1
|
Ciurli A, Zamboni A, Varanini Z. Early transcriptomic changes in cucumber and maize roots in response to FePO 4 nanoparticles as a source of P and Fe. Sci Rep 2025; 15:11786. [PMID: 40189639 PMCID: PMC11973210 DOI: 10.1038/s41598-025-95989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
The use of nanoparticles as an alternative to traditional fertilizers, aiming at a more efficient use of nutrients, is a recently developed concept that requires a thorough understanding of the processes occurring in the soil-plant system. A crucial aspect in this framework is to decipher the plant responses to the unique characteristics of these materials. In this work, we aim at decoding the transcriptional responses of cucumber and maize roots to FePO4 nanoparticles applied as P and Fe sources, respectively. The results demonstrate that P and Fe supplied as nanoscale salts support plant nutrition with an efficiency comparable to that of ionic forms of the nutrients. This supposition is confirmed by transcriptomic profiles that show no significant upregulation of transcripts typically induced by deficiencies in P and Fe in cucumber and maize plants in which these nutrients were provided by FePO4 nanoparticles. The analysis further revealed that nanoparticles alter the expression of genes involved in root development and stress responses, effect that appeared to be independent on the nutritional status of the plants. Our data further underline the challenge to identify generalizable elements of the impact of nanomaterials on plant species, as responses are intimately linked to the type of nanomaterials and differ among plant species.
Collapse
Affiliation(s)
- Andrea Ciurli
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, via G. Fanin 40, Bologna, 40127, Italy
| | - Anita Zamboni
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy.
| | - Zeno Varanini
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
2
|
Galindo FS, Thiengo CC, Pagliari PH, Bernardes JVS, Dos Santos GD, Longato PAF, Vilela LDS, Teixeira Filho MCM, Lavres J. Synergism of Bacillus subtilis and Azospirillum brasilense for enhanced N-use efficiency and maize growth: Evidence from 15N isotopic and physiological responses. PHYSIOLOGIA PLANTARUM 2025; 177:e70205. [PMID: 40195598 DOI: 10.1111/ppl.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025]
Abstract
We explored the impact of inoculating maize (Zea mays L.) seeds with plant growth-promoting rhizobacteria (PGPR - Bacillus subtilis and Azospirillum brasilense), either individually or in combination, under different nitrogen input levels - control, low, average and high N levels (0, 30, 60, 90 and 120 mg L-1 equivalent to between 0 and 240 kg N ha-1) in a greenhouse setting. Leaf- and plant-level biometrics, nutritional, biochemical, and physiological evaluations were supplemented by isotopic methods (15N isotope dilution and natural abundance - δ15N‰) along with root scanning to investigate N acquisition and distribution. Dual inoculation not only enhanced the recovery of applied N but also bolstered nitrogenase activity, leading to increased biological N fixation (BNF) even at an average level of N (120 kg N ha-1). In instances where dual inoculated plants were grown at low (60 kg N ha-1) and average N levels, a cascade effect was observed, such as encompassing root growth stimulation, enhanced fertilizer and soil exploitation, and increased biomass production. Increasing N application to 240 kg N ha-1 reduced plant biomass by 19-47% compared to 120 kg N ha-1, depending on inoculation strategy. This led to downregulation of nitrogenase activity, diminished PGPR efficiency, and a significant decline in BNF. This study shows how a change in the rhizosphere microbial population can influence a myriad of responses inside the plants. Our research provides valuable insights for studies using 15N isotopic and dual inoculation techniques, offering strong potential for practical implementation.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- São Paulo State University, College of Agricultural and Technological Sciences, Department of Crop Production, Dracena, Brazil
| | | | - Paulo Humberto Pagliari
- University of Minnesota, Southwest Research and Outreach Center, Department of Soil, Water, and Climate, Lamberton, MN, US
| | | | | | | | - Lucila de Sousa Vilela
- São Paulo State University, College of Agricultural and Technological Sciences, Department of Crop Production, Dracena, Brazil
| | | | - José Lavres
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| |
Collapse
|
3
|
Devi CJ, Saikia K, Mazumdar R, Das R, Bharadwaj P, Thakur D. Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13. Curr Microbiol 2025; 82:64. [PMID: 39751911 DOI: 10.1007/s00284-024-04009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.
