1
|
Poondla N, Babaeizad A, Sheykhhasan M, Barry CJ, Manoochehri H, Tanzadehpanah H, Mahaki H, Al-Musawi S. Exosome-based therapies and biomarkers in stroke: Current advances and future directions. Exp Neurol 2025; 391:115286. [PMID: 40328416 DOI: 10.1016/j.expneurol.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke. Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy. Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies. Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.
Collapse
Affiliation(s)
- Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College& Hospital, Chennai 602105, India
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Lee J, Var SR, Chen D, Natera-Rodriguez DE, Hassanipour M, West MD, Low WC, Grande AW, Larocca D. Exosomes derived from highly scalable and regenerative human progenitor cells promote functional improvement in a rat model of ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631793. [PMID: 39829810 PMCID: PMC11741374 DOI: 10.1101/2025.01.07.631793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening. Therefore, it is crucial to develop feasible therapeutic treatments for stroke. In this study, we tested exosomes derived from embryonic endothelial progenitor cells (eEPC) to assess their therapeutic efficacy in a rat model of ischemic stroke. Importantly, we have developed purification methods aimed at producing robust and scalable exosomes suitable for manufacturing clinical grade therapeutic exosomes. We characterized exosome cargos including RNA-seq, miRNAs targets, and proteomic mass spectrometry analysis, and we found that eEPC-exosomes were enhanced with angiogenic miRNAs (i.e., miR-126), anti-inflammatory miRNA (i.e., miR-146), and anti-apoptotic miRNAs (i.e., miR-21). The angiogenic activity of diverse eEPC-exosomes sourced from a panel of eEPC production lines was assessed in vitro by live-cell vascular tube formation and scratch wound assays, showing that several eEPC-exosomes promoted the proliferation, tube formation, and migration in endothelial cells. We further applied the exosomes systemically in a rat middle cerebral artery occlusion (MCAO) model of stroke and tested for neurological recovery (mNSS) after injury in ischemic animals. The mNSS scores revealed that recovery of sensorimotor functioning in ischemic MCAO rats increased significantly after intravenous administration of eEPC-exosomes and outpaced recovery obtained through treatment with umbilical cord stem cells. Finally, we investigated the potential mechanism of eEPC-exosomes in mitigating ischemic stroke injury and inflammation by the expression of neuronal, endothelial, and inflammatory markers. Taken together, these data support the finding that eEPCs provide a valuable source of exosomes for developing scalable therapeutic products and therapies for stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Jieun Lee
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Derek Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mohammad Hassanipour
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Michael D. West
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- LifeCraft Sciences, Inc., Alameda, California, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Larocca
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- Further Biotechnologies, LLC, Alameda, California, USA
| |
Collapse
|
3
|
Fullerton JL, Cosgrove CC, Rooney RA, Work LM. Extracellular vesicles and their microRNA cargo in ischaemic stroke. J Physiol 2023; 601:4907-4921. [PMID: 35421904 PMCID: PMC10952288 DOI: 10.1113/jp282050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Acute ischaemic stroke (AIS) is a leading cause of death and disability. MicroRNAs (miRNAs) are short non-coding RNAs which hold the potential to act as a novel biomarker in AIS. The majority of circulating miRNAs are actively encapsulated by extracellular vesicles (EVs) produced by many cells and organs endogenously. EVs released by mesenchymal stem cells (MSCs) have been extensively studied for their therapeutic potential. In health and disease, EVs are vital for intercellular communication, as the cargo within EVs can be exchanged between neighbouring cells or transported to distant sites. It is clear here from both current preclinical and clinical studies that AIS is associated with specific EV-derived miRNAs, including those transported via MSC-derived EVs. In addition, current studies provide evidence to show that modulating levels of specific EV-derived miRNAs in AIS provides a novel therapeutic potential of miRNAs in the treatment of stroke. Commonalities exist in altered miRNAs across preclinical and clinical studies. Of those EV-packaged miRNAs, miRNA-124 was described both as an EV-packaged biomarker and as a potential EV-loaded therapeutic in experimental models. Alterations of miRNA-17 family and miRNA-17-92 cluster were identified in preclinical, clinical and MSC-EV-mediated neuroprotection in experimental stroke. Finally, miRNA-30d and -30a were found to mediate therapeutic effect when overexpressed from MSC and implicated as a biomarker clinically. Combined, EV-derived miRNAs will further our understanding of the neuropathological processes triggered by AIS. In addition, this work will help determine the true clinical value of circulating EV-packaged miRNAs as biomarkers of AIS or as novel therapeutics in this setting.
Collapse
Affiliation(s)
- Josie L. Fullerton
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Caitlin C. Cosgrove
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Rebecca A. Rooney
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Lorraine M. Work
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Sun W, Chen J, Li J, She X, Ma H, Wang S, Liu J, Yuan Y. Vitamin D receptor-deficient keratinocytes-derived exosomal miR-4505 promotes the macrophage polarization towards the M1 phenotype. PeerJ 2023; 11:e15798. [PMID: 37554338 PMCID: PMC10405794 DOI: 10.7717/peerj.15798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The vitamin D receptor (VDR) has a low level of expression in the keratinocytes of patients with psoriasis and plays a role in the development of the disease. Furthermore, the crosstalk between macrophages and psoriatic keratinocytes-derived exosomes is critical for psoriasis progression. However, the effects of VDR-deficient keratinocytes-derived exosomes (Exos-shVDR) on macrophages and their underlying mechanisms remain largely unknown. METHODS VDR-deficient keratinocytes were constructed by infecting HaCaT cells with a VDR-targeting lentivirus, mimicking the VDR-deficient state observed in psoriatic keratinocytes. Exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. The effect of Exos-shVDR on macrophage proliferation, apoptosis, and M1/M2 polarization was assessed using cell counting kit-8 assay (CCK-8), flow cytometer, real-time quantitative polymerasechain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The mechanism underlying the effect of Exos-shVDR on macrophage function was elucidated through data mining, bioinformatics, RT-qPCR, and rescue experiments. RESULTS Our results revealed that both Exos-shVDR and Exos-shNC exhibited typical exosome characteristics, including a hemispheroid shape with a concave side and particle size ranging from 50 to 100 nm. The levels of expression of VDR were significantly lower in Exos-shVDR than in Exos-shNC. Functional experiments demonstrated that Exos-shVDR significantly promoted macrophage proliferation and polarization towards the M1 phenotype while inhibiting macrophage apoptosis. Moreover, miR-4505 was highly expressed in the skin tissue of patients with psoriasis. Its overexpression significantly increased macrophage proliferation and polarization towards M1 and inhibited apoptosis. Furthermore, the effects of Exos-shVDR on macrophage function occur through miR-4505. CONCLUSIONS Exos-shVDR exacerbates macrophage proliferation, promotes polarization towards the M1 phenotype, and inhibits macrophage apoptosis by increasing the levels of miR-4505. These results indicate that modulation of macrophage function is a potential strategy for developing new drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wen Sun
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Jianqin Chen
- Department of Dermatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingting Li
- Department of Traditional Chinese Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Xiaoguang She
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Hu Ma
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Shali Wang
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Yuan
- Department of Surgical Anesthesiology, Jingmen Central Hospital, Jingmen, China
| |
Collapse
|
5
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
6
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
7
|
Jin M, Zhang S, Wang M, Li Q, Ren J, Luo Y, Sun X. Exosomes in pathogenesis, diagnosis, and therapy of ischemic stroke. Front Bioeng Biotechnol 2022; 10:980548. [PMID: 36588958 PMCID: PMC9800834 DOI: 10.3389/fbioe.2022.980548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke is one of the major contributors to death and disability worldwide. Thus, there is an urgent need to develop early brain tissue perfusion therapies following acute stroke and to enhance functional recovery in stroke survivors. The morbidity, therapy, and recovery processes are highly orchestrated interactions involving the brain with other tissues. Exosomes are natural and ideal mediators of intercellular information transfer and recognized as biomarkers for disease diagnosis and prognosis. Changes in exosome contents express throughout the physiological process. Accumulating evidence demonstrates the use of exosomes in exploring unknown cellular and molecular mechanisms of intercellular communication and organ homeostasis and indicates their potential role in ischemic stroke. Inspired by the unique properties of exosomes, this review focuses on the communication, diagnosis, and therapeutic role of various derived exosomes, and their development and challenges for the treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China,*Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China,*Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
8
|
Seyedaghamiri F, Salimi L, Ghaznavi D, Sokullu E, Rahbarghazi R. Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Commun Signal 2022; 20:110. [PMID: 35869548 PMCID: PMC9308232 DOI: 10.1186/s12964-022-00919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBased on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual’s life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas.
