1
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous Metabolites in Metabolic Diseases: Pathophysiologic Roles and Therapeutic Implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids, as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids, as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| |
Collapse
|
2
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
3
|
Pourgharib Shahi MH, Sobhrakhshan Khah A, Sadat Sefidari A, Mirzaei K. Peripheral fatigue and hormone responses to branched-chain amino acids ingestion and exercise in recovery: a systematic review and meta-analysis. Minerva Endocrinol (Torino) 2024; 49:436-447. [PMID: 36177954 DOI: 10.23736/s2724-6507.22.03782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
INTRODUCTION Branched-chain amino acid (BCAA) can boost anabolism through an increase in the internal concentration of BCAA, which leads to facilitating anabolic hormone release to stimulate the power of the muscles. Studies on administration of BCAA to minimize fatigue substances during long periods of high intensity exercise have been conducted. However, there are disagreements concerning the results of these studies. EVIDENCE ACQUISITION A comprehensive search was performed on electronic databases up to November 2021 for trials evaluating the effects of BCAA on recovery following exercise. Mean±standard deviation of follow-up cortisol, insulin, ammonia, and lactate concentrations were extracted to calculate the effect size for meta-analysis. EVIDENCE SYNTHESIS A total of 146 participants for cortisol and 279 participants for lactate were found from the 7 and 15 studies, respectively. The results revealed a significant effect of BCAA supplementation on cortisol concentration during 120≤ min post exercise follow-up. Moreover, without considering follow-up times, an overall analysis showed that BCAA was effective in reducing blood lactate in aerobic exercise and the trained status of athletes. CONCLUSIONS The advantages of BCAA administration relate to a reduction in cortisol concentration after 2h and ameliorated muscle function because of a probable attenuation of fatigue substances immediately after exercise.
Collapse
Affiliation(s)
- Mohammad H Pourgharib Shahi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Sports and Exercise Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sobhrakhshan Khah
- Sepehr Heart Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Khadije Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kordi N, Saydi A, Azimi M, Mazdarani FH, Gadruni K, Jung F, Karami S. Cuproptosis and physical training. Clin Hemorheol Microcirc 2024; 88:337-350. [PMID: 39031346 DOI: 10.3233/ch-242329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Copper is an essential element in the human body, involved in many physiological and metabolic functions, including coagulation, oxidative metabolism, and hormone production. The maintenance of copper homeostasis within cells is a complex procedure that is intrinsically controlled by a multitude of intricate mechanisms. Disorders of copper homeostasis encompass a wide range of pathological conditions, including degenerative neurological diseases, metabolic disorders, cardio-cerebrovascular diseases, and tumors. Cuproptosis, a recently identified non-apoptotic mode of cell death mode, is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis represents a novel form of cell death distinct from the previously described modes, including apoptosis, necrosis, pyroptosis, and ferroptosis. Excess copper has been shown to induce cuproptosis by stimulating protein toxic stress responses via copper-dependent abnormal oligomerization of lipoylation proteins within the tricarboxylic acid cycle and the subsequent reduction of iron-sulfur cluster protein levels. Ferredoxin1 facilitates the lipoacylation of dihydrolipoyl transacetylase, which in turn degrades iron-sulfur cluster proteins by reducing Cu2+ to Cu+, thereby inducing cell death. Furthermore, copper homeostasis is regulated by the copper transporter, and disturbances in this homeostasis result in cuproptosis. Current evidence suggests that cuproptosis plays an important role in the onset and development of several cardiovascular diseases. Copper-chelating agents, including ammonium tetrathiomolybdate (VI) and DL-penicillamine, have been shown to facilitate the alleviation of cardiovascular disease by inhibiting cuproptosis. It is hypothesized that oxidative phosphorylation inhibitors such as physical training may inhibit cuproptosis by inhibiting the protein stress response. In conclusion, the implementation of physical training may be a viable strategy to reducte the incidence of cuproptosis.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Maliheh Azimi
- Faculty of Physical Education, Shahrood University of Technology, Shahrood, Iran
| | | | - Keivan Gadruni
- Faculty of Physical Education, University of Tabriz, Tabriz, Iran
- Kurdistan Education Office, Ministry of Education, Kurdistan, Iran
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Martinho DV, Nobari H, Faria A, Field A, Duarte D, Sarmento H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022; 14:4002. [PMID: 36235655 PMCID: PMC9571679 DOI: 10.3390/nu14194002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are oxidized in the muscle and result in stimulating anabolic signals-which in return may optimize performance, body composition and recovery. Meanwhile, among athletes, the evidence about BCAA supplementation is not clear. The aim of this study was to review the effects of BCAAs in athletic populations. The research was conducted in three databases: Web of Science (all databases), PubMed and Scopus. The inclusion criteria involved participants classified both as athletes and people who train regularly, and who were orally supplemented with BCAAs. The risk of bias was individually assessed for each study using the revised Cochrane risk of bias tool for randomized trials (RoB 2.0). From the 2298 records found, 24 studies met the inclusion criteria. Although BCAAs tended to activate anabolic signals, the benefits on performance and body composition were negligible. On the other hand, studies that included resistance participants showed that BCAAs attenuated muscle soreness after exercise, while in endurance sports the findings were inconsistent. The protocols of BCAA supplements differed considerably between studies. Moreover, most of the studies did not report the total protein intake across the day and, consequently, the benefits of BCAAs should be interpreted with caution.
