in maintaining human corneal endothelial integrity through EGFR transactivation. Therefore, PACAP, as well as epidermal growth factor and fibroblast growth factor, could co-operate to guarantee tissue physiological functioning by supporting corneal endothelial barrier integrity.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Vincenza Bonfiglio
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H, Huang J. Spatiotemporal Expression Changes of PACAP and Its Receptors in Retinal Ganglion Cells After Optic Nerve Crush. J Mol Neurosci 2018; 68:465-474. [PMID: 30415445 DOI: 10.1007/s12031-018-1203-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been demonstrated to play a crucial part in protecting retinal ganglion cells (RGCs) from apoptosis in various retinal injury animal models. PACAP has two basic groups of receptors: PACAP receptor type 1 (PAC1R) and vasoactive intestinal polypeptide/PACAP receptors (VPAC1R and VPAC2R). However, few studies illustrated the spatial and temporal expression changes of endogenous PACAP and its receptors in a rodent optic nerve crush (ONC) model. In this study, a significant upregulation of PACAP and PAC1R in the retina after ONC was observed in both protein and RNA levels. The peak level of PACAP and PAC1R expression could be found on the fifth day following ONC. In addition, immunofluorescent labeling indicated that PACAP and PAC1R were localized mainly in RGCs. On the contrary, VPAC1R and VPAC2R were hardly detected in the retina. Collectively, the spatiotemporal expression of PACAP and its high-affinity receptor PAC1R were remarkably changed after ONC, and mainly expressed in the ganglion cell layer of the retina. This suggested that the upregulation of PACAP and PAC1R may play a vital role in RGC death after ONC.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Effects of PACAP on Dry Eye Symptoms, and Possible Use for Therapeutic Application. J Mol Neurosci 2018; 68:420-426. [PMID: 29931503 DOI: 10.1007/s12031-018-1087-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.
Collapse
|
35
|
Nyisztor Z, Denes V, Kovacs-Valasek A, Hideg O, Berta G, Gabriel R. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP1-38) Exerts Both Pro and Anti-Apoptotic Effects on Postnatal Retinal Development in Rat. Neuroscience 2018; 385:59-66. [PMID: 29906550 DOI: 10.1016/j.neuroscience.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
PACAP1-38, a ubiquitous and multifunctional regulator has been in the focus of neurotoxicity research due to its impressive neuroprotective potential. Although the literature extensively demonstrated its repressive effect on the apoptotic machinery in neurodegenerative models, there is a striking absence of analysis on its role in normal development. We performed quantitative analyses on caspase activity in developing retina upon 100, 50, 25 or 1 pmol intravitreal PACAP1-38 injection from postnatal day 1 (P1) through P7 in Wistar rats. Retinas were harvested at 6, 12, 18, 24 or 48 h post-injection. Apoptotic activity was revealed using fluorescent caspase 3/7 enzyme assay, western blots and TUNEL assay. Unexpectedly, we found that 100 pmol PACAP1-38 increased the activity of caspase 3/7 at P1 and P5 whereas it had no effect at P7. At P3, as a biphasic effect, PACAP1-38 repressed active caspase 3/7 at 18 h post-injection while increased their activity in 24 h post-injection. Amounts, smaller than 100 pmol, could not inhibit apoptosis whereas 50, 25 or 1 pmol PACAP1-38 could evoke significant elevation in caspase 3/7 activity. TUNEL-positive cells appeared in the proximal part of inner nuclear as well as ganglion cell layers in response to PACAP1-38 treatment. The fundamental novelty of these results is that PACAP1-38 induces apoptosis during early postnatal retinogenesis. The dose as well as stage-dependent response suggests that PACAP1-38 has a Janus face in apoptosis regulation. It not only inhibits development-related apoptosis, but as a long-term effect, facilitates it.
Collapse
Affiliation(s)
- Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| | - Andrea Kovacs-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Institute of Medical Biology, School of Medicine, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
36
|
Hirabayashi T, Nakamachi T, Shioda S. Discovery of PACAP and its receptors in the brain. J Headache Pain 2018; 19:28. [PMID: 29619773 PMCID: PMC5884755 DOI: 10.1186/s10194-018-0855-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
Abstract
Pituitary adenylate-cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide (VIP)/glucagon/secretin family. PACAP shows particularly high homology (~ 68%) to VIP. Because of the high homology of the amino acid sequences of PACAP and VIP, these peptides share three class B-G-protein coupled receptors: the PAC1-Receptor (PAC1-R), the VPAC1-Receptor (VPAC1-R) and VPAC2-Receptor (VPAC2-R). These receptors have high homology to each other, and their high homology is utilized for these discoveries. This review provides mainly an overview of the history of the discovery of PACAP and its three receptors.