Collapse
|
9
|
Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. BIOLOGY 2022; 11:biology11081231. [PMID: 36009857 PMCID: PMC9405035 DOI: 10.3390/biology11081231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary A stroke occurs when there is a lack of blood flow to the brain. Stroke injures the brain and can have devastating outcomes depending on the size and location of the brain tissue affected. Currently, there are only a limited number of treatment options for stroke. Extracellular vesicles are small vesicles secreted by cells. Importantly, extracellular vesicles have specific markers indicating the cell they were released from and can pass from the brain into the blood. For these reasons, assessing extracellular vesicles in the blood may create a window into changes occurring in the brain. Assessing changes in extracellular vesicles in the blood during stroke may produce new insight into the cellular changes in the brain causing injury during stroke. This in turn may generate potential targets for the development of future treatments. We summarize what is known about changes in brain-cell-specific extracellular vesicles during stroke and stress the importance of continuing to study these changes. Abstract Stoke is a prevalent and devastating neurologic condition with limited options for therapeutic management. Since brain tissue is rarely accessible clinically, peripheral biomarkers for the central nervous system’s (CNS’s) cellular response to stroke may prove critical for increasing our understanding of stroke pathology and elucidating novel therapeutic targets. Extracellular vesicles (EVs) are cell-derived, membrane-enclosed vesicles secreted by all cell types within the CNS that can freely pass the blood-brain barrier (BBB) and contain unique markers and content linked to their cell of origin. These unique qualities make brain-derived EVs novel candidates for non-invasive blood-based biomarkers of both cell specificity and cell physiological state during the progression of stroke and recovery. While studies are continuously emerging that are assessing the therapeutic potential of EVs and profiling EV cargo, a vast minority of these studies link EV content to specific cell types. A better understanding of cell-specific EV release during the acute, subacute, and chronic stages of stroke is needed to further elucidate the cellular processes responsible for stroke pathophysiology. Herein, we outline what is known about EV release from distinct cell types of the CNS during stroke and the potential of these EVs as peripheral biomarkers for cellular function in the CNS during stroke.
Collapse
|
10
|
Toghiani R, Abolmaali SS, Najafi H, Tamaddon AM. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury. Life Sci 2022; 302:120654. [PMID: 35597547 DOI: 10.1016/j.lfs.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells. Exosomes have a great potential in the treatment of I/R injury either in native or modified forms. Native exosomes are secreted by different cell types, such as stem cells, and contain components such as specific miRNA molecules with tissue protective properties. On the other hand, exosome bioengineering has recently received increased attention in context of current advances in the purification, manipulation, biological characterization, and pharmacological applications. There are various pre-isolation and post-isolation manipulation approaches that can be utilized to increase the circulation half-life of exosomes or the availability of their bioactive cargos in the target site. In this review, the various therapeutic actions of native exosomes in different I/R injury will be discussed first. Exosome bioengineering approaches will then be explained, including pre- and post-isolation manipulation methods, applicability for delivery of bioactive agents to injured tissue, clinical translation issues, and future perspectives.
Collapse
Affiliation(s)
- Reyhaneh Toghiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Liu X, Lv X, Liu Z, Zhang M, Leng Y. MircoRNA-29a in Astrocyte-derived Extracellular Vesicles Suppresses Brain Ischemia Reperfusion Injury via TP53INP1 and the NF-κB/NLRP3 Axis. Cell Mol Neurobiol 2022; 42:1487-1500. [PMID: 33620674 PMCID: PMC11421693 DOI: 10.1007/s10571-021-01040-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Brain ischemia reperfusion injury (BIRI) is defined as a series of brain injury accompanied by inflammation and oxidative stress. Astrocyte-derived extracellular vesicles (EVs) are importantly participated in BIRI with involvement of microRNAs (miRs). Our study aimed to discuss the functions of miR-29a from astrocyte-derived EVs in BIRI treatment. Thus, astrocyte-derived EVs were extracted. Oxygen and glucose deprivation (OGD) cell models and BIR rat models were established. Then, cell and rat activities and pyroptosis-related protein levels in these two kinds of models were detected. Functional assays were performed to verify inflammation and oxidative stress. miR-29a expression in OGD cells and BIR rats was measured, and target relation between miR-29a and tumor protein 53-induced nuclear protein 1 (TP53INP1) was certified. Rat neural function was tested. Astrocyte-derived EVs improved miR-29a expression in N9 microglia and rat brains. Astrocyte-derived EVs inhibited OGD-induced injury and inflammation in vitro, reduced brain infarction, and improved BIR rat neural functions in vivo. miR-29a in EVs protected OGD-treated cells and targeted TP53INP1, whose overexpression suppressed the protective function of EVs on OGD-treated cells. miR-29a alleviated OGD and BIRI via downregulating TP53INP1 and the NF-κB/NLRP3 pathway. Briefly, our study demonstrated that miR-29a in astrocyte-derived EVs inhibits BIRI by downregulating TP53INP1 and the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Xin Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xinghua Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Zhenzhen Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mengjie Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Cai H, Huang LY, Hong R, Song JX, Guo XJ, Zhou W, Hu ZL, Wang W, Wang YL, Shen JG, Qi SH. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway. Front Pharmacol 2022; 13:908830. [PMID: 35814200 PMCID: PMC9263912 DOI: 10.3389/fphar.2022.908830] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Plant exosome-like nanoparticles (ELNs) have shown great potential in treating tumor and inflammatory diseases, but the neuroprotective effect of plant ELNs remains unknown. In the present study, we isolated and characterized novel ELNs from Momordica charantia (MC) and investigated their neuroprotective effects against cerebral ischemia-reperfusion injury. In the present study, MC-ELNs were isolated by ultracentrifugation and characterized. Male Sprague–Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and MC-ELN injection intravenously. The integrity of the blood–brain barrier (BBB) was examined by Evans blue staining and with the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and ZO-1. Neuronal apoptosis was evaluated by TUNEL and the expression of apoptotic proteins including Bcl2, Bax, and cleaved caspase 3. The major discoveries include: 1) Dil-labeled MC-ELNs were identified in the infarct area; 2) MC-ELN treatment significantly ameliorated BBB disruption, decreased infarct sizes, and reduced neurological deficit scores; 3) MC-ELN treatment obviously downregulated the expression of MMP-9 and upregulated the expression of ZO-1 and claudin-5. Small RNA-sequencing revealed that MC-ELN-derived miRNA5266 reduced MMP-9 expression. Furthermore, MC-ELN treatment significantly upregulated the AKT/GSK3β signaling pathway and attenuated neuronal apoptosis in HT22 cells. Taken together, these findings indicate that MC-ELNs attenuate ischemia-reperfusion–induced damage to the BBB and inhibit neuronal apoptosis probably via the upregulation of the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Lin-Yan Huang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Rui Hong
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Xin-Jian Guo
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Yan-Ling Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Jian-Gang Shen
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| | - Su-Hua Qi
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| |
Collapse
|
13
|
Huang LY, Song JX, Cai H, Wang PP, Yin QL, Zhang YD, Chen J, Li M, Song JJ, Wang YL, Luo L, Wang W, Qi SH. Healthy Serum-Derived Exosomes Improve Neurological Outcomes and Protect Blood–Brain Barrier by Inhibiting Endothelial Cell Apoptosis and Reversing Autophagy-Mediated Tight Junction Protein Reduction in Rat Stroke Model. Front Cell Neurosci 2022; 16:841544. [PMID: 35308117 PMCID: PMC8927286 DOI: 10.3389/fncel.2022.841544] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 02/03/2023] Open