Collapse
Affiliation(s)
- Diogo V. Martinho
- University of Coimbra, Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, 3040-248 Coimbra, Portugal
- Dietetics and Nutrition, Coimbra Health School, Polytechnic of Coimbra, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
| | - Hadi Nobari
- Department of Physiology, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Ana Faria
- Dietetics and Nutrition, Coimbra Health School, Polytechnic of Coimbra, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
| | - Adam Field
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Daniel Duarte
- N2i—Polytechnic Institute of Maia, 4475-690 Maia, Portugal
- CIDESD—Maia University, 4475-690 Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, 3040-248 Coimbra, Portugal
| |
Collapse
|
6
|
Jonsson WO, Ponette J, Horwath O, Rydenstam T, Söderlund K, Ekblom B, Azzolini M, Ruas JL, Blomstrand E. Changes in plasma concentration of kynurenine following intake of branched-chain amino acids are not caused by alterations in muscle kynurenine metabolism. Am J Physiol Cell Physiol 2021; 322:C49-C62. [PMID: 34817270 DOI: 10.1152/ajpcell.00285.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of branched-chain amino acids (BCAA) has been suggested to enhance mitochondrial biogenesis, including levels of PGC-1α, which may, in turn, alter kynurenine metabolism. Ten healthy subjects performed 60 min of dynamic one-leg exercise at ~70% of Wmax on two occasions. They were in random order supplied either a mixture of BCAA or flavored water (placebo) during the experiment. Blood samples were collected during exercise and recovery, and muscle biopsies were taken from both legs before, after and 90 and 180 min following exercise. Ingestion of BCAA doubled their concentration in both plasma and muscle while causing a 30-40% reduction (P<0.05 vs. placebo) in levels of aromatic amino acids in both resting and exercising muscle during 3-h recovery. The muscle concentration of kynurenine decreased by 25% (P<0.05) during recovery, similar in both resting and exercising leg and with both supplements, although plasma concentration of kynurenine during recovery was 10% lower (P<0.05) when BCAA were ingested. Ingestion of BCAA reduced the plasma concentration of kynurenic acid by 60% (P<0.01) during exercise and recovery, while the level remained unchanged with placebo. Exercise induced a 3-4-fold increase (P<0.05) in muscle content of PGC-1a1 mRNA after 90 min of recovery under both conditions, whereas levels of KAT4 mRNA and protein were unaffected by exercise or supplement. In conclusion, the reduction of plasma levels of kynurenine and kynurenic acid caused by BCAA were not associated with any changes in the level of muscle kynurenine, suggesting that kynurenine metabolism was altered in tissues other than muscle.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Ponette
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Horwath
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Rydenstam
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Söderlund
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michele Azzolini
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Weber MG, Dias SS, de Angelis TR, Fernandes EV, Bernardes AG, Milanez VF, Jussiani EI, de Paula Ramos S. The use of BCAA to decrease delayed-onset muscle soreness after a single bout of exercise: a systematic review and meta-analysis. Amino Acids 2021; 53:1663-1678. [PMID: 34669012 DOI: 10.1007/s00726-021-03089-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Branched-chain amino acids (BCAA) are used as a recovery method after exercise-induced muscle damage (EIMD). Although data suggest that BCAA may alleviate the delayed-onset muscle soreness (DOMS) evoked by EIMD, there is no consensus about the most effective supplementation protocol. To investigate the effects of BCAA on DOMS after a single exercise session that caused EIMD, a systematic review and meta-analysis were conducted on the effectiveness of BCAA supplementation to reduce DOMS symptoms in healthy subjects after a single session of EIMD. Randomized clinical trials (RCT) were searched in Medline, Cochrane Library, Science Direct, SciELO, LILACS, SciVerse Scopus, Springer Link journals, Wiley Online Library, and Scholar Google, until May 2021. Ten RCTs were included in the systematic review and nine in the meta-analysis. Seven studies demonstrated that BCAA reduced DOMS after 24 to 72 h. BCAA doses of up to 255 mg/kg/day, or in trained subjects, for mild to moderate EIMD, could blunt DOMS symptoms. However, high variability between studies due to training status, different doses, time of treatment, and severity of EIMD do not allow us to conclude whether BCAA supplementation is efficient in untrained subjects, applied acutely or during a period of pre to post days of EIMD, and at higher doses (> 255 mg/kg/day). The overall effects of BCAA on DOMS after a single session of exercise were considered useful for improving muscle recovery by reducing DOMS in trained subjects, at low doses, in mild to moderate EIMD, and should not be administered only after the EIMD protocol.