Collapse
Affiliation(s)
- Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Macirella R, Ahmed AIM, Talarico F, Gharbi N, Mezzasalma M, Brunelli E. Morphological Alterations and Oxidative Stress Induction in Danio rerio Liver After Short-Term Exposure to the Strobilurin Fungicide Dimoxystrobin. ENVIRONMENTS 2024; 11:282. [DOI: 10.3390/environments11120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Unlike many other fungicides, strobilurins are applied several times during the growing season for prophylactic purposes, thus heightening the risk of environmental contamination. In the EU, the dimoxystrobin approval period lasted for 17 years. It has been classified as moderately toxic to birds and highly toxic to earthworms, and it is suspected to be carcinogenic to humans. However, it is still commercialized in several countries. The effects of dimoxystrobin are still largely underexplored, with only three studies reporting sublethal alterations in fish. Here, we evaluated for the first time the effects of dimoxystrobin on zebrafish liver after short-term exposure (96 h) to two sublethal and environmentally relevant concentrations (6.56 and 13.13 μg/L), providing evidence of morphological, functional, and ultrastructural modifications. We revealed severe alterations encompassing three reaction patterns: circulatory disturbance, regressive and progressive changes, which also showed a dose-dependent trend. Furthermore, we revealed that dimoxystrobin induced a significant increase in lipid content, a decrease in glycogen granules and affected the defensive response against oxidative stress through a significant downregulation of SOD and CAT. The information presented here demonstrates that the hazardous properties of dimoxystrobin may result from several pathological events involving multiple targets. Our results also emphasize the importance of the combined use of morphological, ultrastructural and functional investigation in ecotoxicological studies.
Collapse
Affiliation(s)
- Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Abdalmoiz I. M. Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Federica Talarico
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Natural History Museum and Botanical Garden, University of Calabria, 87036 Rende, Italy
| | - Naouel Gharbi
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, 5006 Bergen, Norway
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| |
Collapse
|
5
|
Aikpokpodion PE, Hsiao BS, Dimkpa CO. Mitigation of Nitrogen Losses in a Plant-Soil System through Incorporation of Nanocellulose and Zinc-Modified Nanocellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17295-17305. [PMID: 39073884 DOI: 10.1021/acs.jafc.4c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Most nitrogen (N) applied to plants as fertilizer is lost through leaching. Here, nanocellulose was used in mitigating N leaching loss. Lettuce-cropped soil was treated with unmodified or Zn-modified nanocellulose (1-2% by wt) in combination with NPK, compared with urea and NPK-only treatments. Consecutive leaching, plant growth, plant N uptake, and soil nitrogen retention were assessed. Nanocellulose + NPK significantly (p ≤ 0.05) reduced N leaching, compared with urea and NPK-only. 1-and-2 wt % nanocellulose, as well as Zn-modified 1-and-2 wt % nanocellulose, reduced N leaching by 45, 38, 39, and 49% compared with urea and by 43, 36, 37, and 47% compared with NPK-only, respectively. Nitrogen leached mainly as NO3- (98.4%). Compared with urea and NPK, lettuce shoot mass was significantly (p ≤ 0.05) increased by 30-42% and by 44-57%, respectively, by all nanocellulose treatments, except for the Zn-modified 1 wt % nanocellulose. Leached N negatively correlated to biomass yield. Soil N retention was enhanced by the pristine and Zn-modified nanocelluloses between 27 and 94%. Demonstrably, nanocellulose can be utilized for mitigating N loss in soil and supporting crop production, resource management, and environmental sustainability.