Abstract
Blood–brain barrier (BBB) dysfunction causing edema and hemorrhagic transformation is one of the pathophysiological characteristics of stroke. Protection of BBB integrity has shown great potential in improving stroke outcome. Here, we assessed the efficacy of exosomes extracted from healthy rat serum in protection against ischemic stroke in vivo and in vitro. Exosomes were isolated by gradient centrifugation and ultracentrifugation and exosomes were characterized by transmission electron microscopy (TEM) and nanoparticle tracking video microscope. Exosomes were applied to middle cerebral artery occlusion (MCAO) rats or brain microvascular endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD) injury. Serum-derived exosomes were injected intravenously into adult male rats 2 h after transient MCAO. Infarct volume and gross cognitive function were assessed 24 h after reperfusion. Poststroke rats treated with serum-derived exosomes exhibited significantly reduced infarct volumes and enhanced neurological function. Apoptosis was assessed via terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining and the expression of B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3 24 h after injury. Our data showed that serum exosomes treatment strikingly decreased TUNEL+ cells in the striatum, enhanced the ratio of Bcl-2 to Bax, and inhibited cleaved caspase-3 production in MCAO rats and OGD/reoxygenation insulted bEnd.3 cells. Under the consistent treatment, the expression of microtubule-associated protein 1 light chain 3B-II (LC3B-II), LC3B-I, and Sequestosome-1 (SQSTM1)/p62 was detected by Western blotting. Autolysosomes were observed via TEM. We found that serum exosomes reversed the ratio of LC3B-II to LC3B-I, prevented SQSTM1/p62 degradation, autolysosome formation, and autophagic flux. Together, these results indicated that exosomes isolated from healthy serum provided neuroprotection against experimental stroke partially via inhibition of endothelial cell apoptosis and autophagy-mediated BBB breakdown. Intravenous serum-derived exosome treatment may, therefore, provide a novel clinical therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Qi-Long Yin
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Yi-De Zhang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jie Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ming Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Jia Song
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Ling Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Su-Hua Qi
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Su-Hua Qi,
| |
Collapse
|
14
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
15
|
Jiang L, Chen W, Ye J, Wang Y. Potential Role of Exosomes in Ischemic Stroke Treatment. Biomolecules 2022; 12:115. [PMID: 35053263 PMCID: PMC8773818 DOI: 10.3390/biom12010115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is a life-threatening cerebral vascular disease and accounts for high disability and mortality worldwide. Currently, no efficient therapeutic strategies are available for promoting neurological recovery in clinical practice, except rehabilitation. The majority of neuroprotective drugs showed positive impact in pre-clinical studies but failed in clinical trials. Therefore, there is an urgent demand for new promising therapeutic approaches for ischemic stroke treatment. Emerging evidence suggests that exosomes mediate communication between cells in both physiological and pathological conditions. Exosomes have received extensive attention for therapy following a stroke, because of their unique characteristics, such as the ability to cross the blood brain-barrier, low immunogenicity, and low toxicity. An increasing number of studies have demonstrated positively neurorestorative effects of exosome-based therapy, which are largely mediated by the microRNA cargo. Herein, we review the current knowledge of exosomes, the relationships between exosomes and stroke, and the therapeutic effects of exosome-based treatments in neurovascular remodeling processes after stroke. Exosomes provide a viable and prospective treatment strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Jinyi Ye
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| |
Collapse
|
16
|
Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep 2021; 16:323-334. [PMID: 31808037 DOI: 10.1007/s12015-019-09927-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
17
|
Huang M, Xiao C, Zhang L, Li L, Luo J, Chen L, Hu X, Zheng H. Bioinformatic Analysis of Exosomal MicroRNAs of Cerebrospinal Fluid in Ischemic Stroke Rats After Physical Exercise. Neurochem Res 2021; 46:1540-1553. [PMID: 33709257 DOI: 10.1007/s11064-021-03294-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Physical exercise is beneficial to the structural and functional recovery of post-ischemic stroke, but its molecular mechanism remains obscure. Herein, we aimed to explore the underlying mechanism of exercise-induced neuroprotection from the perspective of microRNAs (miRNAs). Adult male Sprague-Dawley (SD) rats were randomly distributed into 4 groups, i.e., the physical exercise group with the transient middle cerebral artery occlusion (tMCAO) surgery (PE-IS, n = 28); the physical exercise group without tMCAO surgery (PE, n = 6); the sedentary group with tMCAO surgery (Sed-IS, n = 28); and the sedentary group without tMCAO surgery (Sed, n = 6). Notably, rats in the PE-IS and PE groups were subjected to a running exercise for 28 days while rats in the Sed-IS and Sed groups received no exercise training. After long-term exercise, exosomal miRNAs of cerebrospinal fluid (CSF) were analyzed using high-throughput sequencing. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed for the differentially expressed miRNAs. Physical exercise improved the neurological function and attenuated the lesion expansion after stroke. In total, 41 differentially expressed miRNAs were screened for the GO and KEGG analysis. GO enriched terms were associated with the central nervous system, including cellular response to retinoic acid, vagus nerve morphogenesis, cellular response to hypoxia, dendritic cell chemotaxis, cell differentiation, and regulation of neuron death. Besides, these differentially expressed miRNAs were linked to the pathophysiological process of stroke, including axon guidance, NF-kappa B signaling pathway, thiamine metabolism, and MAPK signaling pathway according to KEGG analysis. In summary, exercise training significantly alleviated the neurological damage at both functional and structural levels. Moreover, the differentially expressed miRNAs regulating multiple signal pathways were potentially involved in the neuroprotective effects of physical exercise. Therefore, these miRNAs altered by physical exercise might represent the therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Mudan Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lilin Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
18
|
Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl Stroke Res 2021; 13:171-187. [PMID: 33982152 DOI: 10.1007/s12975-021-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood-brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.
Collapse
|
19
|
Xiao L, Hareendran S, Loh YP. Function of exosomes in neurological disorders and brain tumors. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:55-79. [PMID: 34368812 PMCID: PMC8341051 DOI: 10.20517/evcna.2021.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Exosomes are a subtype of extracellular vesicles released from different cell types including those in the nervous system, and are enriched in a variety of bioactive molecules such as RNAs, proteins and lipids. Numerous studies have indicated that exosomes play a critical role in many physiological and pathological activities by facilitating intercellular communication and modulating cells' responses to external environments. Particularly in the central nervous system, exosomes have been implicated to play a role in many neurological disorders such as abnormal neuronal development, neurodegenerative diseases, epilepsy, mental disorders, stroke, brain injury and brain cancer. Since exosomes recapitulate the characteristics of the parental cells and have the capacity to cross the blood-brain barrier, their cargo can serve as potential biomarkers for early diagnosis and clinical assessment of disease treatment. In this review, we describe the latest findings and current knowledge of the roles exosomes play in various neurological disorders and brain cancer, as well as their application as promising biomarkers. The potential use of exosomes to deliver therapeutic molecules to treat diseases of the central nervous system is also discussed.