Collapse
Affiliation(s)
- Takahiro Hirabayashi
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
37
|
Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Treatment during Pre-maturation Increases the Maturation of Porcine Oocytes Derived from Small Follicles. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.31.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
38
|
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an ubiquitous peptide involved, among others, in neurodevelopment, neuromodulation, neuroprotection, neurogenic inflammation and nociception. Presence of PACAP and its specific receptor, PAC1, in the trigeminocervical complex, changes of PACAP levels in migraine patients and the migraine-inducing effect of PACAP injection strongly support the involvement of PACAP/PAC1 receptor in migraine pathogenesis. While antagonizing PAC1 receptor is a promising therapeutic target in migraine, the diverse array of PACAP's functions, including protection in ischemic events, requires that the cost-benefit of such an intervention is well investigated by taking all the beneficial effects of PACAP into account. In the present review we summarize the protective effects of PACAP in ischemia, especially in neuronal ischemic injuries, and discuss possible points to consider when developing strategies in migraine therapy interfering with the PACAP/PAC1 receptor system.
Collapse
|
39
|
Maugeri G, Longo A, D'Amico AG, Rasà DM, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, D'Agata V. Trophic effect of PACAP on human corneal endothelium. Peptides 2018; 99:20-26. [PMID: 29126993 DOI: 10.1016/j.peptides.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Cornea's posterior surface includes endothelium maintaining stromal hydration and clarity. Due to their limited proliferative capability, the loss of endothelial cells can outcome in permanent opacity. In the last years, different studies have demonstrated the protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in different ocular diseases. However, its role on human corneal endothelial cells (HCECs) has not been investigated, yet. Here, we have developed a culture protocol to differentiate HCECs from donor's cornea. PACAP treatment prevented damage induced by growth factors deprivation of cells grown on transwell supports as revealed by TERR measurements. Moreover, this peptide significantly increased tight junction proteins expression by conferring resistance to endothelial barrier. This effect is also related to promotion of cell viability as demonstrated by MTT assay. Furthermore, PACAP stimulated repairing of corneal endothelium lesion as shown by wound healing analysis. In conclusion, our data suggest that this peptide could represent an important trophic factor in maintaining functionality of human corneal endothelium.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Andrea Russo
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
40
|
Cheng HH, Ye H, Peng RP, Deng J, Ding Y. Inhibition of retinal ganglion cell apoptosis: regulation of mitochondrial function by PACAP. Neural Regen Res 2018; 13:923-929. [PMID: 29863024 PMCID: PMC5998634 DOI: 10.4103/1673-5374.232489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous peptide with neuroprotective effects on retinal neurons, but the precise mechanism underlying these effects remains unknown. Considering the abundance of mitochondria in retinal ganglion cells (RGCs), we postulate that the protective effect of PACAP is associated with the regulation of mitochondrial function. RGC-5 cells were subjected to serum deprivation for 48 hours to induce apoptosis in the presence or absence of 100 nM PACAP. As revealed with the Cell Counting Kit-8 assay, PACAP at different concentrations significantly increased the viability of RGC-5 cells. PACAP also inhibited the excessive generation of reactive oxygen species in RGC-5 cells subjected to serum deprivation. We also showed by flow cytometry that PACAP inhibited serum deprivation-induced apoptosis in RGC-5 cells. The proportions of apoptotic cells and cells with mitochondria depolarization were significantly decreased with PACAP treatment. Western blot assays demonstrated that PACAP increased the levels of Bcl-2 and inhibited the compensatory increase of PAC1. Together, these data indicate protective effects of PACAP against serum deprivation-induced apoptosis in RGCs, and that the mechanism of this action is associated with maintaining mitochondrial function.
Collapse
Affiliation(s)
- Huan-Huan Cheng
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hui Ye
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui-Ping Peng
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Deng
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Bonaventura G, Iemmolo R, D'Amico AG, La Cognata V, Costanzo E, Zappia M, D'Agata V, Conforti FL, Aronica E, Cavallaro S. PACAP and PAC1R are differentially expressed in motor cortex of amyotrophic lateral sclerosis patients and support survival of iPSC-derived motor neurons. J Cell Physiol 2017; 233:3343-3351. [PMID: 28926110 DOI: 10.1002/jcp.26182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and disabling neurodegenerative disease characterized by upper and lower motor neurons depletion. In our previous work, comprehensive genomic profiling of 41 motor cortex samples enabled to discriminate controls from sporadic ALS patients, and segregated these latter into two distinct subgroups (SALS1 and SALS2), each associated with different deregulated genes. In the present study, we focused our attention on two of them, Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its type 1 receptor (PAC1R), and validated the results of the transcriptome experiments by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunohistochemistry and Western blot analysis. To assess the functional role of PACAP and PAC1R in ALS, we developed an in vitro model of human induced pluripotent stem cells (iPSC)-derived motor neurons and examined the trophic effects of exogenous PACAP following neurodegenerative stimuli. Treatment with 100 nm PACAP was able to effectively rescue iPSC-derived motor neurons from apoptosis, as shown by cell viability assay and protein dosage of the apoptotic marker (BAX). All together, these data suggest that perturbations in the PACAP-PAC1R pathway may be involved in ALS pathology and represent a potential drug target to enhance motor neuron viability.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Rosario Iemmolo
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Agata G D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Valentina La Cognata