Collapse
Affiliation(s)
- Paul E Aikpokpodion
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Ijaz U, Zhao C, Shabala S, Zhou M. Molecular Basis of Plant-Pathogen Interactions in the Agricultural Context. BIOLOGY 2024; 13:421. [PMID: 38927301 PMCID: PMC11200688 DOI: 10.3390/biology13060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Biotic stressors pose significant threats to crop yield, jeopardizing food security and resulting in losses of over USD 220 billion per year by the agriculture industry. Plants activate innate defense mechanisms upon pathogen perception and invasion. The plant immune response comprises numerous concerted steps, including the recognition of invading pathogens, signal transduction, and activation of defensive pathways. However, pathogens have evolved various structures to evade plant immunity. Given these facts, genetic improvements to plants are required for sustainable disease management to ensure global food security. Advanced genetic technologies have offered new opportunities to revolutionize and boost plant disease resistance against devastating pathogens. Furthermore, targeting susceptibility (S) genes, such as OsERF922 and BnWRKY70, through CRISPR methodologies offers novel avenues for disrupting the molecular compatibility of pathogens and for introducing durable resistance against them in plants. Here, we provide a critical overview of advances in understanding disease resistance mechanisms. The review also critically examines management strategies under challenging environmental conditions and R-gene-based plant genome-engineering systems intending to enhance plant responses against emerging pathogens. This work underscores the transformative potential of modern genetic engineering practices in revolutionizing plant health and crop disease management while emphasizing the importance of responsible application to ensure sustainable and resilient agricultural systems.
Collapse
Affiliation(s)
- Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| |
Collapse
|
7
|
Wang Y, Deng C, Zhao L, Dimkpa CO, Elmer WH, Wang B, Sharma S, Wang Z, Dhankher OP, Xing B, White JC. Time-Dependent and Coating Modulation of Tomato Response upon Sulfur Nanoparticle Internalization and Assimilation: An Orthogonal Mechanistic Investigation. ACS NANO 2024; 18:11813-11827. [PMID: 38657165 DOI: 10.1021/acsnano.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.
Collapse
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Bofei Wang
- Computational Sciences, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, Texas 79968, United States
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| |
Collapse
|
8
|
Fan Y, Huang R, Liu Q, Cao Q, Guo R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:47-55. [PMID: 36634511 DOI: 10.1016/j.wasman.2022.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The study focused on the transformation of coal fly ash to zeolite A (ZA) as a potential carrier for the slow release of urea. After being treated with HCl aqueous solution and NaOH successively, SiO2 and Al2O3 were converted into sodium silicoaluminate. The obtained silicoaluminate was then heated with NaAlO2 in an aqueous NaOH solution at 70-110 °C for 3-18 h and zeolite A was successfully prepared according to the X-ray diffraction measurements. By changing the hydrothermal temperature and time, ZA could reach 237.3 mmol/100 g in maximum cation exchange capacity. ZA impregnated with urea (ZA-U) at a mass ratio of more than 5:1 exhibited slow release of urea and the kinetics release mechanism of ZA-U was proposed. The plant growth test proved that the slow release of urea from ZA-U can promote the growth of maize seedling.
Collapse
Affiliation(s)
- Yifei Fan
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Renhe Huang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Quan Cao
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
9
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
10
|
Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NANOIMPACT 2022; 28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.