Collapse
Affiliation(s)
| | | | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Jafarzadeh-Esfehani R, Soudyab M, Parizadeh SM, Jaripoor ME, Nejad PS, Shariati M, Nabavi AS. Circulating Exosomes and Their Role in Stroke. Curr Drug Targets 2021; 21:89-95. [PMID: 31433753 DOI: 10.2174/1389450120666190821153557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
Stroke is an acute neurologic disorder which can be life-threatening if left untreated or diagnosed late. Various detecting techniques including neurologic imaging of the brain by computed tomography or magnetic resonance imaging can facilitate diagnosis of stroke. However, according to the recent advances in molecular detection techniques, new diagnostic and prognostic markers have emerged. Exosomes as an extra cellar particle are one of these markers which can have useful diagnostic, prognostic, and even therapeutic impact after stroke. We have previously discussed the role of exosomes in cardiovascular disease and in the present review we focus on the most common cerebrovascular disease. The aim of the present review is summarizing the recent diagnostic role of exosomes which are specifically secreted during a stroke and can guide clinicians to better diagnosis of stroke.
Collapse
Affiliation(s)
- Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Payam Sasan Nejad
- Department of neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Shariati
- Department of neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr Nabavi
- Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Yu Y, Hou K, Ji T, Wang X, Liu Y, Zheng Y, Xu J, Hou Y, Chi G. The role of exosomal microRNAs in central nervous system diseases. Mol Cell Biochem 2021; 476:2111-2124. [PMID: 33528706 DOI: 10.1007/s11010-021-04053-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNA), endogenous non-coding RNAs approximately 22 nucleotides long, regulate gene expression by mediating translational inhibition or mRNA degradation. Exosomes are a tool for intercellular transmission of information in which miRNA exchange plays an important role. Under pathophysiological conditions in the central nervous system (CNS), cellular transmission of exosomal miRNAs can regulate signaling pathways. Exosomal miRNAs are involved in the occurrence and development of diverse CNS diseases, such as traumatic brain injury, spinal cord injury, stroke, neurodegenerative diseases, epilepsy, and glioma. The use of exosomes as transport vehicles for certain miRNAs provides a novel therapeutic strategy for CNS diseases. Furthermore, the exosomes in body fluids change with the occurrence of diseases, indicating that subtle changes in physiological and pathological processes in vivo could be recognized by analyzing exosomes. Exosomal analysis is expected to act as a novel tool for diagnosis and prediction of neurological diseases. In this review, we present the current understanding of the implications of miRNAs in CNS diseases and summarize the role and mechanism of action of exosomal miRNA in nervous system disease models.
Collapse
Affiliation(s)
- Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Tong Ji
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
22
|
Yousif G, Qadri S, Haik M, Haik Y, Parray AS, Shuaib A. Circulating Exosomes of Neuronal Origin as Potential Early Biomarkers for Development of Stroke. Mol Diagn Ther 2021; 25:163-180. [DOI: 10.1007/s40291-020-00508-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
|
23
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
24
|
Lv A, Tu Z, Huang Y, Lu W, Xie B. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett 2020; 21:54. [PMID: 33281965 PMCID: PMC7709555 DOI: 10.3892/ol.2020.12316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Exosomal microRNAs (miRs/miRNAs) have been reported to be associated with cervical cancer. The aim of the present study was to investigate circulating exosomal miRNA as a biomarker for cervical cancer diagnosis. In the present study, samples from 6 patients with cervical cancer and 6 healthy control subjects were retrieved for exosomal RNA-sequencing. The results revealed that a total of 39 miRNAs were differentially expressed between patients with cervical cancer and healthy controls (P<0.001; fold-change >2.0). Exosomal miR-125a-5p was further quantified in plasma from 60 subjects, which included 22 healthy individuals and 38 patients with cervical cancer. miR-16a-5p served as the reference miRNA for quantitative PCR analysis of exosomal miR-125a-5p in patients with cervical cancer and healthy individuals. The results revealed that exosomal miR-125a-5p expression levels in the patients with cervical cancer were significantly lower than those in the healthy controls (P<0.001). Receiver operating characteristic (ROC) curve analyses were performed and the results revealed that the level of plasma exosomal miR-125a-5p was a potential marker for differentiating between non-cervical cancer and cervical cancer, with an ROC area under the curve of 0.7129. At the cut-off value of 2.537 for miR-125a-5p, cervical cancer diagnostic sensitivities and specificities were 59.1 and 84.2%, respectively. The present study provides confirmation that exosomal miR-125a-5p could potentially serve as a biomarker for cervical cancer diagnosis. The present study involved only a small number of clinical samples; more samples are required to support the conclusions of the present study.
Collapse
Affiliation(s)
- Aixia Lv
- Reproductive Center, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Zengrong Tu
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yunhua Huang
- Reproductive Medicine Center, Hainan Maternal and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Weiying Lu
- Reproductive Medicine Center, Hainan Maternal and Children's Medical Center, Haikou, Hainan 570206, P.R. China.,Reproductive Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Baoguo Xie
- Reproductive Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
25
|
MiR-5787 Attenuates Macrophages-Mediated Inflammation by Targeting TLR4/NF-κB in Ischemic Cerebral Infarction. Neuromolecular Med 2020; 23:363-370. [DOI: 10.1007/s12017-020-08628-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/28/2020] [Indexed: 01/26/2023]
|
26
|
Konečná B, Radošinská J, Keményová P, Repiská G. Detection of disease-associated microRNAs - application for autism spectrum disorders. Rev Neurosci 2020; 31:757-769. [PMID: 32813679 DOI: 10.1515/revneuro-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) diagnostic procedure still lacks a uniform biological marker. This review gathers the information on microRNAs (miRNAs) specifically as a possible source of biomarkers of ASD. Extracellular vesicles, and their subset of exosomes, are believed to be a tool of cell-to-cell communication, and they are increasingly considered to be carriers of such a marker. The interest in studying miRNAs in extracellular vesicles grows in all fields of study and therefore should not be omitted in the field of neurodevelopmental disorders. The summary of miRNAs associated with brain cells and ASD either studied directly in the tissue or biofluids are gathered in this review. The heterogeneity in findings from different studies points out the fact that unified methods should be established, beginning with the determination of the accurate patient and control groups, through to sample collection, processing, and storage conditions. This review, based on the available literature, proposes the standardized approach to obtain the results that would not be affected by technical factors. Nowadays, the method of high-throughput sequencing seems to be the most optimal to analyze miRNAs. This should be followed by the uniformed bioinformatics procedure to avoid misvalidation. At the end, the proper validation of the obtained results is needed. With such an approach as is described in this review, it would be possible to obtain a reliable biomarker that would characterize the presence of ASD.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Petra Keményová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| |
Collapse
|
27
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
28
|
Sun Y, Lu Y, Yin L, Liu Z. The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Front Bioeng Biotechnol 2020; 8:947. [PMID: 32923434 PMCID: PMC7457042 DOI: 10.3389/fbioe.2020.00947] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is currently one of the primary causes of mortality and morbidity worldwide. Nanoparticles (NPs) are playing increasingly important roles in regulating stem cell behavior because of their special features, including shape, size, aspect ratio, surface charge, and surface area. In terms of cardiac disease, NPs can facilitate gene delivery in stem cells, track the stem cells in vivo for long-term monitoring, and enhance retention after their transplantation. The advantages of applying NPs in peripheral vascular disease treatments include facilitating stem cell therapy, mimicking the extracellular matrix environment, and utilizing a safe non-viral gene delivery tool. However, the main limitation of NPs is toxicity, which is related to their size, shape, aspect ratio, and surface charge. Currently, there have been many animal models proving NPs’ potential in treating CVD, but no extensive applications of stem-cell therapy using NPs are available in clinical practice. In conclusion, NPs might have significant potential uses in clinical trials of CVD in the future, thereby meeting the changing needs of individual patients worldwide.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