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy.,Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Erminio Costanzo
- Neurology Department, Cannizzaro Hospital of Catania, Catania, Italy
| | - Mario Zappia
- Department "G. F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca L Conforti
- Institute of Neurological Sciences, Italian National Research Council, Mangone (CS), Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| |
Collapse
|
42
|
Werling D, Banks WA, Salameh TS, Kvarik T, Kovacs LA, Vaczy A, Szabo E, Mayer F, Varga R, Tamas A, Toth G, Biro Z, Atlasz T, Reglodi D. Passage through the Ocular Barriers and Beneficial Effects in Retinal Ischemia of Topical Application of PACAP1-38 in Rodents. Int J Mol Sci 2017; 18:ijms18030675. [PMID: 28335564 PMCID: PMC5372685 DOI: 10.3390/ijms18030675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 01/14/2023] Open
Abstract
The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has two active forms, PACAP1-27 and PACAP1-38. Among the well-established actions are PACAP’s neurotrophic and neuroprotective effects, which have also been proven in models of different retinopathies. The route of delivery is usually intravitreal in studies proving PACAP’s retinoprotective effects. Recently, we have shown that PACAP1-27 delivered as eye drops in benzalkonium-chloride was able to cross the ocular barriers and exert retinoprotection in ischemia. Since PACAP1-38 is the dominant form of the naturally occurring PACAP, our aim was to investigate whether the longer form is also able to cross the barriers and exert protective effects in permanent bilateral common carotid artery occlusion (BCCAO), a model of retinal hypoperfusion. Our results show that radioactive PACAP1-38 eye drops could effectively pass through the ocular barriers to reach the retina. Routine histological analysis and immunohistochemical evaluation of the Müller glial cells revealed that PACAP1-38 exerted retinoprotective effects. PACAP1-38 attenuated the damage caused by hypoperfusion, apparent in almost all retinal layers, and it decreased the glial cell overactivation. Overall, our results confirm that PACAP1-38 given in the form of eye drops is a novel protective therapeutic approach to treat retinal diseases.
Collapse
Affiliation(s)
- Dora Werling
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
- Department of Ophthalmology, University of Pecs, Pecs 7624, Hungary.
| | - William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98122, USA.
| | - Therese S Salameh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98122, USA.
| | - Timea Kvarik
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Laszlo Akos Kovacs
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Alexandra Vaczy
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Edina Szabo
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Flora Mayer
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Rita Varga
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| | - Gabor Toth
- Department of Medical Chemistry, University of Szeged, Szeged 6720, Hungary.
| | - Zsolt Biro
- Department of Ophthalmology, University of Pecs, Pecs 7624, Hungary.
| | - Tamas Atlasz
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
- Department of Sportbiology, University of Pecs, Pecs 7624, Hungary.
- Janos Szentagothai Research Center, University of Pecs, Pecs 7624, Hungary.
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, Medical School, Pecs 7624, Hungary.
| |
Collapse
|
43
|
Kovács-Valasek A, Szabadfi K, Dénes V, Szalontai B, Tamás A, Kiss P, Szabó A, Setalo G, Reglődi D, Gábriel R. Accelerated retinal aging in PACAP knock-out mice. Neuroscience 2017; 348:1-10. [PMID: 28215987 DOI: 10.1016/j.neuroscience.2017.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide. PACAP and its receptors are widely distributed in the retina. A number of reports provided evidence that PACAP is neuroprotective in retinal degenerations. The current study compared retina cell type-specific differences in young (3-4months) and aged adults (14-16months), of wild-type (WT) mice and knock-out (KO) mice lacking endogenous PACAP production during the course of aging. Histological, immunocytochemical and Western blot examinations were performed. The staining for standard neurochemical markers (tyrosine hydroxylase for dopaminergic cells, calbindin 28 kDa for horizontal cells, protein kinase Cα for rod bipolar cells) of young adult PACAP KO retinas showed no substantial alterations compared to young adult WT retinas, except for the specific PACAP receptor (PAC1-R) staining. We could not detect PAC1-R immunoreactivity in bipolar and horizontal cells in young adult PACAP KO animals. Some other age-related changes were observed only in the PACAP KO mice only. These alterations included horizontal and rod bipolar cell dendritic sprouting into the photoreceptor layer and decreased ganglion cell number. Also, Müller glial cells showed elevated GFAP expression compared to the aging WT retinas. Furthermore, Western blot analyses revealed significant differences between the phosphorylation state of ERK1/2 and JNK in KO mice, indicating alterations in the MAPK signaling pathway. These results support the conclusion that endogenous PACAP contributes to protection against aging of the nervous system.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary; Department of János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktória Dénes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Bálint Szalontai
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, University of Pécs, Pécs, Hungary
| | - Péter Kiss
- Department of Anatomy, University of Pécs, Pécs, Hungary
| | - Aliz Szabó
- Department of Biochemistry and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Gyorgy Setalo
- Department of Medical Biology, University of Pécs, Pécs, Hungary; Department of János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy, University of Pécs, Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary; Department of János Szentágothai Research Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
44
|
Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration. J Mol Neurosci 2016; 60:186-94. [PMID: 27566170 DOI: 10.1007/s12031-016-0818-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.
Collapse
Affiliation(s)
- A Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Somoskeoy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - K Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - E Lokos
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - E Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag Street 6, Pecs, H-7624, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|