Collapse
Affiliation(s)
- Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
11
|
Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:173. [PMID: 35010126 PMCID: PMC8746782 DOI: 10.3390/nano12010173] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance and enhance crop production with quality fruits/grains. The management of macro-micronutrients is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be environmentally friendly for human beings and may be expensive for farmers. NFs may enhance nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere; extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms. They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable for stimulation of plant development. They are associated with mitigating environmental stresses and enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-technology for agri-improvement in the near future. Interestingly, they do confer stress resistance capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to update researchers widely.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India;
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Moale C, Ghiurea M, Sîrbu CE, Somoghi R, Cioroianu TM, Faraon VA, Lupu C, Trică B, Constantinescu-Aruxandei D, Oancea F. Effects of Siliceous Natural Nanomaterials Applied in Combination with Foliar Fertilizers on Physiology, Yield and Fruit Quality of the Apricot and Peach Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112395. [PMID: 34834758 PMCID: PMC8618693 DOI: 10.3390/plants10112395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Siliceous natural nanomaterials (SNNMs), i.e., diatomaceous earth and natural zeolites, have a nanoporous structure with large active surfaces that adsorb cations or polarized molecules. Such nanoporous feature determines the effects related to SNNM utilization as low-risk plant protectants and soil improvers. This work used SNNMs from Romanian quarries as carriers for foliar fertilizers applied to stone-fruit trees, apricot and peach. We determined the effects of SNNMs on the physiology, yield and fruit quality of the treated stone-fruit trees. SNNM application determined impacts specific to the formation of particle films on leaves: reduced leaf temperature (up to 4.5 °C) and enhanced water use efficiency (up to 30%). Foliar fertilizers' effects on yield are amplified by their application with SNNMs. Yield is increased up to 8.1% by the utilization of SNNMs with foliar fertilizers, compared to applying foliar fertilizer alone. Diatomaceous earth and natural zeolites promote the accumulation of polyphenols in apricot and peach fruits. The combined application of SNNMs and foliar fertilizer enhance the performance of peach and apricot trees.
Collapse
Affiliation(s)
- Cristina Moale
- Research Station for Fruit Growing Constanța, Str. Pepinierei nr. 25, 907300 Valul lui Traian, Romania;
| | - Marius Ghiurea
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Carmen Eugenia Sîrbu
- Department of Physico-Chemical Analysis, National Research and Development Institute for Soil Science, Agro-Chemistry and Environment—ICPA, Mărăşti Blvd. nr. 61, Sector 1, 011464 Bucharest, Romania; (C.E.S.); (T.M.C.)
| | - Raluca Somoghi
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Traian Mihai Cioroianu
- Department of Physico-Chemical Analysis, National Research and Development Institute for Soil Science, Agro-Chemistry and Environment—ICPA, Mărăşti Blvd. nr. 61, Sector 1, 011464 Bucharest, Romania; (C.E.S.); (T.M.C.)
| | - Victor Alexandru Faraon
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Carmen Lupu
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Bogdan Trică
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Diana Constantinescu-Aruxandei
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
| | - Florin Oancea
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (M.G.); (R.S.); (V.A.F.); (C.L.); (B.T.); (D.C.-A.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăşti Blvd. nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
13
|
Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn ( Zea mays L.). NANOMATERIALS 2021; 11:nano11102717. [PMID: 34685156 PMCID: PMC8537598 DOI: 10.3390/nano11102717] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The use of carbon nanoparticles (CNPs) as a fertilizer synergist to enhance crop growth has attracted increasing interest. However, current understanding about plant growth and soil response to CNPs is limited. In the present study, we investigated the effects of CNPs at different application rates on soil properties, the plant growth and nutrient use efficiency (NUE) of corn (Zea mays L.) in two agricultural soils (Spodosol and Alfisol). The results showed that CNPs affected corn growth in a dose-dependent manner, augmenting and retarding growth at low and at high concentrations, respectively. The amendment at the optimal rate of 200 mg CNPs kg−1 significantly enhanced corn growth as indicated by improved plant height, biomass yield, nutrient uptake and nutrient use efficiency, which could be explained by the higher availability of phosphorus and nitrogen in the amended soils. The application of CNPs largely stimulated soil urease activity irrespectively of soil types. However, the responses of dehydrogenase and phosphatase to CNPs were dose dependent; their activity significantly increased with the increasing application rates of CNPs up to 200 mg kg−1 but declined at higher rates (>400 mg kg−1). These findings have important implications in the field application of CNPs for enhancing nutrient use efficiency and crop production in tropical/subtropical regions.