30
|
Neganova ME, Aleksandrova YR, Nebogatikov VO, Klochkov SG, Ustyugov AA. Promising Molecular Targets for Pharmacological Therapy of Neurodegenerative Pathologies. Acta Naturae 2020; 12:60-80. [PMID: 33173597 PMCID: PMC7604899 DOI: 10.32607/actanaturae.10925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Drug development for the treatment of neurodegenerative diseases has to confront numerous problems occurring, in particular, because of attempts to address only one of the causes of the pathogenesis of neurological disorders. Recent advances in multitarget therapy research are gaining momentum by utilizing pharmacophores that simultaneously affect different pathological pathways in the neurodegeneration process. The application of such a therapeutic strategy not only involves the treatment of symptoms, but also mainly addresses prevention of the fundamental pathological processes of neurodegenerative diseases and the reduction of cognitive abilities. Neuroinflammation and oxidative stress, mitochondrial dysfunction, dysregulation of the expression of histone deacetylases, and aggregation of pathogenic forms of proteins are among the most common and significant pathological features of neurodegenerative diseases. In this review, we focus on the molecular mechanisms and highlight the main aspects, including reactive oxygen species, the cell endogenous antioxidant system, neuroinflammation triggers, metalloproteinases, α-synuclein, tau proteins, neuromelanin, histone deacetylases, presenilins, etc. The processes and molecular targets discussed in this review could serve as a starting point for screening leader compounds that could help prevent or slow down the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- M. E. Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - V. O. Nebogatikov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - S. G. Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - A. A. Ustyugov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| |
Collapse
|
31
|
Wang MM, Feng YS, Tan ZX, Xing Y, Dong F, Zhang F. The role of exosomes in stroke. Mol Biol Rep 2020; 47:6217-6228. [PMID: 32514999 DOI: 10.1007/s11033-020-05569-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Stroke is induced by a partial disruption of cerebral blood flow to the brain and is related to high morbidity and mortality. In the central nervous system, exosomes have been proven to exert neuroprotective effects, reducing brain damage following a stroke. This review was performed by searching the relevant articles in the SCIENCEDIRECT, PUBMED, and Web of Science databases from respective inception to November 2018. We review the relationship between exosomes and angiogenesis, neurogenesis, antiapoptosis, autophagy, and the blood-brain barrier in stroke. Moreover, exosomes are found to be a promising tool for the diagnosis and treatment of stroke. In summary, exosomes provide a novel way to alleviate brain damage following a stroke.
Collapse
Affiliation(s)
- Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
32
|
Cui J, Liu N, Chang Z, Gao Y, Bao M, Xie Y, Xu W, Liu X, Jiang S, Liu Y, Shi R, Xie W, Jia X, Shi J, Ren C, Gong K, Zhang C, Bade R, Shao G, Ji X. Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:649-660. [PMID: 32380415 PMCID: PMC7210387 DOI: 10.1016/j.omtn.2020.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.
Collapse
Affiliation(s)
- Junhe Cui
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Na Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Zhehan Chang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Yongsheng Gao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Mulan Bao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaolei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Shuyuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - You Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Rui Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaoe Jia
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Jinghua Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC.
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC; Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China.
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC.
| |
Collapse
|
33
|
Venkat P, Cui C, Chen Z, Chopp M, Zacharek A, Landschoot-Ward J, Culmone L, Yang XP, Xu J, Chen J. CD133+Exosome Treatment Improves Cardiac Function after Stroke in Type 2 Diabetic Mice. Transl Stroke Res 2020; 12:112-124. [PMID: 32198711 DOI: 10.1007/s12975-020-00807-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Cardiac complications post-stroke are common, and diabetes exacerbates post-stroke cardiac injury. In this study, we tested whether treatment with exosomes harvested from human umbilical cord blood derived CD133+ cells (CD133+Exo) improves cardiac function in type 2 diabetes mellitus (T2DM) stroke mice. Adult (3-4 m), male, BKS.Cg-m+/+Leprdb/J (db/db, T2DM) and non-DM (db+) mice were randomized to sham or photothrombotic stroke groups. T2DM-stroke mice were treated with phosphate-buffered saline (PBS) or CD133+Exo (20 μg, i.v.) at 3 days after stroke. T2DM sham and T2DM+CD133+Exo treatment groups were included as controls. Echocardiography was performed, and mice were sacrificed at 28 days after stroke. Cardiomyocyte hypertrophy, myocardial capillary density, interstitial fibrosis, and inflammatory factor expression were measured in the heart. MicroRNA-126 expression and its target gene expression were measured in the heart. T2DM mice exhibit significant cardiac deficits such as decreased left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), increased left ventricular diastolic dimension (LVDD), and reduced heart rate compared to non-DM mice. Stroke in non-DM and T2DM mice significantly decreases LVEF compared to non-DM and T2DM-sham, respectively. Cardiac dysfunction is worse in T2DM-stroke mice compared to non-DM-stroke mice. CD133+Exo treatment of T2DM-stroke mice significantly improves cardiac function identified by increased LVEF and decreased LVDD compared to PBS treated T2DM-stroke mice. In addition, CD133+Exo treatment significantly decreases body weight and blood glucose but does not decrease lesion volume in T2DM-stroke mice. CD133+Exo treatment of T2DM mice significantly decreases body weight and blood glucose but does not improve cardiac function. CD133+Exo treatment in T2DM-stroke mice significantly decreases myocardial cross-sectional area, interstitial fibrosis, transforming growth factor beta (TGF-β), numbers of M1 macrophages, and oxidative stress markers 4-HNE (4-hydroxynonenal) and NADPH oxidase 2 (NOX2) in heart tissue. CD133+Exo treatment increases myocardial capillary density in T2DM-stroke mice as well as upregulates endothelial cell capillary tube formation in vitro. MiR-126 is highly expressed in CD133+Exo compared to exosomes derived from endothelial cells. Compared to PBS treatment, CD133+Exo treatment significantly increases miR-126 expression in the heart and decreases its target gene expression such as Sprouty-related, EVH1 domain-containing protein 1 (Spred-1), vascular cell adhesion protein (VCAM), and monocyte chemoattractant protein 1 (MCP1) in the heart of T2DM-stroke mice. CD133+Exo treatment significantly improves cardiac function in T2DM-stroke mice. The cardio-protective effects of CD133+Exo in T2DM-stroke mice may be attributed at least in part to increasing miR-126 expression and decreasing its target protein expression in the heart, increased myocardial capillary density and decreased cardiac inflammatory factor expression.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Chengcheng Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | | | - Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Xiao-Ping Yang
- Hypertension Research, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiang Xu
- Hypertension Research, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA.
| |
Collapse
|
34
|
Zhao F, Cheng L, Shao Q, Chen Z, Lv X, Li J, He L, Sun Y, Ji Q, Lu P, Ji Y, Ji J. Characterization of serum small extracellular vesicles and their small RNA contents across humans, rats, and mice. Sci Rep 2020; 10:4197. [PMID: 32144372 PMCID: PMC7060188 DOI: 10.1038/s41598-020-61098-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Serum small extracellular vesicles (sEVs) have recently drawn considerable interest because of the diagnostic and therapeutic potential of their miRNAs content. However, the characteristics of human, mouse and rat serum sEVs and their differences in small RNA contents are still unknown. In this study, through nanoparticle tracking analysis and small RNA sequencing, we found that human, rat, and mouse serum sEVs exhibited distinct sizes and particle numbers as well as small RNA contents. Serum sEVs contained not only abundant miRNAs but also a large number of tRNA fragments. Most serum miRNAs existed both inside and outside of sEVs but were enriched in sEVs. Common serum sEV miRNAs (188 miRNAs) and species-specific serum sEV miRNAs (265, 58, and 159 miRNAs, respectively) were identified in humans, rats, or mice. The serum sEVs contained miRNAs from tissues and organs throughout the body, with blood cells as the main contributors. In conclusion, our findings confirmed the rationality of exploring serum sEV miRNAs as noninvasive diagnostic markers and revealed great differences in serum sEV small RNAs between humans, rats, and mice. Inadequate attention to these differences and the contribution of blood cells to serum sEV miRNAs could hinder the clinical translation of basic studies.