Collapse
Affiliation(s)
- Martim Gomes Weber
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Silas Seolin Dias
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Tarlyson Regioli de Angelis
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Eduardo Vignoto Fernandes
- Research Group in Tissue Regeneration, Adaptation and Repair, Federal University of Jataí, Jataí, Brazil
| | - Andrea Gomes Bernardes
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | | | | | - Solange de Paula Ramos
- Research Group in Tissue Regeneration, Adaptation and Repair, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PR 445 km380, Londrina, Paraná, CEP: 89067-900, Brazil.
| |
Collapse
|
8
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
9
|
Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019; 11:nu11112824. [PMID: 31752260 PMCID: PMC6893734 DOI: 10.3390/nu11112824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.
Collapse
|
10
|
The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients 2019; 11:nu11020353. [PMID: 30736479 PMCID: PMC6412901 DOI: 10.3390/nu11020353] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
A triathlon, which consists of swimming, bicycling, and running, is a high-intensity and long-term form of exercise that can cause injuries such as muscular damage, inflammation, oxidative stress, and energy imbalance. Probiotics are thought to play an important role in disease incidence, health promotion, and nutrient metabolism, but only a few studies have focused on physiological adaptations to exercise in sports science. Previous studies indicated that Lactobacillus supplementation could improve oxidative stress and inflammatory responses. We investigate the effects of Lactobacillus plantarum PS128 supplementation on triathletes for possible physiological adaptation. The triathletes were assigned to one of two groups with different exercise intensity stimulations with different time-points to investigate the effects of body compositions, inflammation, oxidative stress, performance, fatigue, and injury-related biochemical indices. L. plantarum PS128 supplementation, combined with training, can significantly alleviate oxidative stress (such as creatine kinase, Thioredoxin, and Myeloperoxidase indices) after a triathlon (p < 0.05). This effect is possibly regulated by a 6–13% decrease of indicated pro-inflammation (TNF-α, IL-6, and IL-8) cytokines (p < 0.05) and 55% increase of anti-inflammation (IL-10) cytokines (p < 0.05) after intensive exercise stimulation. In addition, L. plantarum PS128 can also substantially increase 24–69% of plasma-branched amino acids (p < 0.05) and elevate exercise performance, as compared to the placebo group (p < 0.05). In conclusion, L. plantarum PS128 may be a potential ergogenic aid for better training management, physiological adaptations to exercise, and health promotion.
Collapse
|
11
|
Popov DV, Lysenko EA, Bokov RO, Volodina MA, Kurochkina NS, Makhnovskii PA, Vyssokikh MY, Vinogradova OL. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol Rep 2018; 6:e13868. [PMID: 30198217 PMCID: PMC6129775 DOI: 10.14814/phy2.13868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Most studies examining the molecular mechanisms underlying adaptation of human skeletal muscles to aerobic exercise focused on the response to acute exercise. Here, we examined the effect of a 2-month aerobic training program on baseline parameters in human muscle. Ten untrained males performed a one-legged knee extension exercise for 1 h with the same relative intensity before and after a 2-month aerobic training program. Biopsy samples were taken from vastus lateralis muscle at rest before and after the 2 month training program (baseline samples). Additionally, biopsy samples were taken from the exercised leg 1 and 4 h after the one-legged continuous knee extension exercise. Aerobic training decreases baseline phosphorylation of FOXO1Ser256 , increases that of CaMKIIThr286 , CREB1Ser133 , increases baseline expression of mitochondrial proteins in respiratory complexes I-V, and some regulators of mitochondrial biogenesis (TFAM, NR4A3, and CRTC2). An increase in the baseline content of these proteins was not associated with a change in baseline expression of their genes. The increase in the baseline content of regulators of mitochondrial biogenesis (TFAM and NR4A3) was associated with a transient increase in transcription after acute exercise. Contrariwise, the increase in the baseline content of respiratory proteins does not seem to be regulated at the transcriptional level; rather, it is associated with other mechanisms. Adaptation of human skeletal muscle to regular aerobic exercise is associated not only with transient molecular responses to exercise, but also with changes in baseline phosphorylation and expression of regulatory proteins.
Collapse
Affiliation(s)
- Daniil V. Popov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Evgeny A. Lysenko
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Roman O. Bokov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Maria A. Volodina
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Nadia S. Kurochkina
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Pavel A. Makhnovskii
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Mikhail Y. Vyssokikh
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Olga L. Vinogradova
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
12
|
Kirk B, Mitchell J, Jackson M, Amirabdollahian F, Alizadehkhaiyat O, Clifford T. A2 Milk Enhances Dynamic Muscle Function Following Repeated Sprint Exercise, a Possible Ergogenic Aid for A1-Protein Intolerant Athletes? Nutrients 2017; 9:nu9020094. [PMID: 28134840 PMCID: PMC5331525 DOI: 10.3390/nu9020094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk (n = 7), regular milk (n = 7), and placebo (PLA) (n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) (p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached (p = 0.069). Milk treatments had no apparent effect on muscle soreness (p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein.
Collapse
Affiliation(s)
- Ben Kirk
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Jade Mitchell
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Matthew Jackson
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | | | - Omid Alizadehkhaiyat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Tom Clifford
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|