Collapse
|
14
|
Dimkpa CO, Fugice J, Singh U, Lewis TD. Development of fertilizers for enhanced nitrogen use efficiency - Trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139113. [PMID: 32438083 DOI: 10.1016/j.scitotenv.2020.139113] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 05/09/2023]
Abstract
Despite nitrogen (N) being the most important crop nutrient, its use as fertilizer is associated with high losses. Such losses pollute the environment and increase greenhouse gas production and other environmental events associated with high ammonia volatilization and nitrous oxide emission. They also cause soil nitrate leaching and run-off that pollute surface and underground waters, with human health implications. The net outcomes for the plant are reduced N uptake and crop productivity that, together, increase the costs associated with fertilization of agricultural lands and dampen farmers' confidence in the efficacy and profitability of fertilizers. To address these problems, enhanced efficiency fertilizers (EEFs) are continuously being developed to regulate the release of N from fertilizers, allowing for improved uptake and utilization by plants, thereby lowering losses and increasing crop productivity per unit of fertilizer. The EEFs are classified based on whether they are inorganic- bio- or organic-coated; their mode of action on different N forms, including urease activity and nitrification inhibition; and the technologies involved in their development, such as targeted compositing of multiple nutrients and nanotechnology. This review is a critical revisit of the materials and processes utilized to coat or formulate enhanced efficiency N-fertilizers for reducing N losses, including their shortcomings, advances made to address such shortcomings, and effects on mitigating N losses and/or enhancing plant uptake. We provide perspectives that could assist in further improving promising and potentially effective and affordable coating or formulation systems for scalable improvements that allow for reducing the rate of N-fertilizer input in crop production. It is especially critical to develop multi-nutrient fertilizers that provide balanced nutrition to plants and humans, while improving N use efficiency and mitigating N-fertilizer effects on human and environmental health.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.
| | - Job Fugice
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Upendra Singh
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Timothy D Lewis
- AngloAmerican, Resolution House, Lake View, Scarborough YO11 3ZB United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
15
|
Dimkpa CO, Singh U, Bindraban PS, Adisa IO, Elmer WH, Gardea-Torresdey JL, White JC. Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:606-616. [PMID: 30776632 DOI: 10.1016/j.scitotenv.2019.02.142] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 05/04/2023]
Abstract
Plant response to microelements exposure can be modulated based on particle size. However, studies are lacking on the roles of particle size and specific microelements in mixed exposure systems designed for plant nutrition, rather than toxicology. Here, an addition-omission strategy was used to address particle-size and element-specific effects in soybean exposed to a mixture of nano and bulk scale oxide particles of Zn (2 mg Zn/kg), Cu (1 mg Cu/kg) and B (1 mg B/kg) in soil. Compared to the control, mixtures of oxide particles of both sizes significantly (p < 0.05) promoted grain yield and overall (shoot and grain) Zn accumulation, but suppressed overall P accumulation. However, the mixed nano-oxides, but not the mixed bulk-oxides, specifically stimulated shoot growth (47%), flower formation (63%), shoot biomass (34%), and shoot N (53%) and K (42%) accumulation. Compared by particle size, omission of individual elements from the mixtures evoked significant responses that were nano or bulk-specific, including shoot growth promotion (29%) by bulk-B; inhibition (51%) of flower formation by nano-Cu; stimulation (57%) of flower formation by bulk-B; grain yield suppression (40%) by nano-Zn; B uptake enhancement (34%) by bulk-Cu; P uptake stimulation by nano-Zn (14%) or bulk-B (21%); residual soil N (80%) and Zn (42%) enhancement by nano-Cu; and residual soil Cu enhancement by nano-Zn (72%) and nano-B (62%). Zn was responsible for driving the agronomic (biomass and grain yield) responses in this soil, with concurrent ramifications for environmental management (N and P) and human health (Zn nutrition). Overall, compared to bulk microelements, nanoscale microelements played a greater role in evoking plant responses.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.
| | - Upendra Singh
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Prem S Bindraban
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Ishaq O Adisa
- Environmental Science and Engineering, The University of Texas at El Paso, TX 79968, United States
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering, The University of Texas at El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, TX 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| |
Collapse
|