Collapse
Affiliation(s)
- Fengbo Zhao
- Department of Pathology, Medical School of Nantong University, Nantong, China.,Basic Medical Research Center, Medical School of Nantong University, Nantong, China
| | - Li Cheng
- Department of Pathology, Medical School of Nantong University, Nantong, China.,Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| | - Zixing Chen
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong, China
| | - Xiufang Lv
- Basic Medical Research Center, Medical School of Nantong University, Nantong, China.,Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Li He
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yufeng Sun
- Basic Medical Research Center, Medical School of Nantong University, Nantong, China.,Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, China.,Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China. .,Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong, China.
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China. .,Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China.
| |
Collapse
|
35
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
36
|
Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of Exosomes in Central Nervous System Diseases. Front Mol Neurosci 2019; 12:240. [PMID: 31636538 PMCID: PMC6787718 DOI: 10.3389/fnmol.2019.00240] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
There are many types of intercellular communication, and extracellular vesicles are one of the important forms of this. They are released by a variety of cell types, are heterogeneous, and can roughly be divided into microvesicles and exosomes according to their occurrence and function. Of course, exosomes do not just play a role in cell-to-cell communication. In the nervous system, exosomes can participate in intercellular communication, maintain the myelin sheath, and eliminate waste. Similarly, exosomes in the brain can play a role in central nervous system diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and traumatic encephalopathy (CTE), with both positive and negative effects (such as the transfer of misfolded proteins). Exosomes contain a variety of key bioactive substances and can therefore be considered as a snapshot of the intracellular environment. Studies have shown that exosomes from the central nervous system can be found in cerebrospinal fluid and peripheral body fluids, and that their contents will change with disease occurrence. Because exosomes can penetrate the blood brain barrier (BBB) and are highly stable in peripheral circulation, they can protect disease-related molecules well and therefore, using exosomes as a biomarker of central nervous system diseases is an attractive prospect as they can be used to monitor disease development and enable early diagnosis and treatment optimization. In this review, we discuss the current state of knowledge of exosomes, and introduce their pathophysiological roles in different diseases of the central nervous system as well as their roles and applications as a viable pathological biomarker.
Collapse
Affiliation(s)
- Wanying Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodan Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, New York, NY, United States
| | - Juanjuan Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, Shen Y, Chen J. MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke 2019; 50:2865-2874. [PMID: 31394992 DOI: 10.1161/strokeaha.119.025371] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- Stroke patients with type 2 diabetes mellitus (T2DM) exhibit increased vascular and white matter damage and have worse prognosis compared with nondiabetic stroke patients. We investigated the neurorestorative effects of exosomes derived from mouse brain endothelial cells (EC-Exo) as treatment for stroke in T2DM mice and investigated the role of miR-126 in mediating EC-Exo-derived therapeutic benefits in T2DM-stroke mice. Methods- Adult, male BKS.Cg-m+/+Leprdb/J (T2DM) mice were subjected to photothrombotic stroke model. T2DM mice were intravenously injected at 3 days after stroke with (1) PBS; (2) liposome mimic (vehicle control, 3×1010); (3) EC-Exo (3×1010); (4) knockdown of miR-126 in EC-Exo (miR-126-/- EC-Exo, 3×1010). Behavioral and cognitive tests were performed, and mice were sacrificed at 28 days after stroke. Results- Compared with non-DM stroke mice, T2DM-stroke mice exhibit significantly decreased serum and brain tissue miR-126 expression. Endothelial cells and EC-Exo contain high levels of miR-126 compared with other cell types or exosomes derived from other types of cells, respectively (smooth muscle cells, astrocytes, and marrow stromal cells). Compared with PBS or liposome mimic treatment, EC-Exo treatment of T2DM-stroke mice significantly improves neurological and cognitive function, increases axon density, myelin density, vascular density, arterial diameter, as well as induces M2 macrophage polarization in the ischemic boundary zone. MiR-126-/- EC-Exo treatment significantly decreases miR-126 expression in serum and brain, as well as attentuates EC-Exo treatment-induced functional improvement and does not significantly increase axon and myelin density, vascular density, arterial diameter or induce M2 macrophage polarization in T2DM-stroke mice. In vitro, EC-Exo treatment significantly increases primary cortical neuron axonal outgrowth and increases endothelial capillary tube formation whereas miR-126-/- EC-Exo attentuates EC-Exo induced capillary tube formation and axonal outgrowth. Conclusions- EC-Exo treatment of stroke promotes neurorestorative effects in T2DM mice. MiR-126 may mediate EC-Exo-induced neurorestorative effects in T2DM mice. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Poornima Venkat
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Chengcheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.).,Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Fengjie Wang
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Julie Landschoot-Ward
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Yi Shen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| |
Collapse
|
38
|
Wang X, Wang J, Shi X, Pan C, Liu H, Dong Y, Dong R, Mang J, Xu Z. Proteomic analyses identify a potential mechanism by which extracellular vesicles aggravate ischemic stroke. Life Sci 2019; 231:116527. [DOI: 10.1016/j.lfs.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
|
39
|
Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120:16352-16361. [PMID: 31219202 DOI: 10.1002/jcb.29130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Blood vessels rupture or occlusion in brain results in stroke. Stroke is the major reason for mortality and dysfunction worldwide. Despite several attempts, there are no any approved therapeutic approaches for stroke subjects. The most neuroprotective agents showed the positive effects in preclinical reports, while there are no significant therapeutic impacts in the clinical trials. MicroRNAs (miRNAs) are small noncoding RNAs which involved in the modulation of a variety of cellular and molecular pathways. Given that deregulation of these molecules is related to initiation and progression of stroke. Exosomes are nano-carriers which are able to transfer different cargos such as miRNAs to recipient cells. Increasing evidence revealed that exosomal miRNAs are one of very important factors which are involved in the pathogenesis of stroke. Hence, more understanding about the role of exosomal miRNAs in stroke pathogenesis could contribute in discovering and developing new therapeutic approaches. Moreover, it has been proved the exosomal miRNAs could be used as noninvasive biomarkers in diagnosis and monitoring response to therapy in subjects with stroke. Herein for first time, we summarized different exosomal miRNAs involved in pathogenesis of stroke.
Collapse
Affiliation(s)
- Abdolreza Ghoreishy
- Department of Neurology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Khosravi
- Department of Neurology, Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Amir Ghaemmaghami
- Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:212-221. [DOI: 10.2174/1871527318666190204104629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/31/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Stroke continues to be a major cause of death and disability worldwide. In this respect, the
most important mechanisms underlying stroke pathophysiology are inflammatory pathways, oxidative
stress, as well as apoptosis. Accordingly, miRNAs are considered as non-coding endogenous RNA
molecules interacting with their target mRNAs to inhibit mRNA translation or reduce its transcription.
Studies in this domain have similarly shown that miRNAs are strongly associated with coronary artery
disease and correspondingly contributed to the brain ischemia molecular processes. To retrieve articles
related to the study subject, i.e. the role of miRNAs involved in inflammatory pathways, oxidative
stress, and apoptosis in stroke from the databases of Web of Science, PubMed (NLM), Open Access
Journals, LISTA (EBSCO), and Google Scholar; keywords including cerebral ischemia, microRNA
(miRNA), inflammatory pathway, oxidative stress, along with apoptosis were used. It was consequently
inferred that, miRNAs could be employed as potential biomarkers for diagnosis and prognosis, as
well as therapeutic goals of cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Amini
- UKM Medical Centre [HUKM], Department of Medicine, Faculty of Medicine, Malaysia
| |
Collapse
|
41
|
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol 2019; 10:227. [PMID: 30984006 PMCID: PMC6447777 DOI: 10.3389/fphys.2019.00227] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
In human beings the immature brain is highly plastic and depending on the stage of gestation is particularly vulnerable to a range of insults that if sufficiently severe, can result in long-term motor, cognitive and behavioral impairment. With improved neonatal care, the incidence of major motor deficits such as cerebral palsy has declined with prematurity. Unfortunately, however, milder forms of injury characterized by diffuse non-cystic white matter lesions within the periventricular region and surrounding white matter, involving loss of oligodendrocyte progenitors and subsequent axonal hypomyelination as the brain matures have not. Existing therapeutic options for treatment of preterm infants have proved inadequate, partly owing to an incomplete understanding of underlying post-injury cellular and molecular changes that lead to poor neurodevelopmental outcomes. This has reinforced the need to improve our understanding of brain plasticity, explore novel solutions for the development of protective strategies, and identify biomarkers. Compelling evidence exists supporting the involvement of microRNAs (miRNAs), a class of small non-coding RNAs, as important post-transcriptional regulators of gene expression with functions including cell fate specification and plasticity of synaptic connections. Importantly, miRNAs are differentially expressed following brain injury, and can be packaged within exosomes/extracellular vesicles, which play a pivotal role in assuring their intercellular communication and passage across the blood-brain barrier. Indeed, an increasing number of investigations have examined the roles of specific miRNAs following injury and regeneration and it is apparent that this field of research could potentially identify protective therapeutic strategies to ameliorate perinatal brain injury. In this review, we discuss the most recent findings of some important miRNAs in relation to the development of the brain, their dysregulation, functions and regulatory roles following brain injury, and discuss how these can be targeted either as biomarkers of injury or neuroprotective agents.
Collapse
Affiliation(s)
- Kenta Hyeon Tae Cho
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Departments of Molecular Medicine and Pathology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
43
|
Yu P, Chen W. Advances in the diagnosis of exosomal miRNAs in ischemic stroke. Neuropsychiatr Dis Treat 2019; 15:2339-2343. [PMID: 31695378 PMCID: PMC6707376 DOI: 10.2147/ndt.s216784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023] Open
Abstract
Early diagnosis, early treatment, and improved prognosis in patients with ischemic stroke are vital requirements. Current clinical practices for the diagnosis of stroke include computed tomography, magnetic resonance imaging, and other traditional imaging methods to quickly check the location, volume, etc, in the hospital; however, diagnosis of the underlying cause of infarction is not effective with these practices. Owing to the coexistence of various etiologies, accurate and timely diagnosis using routine hematology and biochemical tests remains a challenge. Exosomes are membrane vesicles, approximately 30-150 nm in diameter, which fuse with cell membrane and are released into the extracellular space. As one of the research hotspots in the field of medicine in recent years, exosomes can participate in immune response, antigen presentation, cell migration, tumor invasion, and so on. Owing to the important role played by the miRNAs contained in exosomes, the latter have shown great potential in the diagnosis and treatment of ischemic stroke. This article reviews the progress made regarding the exosomal miRNAs as ischemic stroke biomarkers.
Collapse
Affiliation(s)
- Pei Yu
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| | - Wencheng Chen
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| |
Collapse
|
44
|
WANG WENTING, LI ZIJIAN, FENG JUAN. The potential role of exosomes in the diagnosis and therapy of ischemic diseases. Cytotherapy 2018; 20:1204-1219. [DOI: 10.1016/j.jcyt.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/14/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
|
45
|
Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, Wang X. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res 2018; 371:269-277. [PMID: 30142325 DOI: 10.1016/j.yexcr.2018.08.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggest that exosomes from mesenchymal stem cells have therapeutic effects in cerebral ischemia-reperfusion (I/R) injury, but the underlying mechanisms are unclear. Pigment epithelium-derived factor (PEDF) is a multifunctional protein that exhibits anti-inflammatory, antioxidative, and neuroprotective properties. We investigated the involvement of PEDF in I/R, using adipose-derived mesenchymal stem cells (ADSCs) isolated from rat. PEDF-overexpressing ADSCs were constructed and exosomes from ADSCs were isolated. SY-5Y cells were employed to identify the protective effects of exosomes in oxygen-glucose deprivation (OGD) experiments. Exosome treatment suppressed OGD-induced apoptosis by inhibiting the two-step caspase dependent (caspase-9 and caspase-3) apoptotic pathway. Increasing the PEDF content of exosomes further promoted the protective effect against OGD-induced apoptosis by activating autophagy, while blocking autophagy reduced the effect of PEDF-containing exosomes. We constructed a middle cerebral artery occlusion-reperfusion (MCAO) model using male Sprague-Dawley rats to identify the role of PEDF in exosome-mediated neuroprotection. These in vivo experiments further confirmed that exosomes from PEDF-modified ADSCs ameliorated cerebral I/R injury by activating autophagy and suppressing neuronal apoptosis. These findings suggest that PEDF plays a role in exosome-mediated prevention of cerebral I/R injury by modulating apoptotic factors and promoting autophagy.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yufei Li
- Department of Plastic Surgery, The NO. 455 Hospital of PLA, 338 West Huaihai Rd, Shanghai 200052, China.
| | - Wenjuan Liu
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jianlin Ji
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China.
| | - Xin Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University and Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
46
|
Osier N, Motamedi V, Edwards K, Puccio A, Diaz-Arrastia R, Kenney K, Gill J. Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. Mol Neurobiol 2018; 55:9280-9293. [PMID: 29663285 DOI: 10.1007/s12035-018-1054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are endogenous nanovesicles that play critical roles in intercellular signaling by conveying functional genetic information and proteins between cells. Exosomes readily cross the blood-brain barrier and have promise as therapeutic delivery vehicles that have the potential to specifically deliver molecules to the central nervous system (CNS). This unique feature also makes exosomes attractive as biomarkers in diagnostics, prognostics, and therapeutics in the context of multiple significant public health conditions, including acquired neurological disorders. The purpose of this review is to summarize the state of the science surrounding the relevance of extracellular vesicles (EVs), particularly exosomes, to acquire neurological disorders, specifically traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. In total, ten research articles were identified that examined exosomes in the context of TBI, SCI, or stroke; these manuscripts were reviewed and synthesized to further understand the current role of exosomes in the context of acquired neurological disorders. Of the ten published studies, four focused exclusively on TBI, one on both TBI and SCI, and five on ischemic stroke; notably, eight of the ten studies were limited to pre-clinical samples. The present review is the first to discuss the current body of knowledge surrounding the role of exosomes in the pathophysiology, diagnosis, and prognosis, as well as promising therapeutic strategies in TBI, SCI, and stroke research.
Collapse
Affiliation(s)
- Nicole Osier
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA. .,University of Texas at Austin, Austin, TX, USA.
| | - Vida Motamedi
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA
| | - Katie Edwards
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA.,Healthcare Genetics Doctoral Program, Clemson University School of Nursing, 508 Edwards, Clemson, SC, 29631, USA
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Ramon Diaz-Arrastia
- University of Pennsylvania School of Medicine, Suite 205 Medical Office Building, 51 N 39TH ST, Philadelphia, PA, 19104, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Building 51, Room 2306, 4860 South Palmer Road, Bethesda, MD, 20889-5649, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA
| |
Collapse
|
47
|
Fineschi V, Viola RV, La Russa R, Santurro A, Frati P. A Controversial Medicolegal Issue: Timing the Onset of Perinatal Hypoxic-Ischemic Brain Injury. Mediators Inflamm 2017; 2017:6024959. [PMID: 28883688 PMCID: PMC5572618 DOI: 10.1155/2017/6024959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic brain injury, as a result of chronic, subacute, and acute insults, represents the pathological consequence of fetal distress and birth or perinatal asphyxia, that is, "nonreassuring fetal status." Hypoxic-ischemic injury (HII) is typically characterized by an early phase of damage, followed by a delayed inflammatory local response, in an apoptosis-necrosis continuum. In the early phase, the cytotoxic edema and eventual acute lysis take place; with reperfusion, additional damage should be assigned to excitotoxicity and oxidative stress. Finally, a later phase involves all the inflammatory activity and long-term neural tissue repairing and remodeling. In this model mechanism, loss of mitochondrial function is supposed to be the hallmark of secondary injury progression, and autophagy which is lysosome-mediated play a role in enhancing brain injury. Early-induced molecules driven by hypoxia, as chaperonins HSPs and ORP150, besides common markers for inflammatory responses, have predictive value in timing the onset of neonatal HII; on the other hand, clinical biomarkers for HII diagnosis, as CK-BB, LDH, S-100beta, and NSE, could be useful to predict outcomes.
Collapse
Affiliation(s)
- Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Rocco Valerio Viola
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
48
|
Chen Y, Song Y, Huang J, Qu M, Zhang Y, Geng J, Zhang Z, Liu J, Yang GY. Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke. Front Neurol 2017; 8:57. [PMID: 28289400 PMCID: PMC5326773 DOI: 10.3389/fneur.2017.00057] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Recent studies have demonstrated that exosomal microRNAs (miRNAs) are novel biomarkers and therapeutic targets for various diseases including vascular disease. However, specific exosomal miRNAs expression in stroke patients has not been reported yet. Here, we explored whether circulating exosomal miRNAs can serve as potential biomarkers for the diagnosis of acute ischemic stroke and discussed the potential for clinical application. Blood samples were collected from acute ischemic stroke patients within the first 72 h (n = 50). Circulating exosomes were exacted by Exoquick exosome isolation kit and characterized by transmission electron microscopy. Western blot was performed to assess the expression of exosomal protein makers. Exosomal miRNA-223 (miR-223) was detected by RT-PCR assay. The relationship between the expression levels of miR-223 and National Institutes of Health Stroke Scale (NIHSS) scores, brain infarct volume, and neurological outcomes were analyzed. Circulating exosomes were isolated and the size of vesicles ranged between 30 and 100 nm. The identification of exosomes was further confirmed by the detection of specific exosomal protein markers CD9, CD63, and Tsg101. Exosomal miR-223 in acute ischemic stroke patients was significantly upregulated compared to control group (p < 0.001). Exosomal miR-223 level was positively correlated with NIHSS scores (r = 0.31, p = 0.03). Exosomal miR-223 expression in stroke patients with poor outcomes was higher than those with good outcomes (p < 0.05). Increased exosomal miR-223 was associated with acute ischemic stroke occurrence, stroke severity, and short-term outcomes. Future studies with large sample are needed to assess the clinical application of exosomal miR-223 as a novel biomarker for ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Huang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yu Zhang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University , Shanghai , China
| | - Jianrong Liu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Chandran R, Mehta SL, Vemuganti R. Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 2017; 111:12-22. [PMID: 28131900 DOI: 10.1016/j.neuint.2017.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that various classes of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and long non-coding RNAs (lncRNAs) play important roles in normal state as well as the diseases of the CNS. Interestingly, ncRNAs have been shown to interact with messenger RNA, DNA and proteins, and these interactions could induce epigenetic modifications and control transcription and translation, thereby adding a new layer of genomic regulation. The ncRNA expression profiles are known to be altered after acute CNS injuries including stroke, traumatic brain injury and spinal cord injury that are major contributors of morbidity and mortality worldwide. Hence, a better understanding of the functional significance of ncRNAs following CNS injuries could help in developing potential therapeutic strategies to minimize the neuronal damage in those conditions. The potential of ncRNAs in blood and CSF as biomarkers for diagnosis and/or prognosis of acute CNS injuries has also gained importance in the recent years. This review highlighted the current progress in the understanding of the role of ncRNAs in initiation and progression of secondary neuronal damage and their application as biomarkers after acute CNS injuries.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
50
|
Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, Yu P, Chopp M. MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. Transl Stroke Res 2017; 8:374-385. [PMID: 28101763 DOI: 10.1007/s12975-017-0520-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases are approximately three times higher in patients with neurological deficits than in patients without neurological deficits. MicroRNA-126 (MiR-126) facilitates vascular remodeling and decreases fibrosis and is emerging as an important factor in the pathogenesis of cardiovascular diseases and cerebral stroke. In this study, we tested the hypothesis that decreased miR-126 after ischemic stroke may play an important role in regulating cardiac function. Wild-type (WT), specific conditional-knockout endothelial cell miR-126 (miR-126EC-/-), and miR-126 knockout control (miR-126fl/fl) mice were subjected to distal middle cerebral artery occlusion (dMCAo) (n = 10/group). Cardiac hemodynamics and function were measured using transthoracic Doppler echocardiography. Mice were sacrificed at 28 days after dMCAo. WT mice subjected to stroke exhibited significantly decreased cardiac ejection fraction and increased myocyte hypertrophy, fibrosis as well as increased heart inflammation, infiltrating macrophages, and oxidative stress compared to non-stroke animals. Stroke significantly decreased serum and heart miR-126 expression and increased miR-126 target genes, vascular cell adhesion protein-1, and monocyte chemotactic protein-1 gene, and protein expression in the heart compared to non-stroke mice. MiR-126EC-/- mice exhibited significantly decreased cardiac function and increased cardiomyocyte hypertrophy, fibrosis, and inflammatory factor expression after stroke compared to miR-126fl/fl stroke mice. Exosomes derived from endothelial cells of miR-126EC-/- (miR-126EC-/-EC-Exo) mice exhibited significantly decreased miR-126 expression than exosomes derived from miR-126fl/fl (miR-126fl/fl-EC-Exo) mice. Treatment of cardiomyocytes subjected to oxygen glucose deprivation with miR-126fl/fl-EC-Exo exhibited significantly decreased hypertrophy than with miR-126EC-/-EC-Exo treatment. Ischemic stroke directly induces cardiac dysfunction. Decreasing miR-126 expression may contribute to cardiac dysfunction after stroke in mice.
Collapse
Affiliation(s)
- Jieli Chen
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA. .,Gerontology Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | | | - Xiaoping Yang
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiang Xu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | | | - Alex Zacharek
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA
| | - Peng Yu
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA
| | - Michael Chopp
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA.,Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|